Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Zika Virus | Review

CRISPR–Cas system to discover host-virus interactions in Flaviviridae

Authors: Zahra Ramezannia, Ali Shamekh, Hossein Bannazadeh Baghi

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

The Flaviviridae virus family members cause severe human diseases and are responsible for considerable mortality and morbidity worldwide. Therefore, researchers have conducted genetic screens to enhance insight into viral dependency and develop potential anti-viral strategies to treat and prevent these infections. The host factors identified by the clustered regularly interspaced short palindromic repeats (CRISPR) system can be potential targets for drug development. Meanwhile, CRISPR technology can be efficiently used to treat viral diseases as it targets both DNA and RNA. This paper discusses the host factors related to the life cycle of viruses of this family that were recently discovered using the CRISPR system. It also explores the role of immune factors and recent advances in gene editing in treating flavivirus-related diseases. The ever-increasing advancements of this technology may promise new therapeutic approaches with unique capabilities, surpassing the traditional methods of drug production and treatment.
Literature
1.
go back to reference Barrows NJ, Campos RK, Liao K-C, Prasanth KR, Soto-Acosta R, Yeh S-C, et al. Biochemistry and molecular biology of flaviviruses. Chem Rev. 2018;118(8):4448–82.PubMedPubMedCentralCrossRef Barrows NJ, Campos RK, Liao K-C, Prasanth KR, Soto-Acosta R, Yeh S-C, et al. Biochemistry and molecular biology of flaviviruses. Chem Rev. 2018;118(8):4448–82.PubMedPubMedCentralCrossRef
2.
go back to reference Alazard-Dany N, Denolly S, Boson B, Cosset F-L. Overview of HCV life cycle with a special focus on current and possible future antiviral targets. Viruses. 2019;11(1):30.PubMedPubMedCentralCrossRef Alazard-Dany N, Denolly S, Boson B, Cosset F-L. Overview of HCV life cycle with a special focus on current and possible future antiviral targets. Viruses. 2019;11(1):30.PubMedPubMedCentralCrossRef
4.
go back to reference Heymann DL, Hodgson A, Freedman DO, Staples JE, Althabe F, Baruah K, et al. Zika virus and microcephaly: Why is this situation a PHEIC? The Lancet. 2016;387(10020):719–21.CrossRef Heymann DL, Hodgson A, Freedman DO, Staples JE, Althabe F, Baruah K, et al. Zika virus and microcephaly: Why is this situation a PHEIC? The Lancet. 2016;387(10020):719–21.CrossRef
5.
go back to reference Sikka V, Chattu VK, Popli RK, Galwankar SC, Kelkar D, Sawicki SG, et al. The emergence of Zika virus as a global health security threat: a review and a consensus statement of the INDUSEM Joint Working Group (JWG). J Global Infect Dis. 2016;8(1):3.CrossRef Sikka V, Chattu VK, Popli RK, Galwankar SC, Kelkar D, Sawicki SG, et al. The emergence of Zika virus as a global health security threat: a review and a consensus statement of the INDUSEM Joint Working Group (JWG). J Global Infect Dis. 2016;8(1):3.CrossRef
6.
go back to reference Saiz J-C, Vázquez-Calvo Á, Blázquez AB, Merino-Ramos T, Escribano-Romero E, Martin-Acebes MA. Zika virus: the latest newcomer. Front Microbiol. 2016;7:496.PubMedPubMedCentral Saiz J-C, Vázquez-Calvo Á, Blázquez AB, Merino-Ramos T, Escribano-Romero E, Martin-Acebes MA. Zika virus: the latest newcomer. Front Microbiol. 2016;7:496.PubMedPubMedCentral
7.
10.
go back to reference Samaan Z, McDermid Vaz S, Bawor M, Potter TH, Eskandarian S, Loeb M. Neuropsychological impact of West Nile virus infection: an extensive neuropsychiatric assessment of 49 cases in Canada. PLoS ONE. 2016;11(6):e0158364.PubMedPubMedCentralCrossRef Samaan Z, McDermid Vaz S, Bawor M, Potter TH, Eskandarian S, Loeb M. Neuropsychological impact of West Nile virus infection: an extensive neuropsychiatric assessment of 49 cases in Canada. PLoS ONE. 2016;11(6):e0158364.PubMedPubMedCentralCrossRef
12.
go back to reference Sejvar JJ, Bode AV, Marfin AA, Campbell GL, Ewing D, Mazowiecki M, et al. West Nile virus—associated flaccid paralysis. Emerg Infect Dis. 2005;11(7):1021.PubMedPubMedCentralCrossRef Sejvar JJ, Bode AV, Marfin AA, Campbell GL, Ewing D, Mazowiecki M, et al. West Nile virus—associated flaccid paralysis. Emerg Infect Dis. 2005;11(7):1021.PubMedPubMedCentralCrossRef
13.
go back to reference Collins MH, Metz SW. Progress and works in progress: update on flavivirus vaccine development. Clin Ther. 2017;39(8):1519–36.PubMedCrossRef Collins MH, Metz SW. Progress and works in progress: update on flavivirus vaccine development. Clin Ther. 2017;39(8):1519–36.PubMedCrossRef
14.
go back to reference Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature. 2016;535(7610):159–63.PubMedPubMedCentralCrossRef Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature. 2016;535(7610):159–63.PubMedPubMedCentralCrossRef
15.
go back to reference Perreira JM, Meraner P, Brass AL. Functional genomic strategies for elucidating human–virus interactions: will CRISPR knockout RNAi and haploid cells? Adv Virus Res. 2016;94:1–51.PubMedPubMedCentralCrossRef Perreira JM, Meraner P, Brass AL. Functional genomic strategies for elucidating human–virus interactions: will CRISPR knockout RNAi and haploid cells? Adv Virus Res. 2016;94:1–51.PubMedPubMedCentralCrossRef
16.
go back to reference Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7.PubMedCrossRef Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7.PubMedCrossRef
17.
go back to reference Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343(6166):80–4.PubMedCrossRef Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343(6166):80–4.PubMedCrossRef
18.
go back to reference Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891):960–4.PubMedPubMedCentralCrossRef Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891):960–4.PubMedPubMedCentralCrossRef
19.
go back to reference Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45(1):273–97.PubMedCrossRef Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45(1):273–97.PubMedCrossRef
20.
go back to reference Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151(3):653–63.PubMedCrossRef Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151(3):653–63.PubMedCrossRef
21.
go back to reference Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7.PubMedPubMedCentralCrossRef Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7.PubMedPubMedCentralCrossRef
22.
go back to reference Barrangou R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol. 2015;16(1):1–11.CrossRef Barrangou R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol. 2015;16(1):1–11.CrossRef
23.
go back to reference Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.PubMedCrossRef Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.PubMedCrossRef
24.
go back to reference Tang L. Exploring class 1 CRISPR systems. Berlin: Nature Publishing Group; 2019.CrossRef Tang L. Exploring class 1 CRISPR systems. Berlin: Nature Publishing Group; 2019.CrossRef
25.
go back to reference Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol. 2017;15(3):169–82.PubMedPubMedCentralCrossRef Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol. 2017;15(3):169–82.PubMedPubMedCentralCrossRef
27.
28.
29.
go back to reference Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 2015;60(3):385–97.PubMedPubMedCentralCrossRef Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 2015;60(3):385–97.PubMedPubMedCentralCrossRef
30.
go back to reference Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018;173(3):665–76.PubMedPubMedCentralCrossRef Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018;173(3):665–76.PubMedPubMedCentralCrossRef
31.
go back to reference Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat Methods. 2021;18(5):499–506.PubMedCrossRef Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat Methods. 2021;18(5):499–506.PubMedCrossRef
32.
go back to reference Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–42.PubMedPubMedCentralCrossRef Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–42.PubMedPubMedCentralCrossRef
33.
go back to reference Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: advances, limitations, and applications for precision cancer research. Front Med. 2021;8:649896.CrossRef Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: advances, limitations, and applications for precision cancer research. Front Med. 2021;8:649896.CrossRef
35.
go back to reference Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25(2):249–54.PubMedPubMedCentralCrossRef Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25(2):249–54.PubMedPubMedCentralCrossRef
36.
go back to reference Liu J-Q, Li T. CRISPR-Cas9-mediated loss-of-function screens. Front Life Sci. 2019;12(1):1–13.CrossRef Liu J-Q, Li T. CRISPR-Cas9-mediated loss-of-function screens. Front Life Sci. 2019;12(1):1–13.CrossRef
37.
go back to reference Sigoillot FD, Lyman S, Huckins JF, Adamson B, Chung E, Quattrochi B, et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat Methods. 2012;9(4):363–6.PubMedPubMedCentralCrossRef Sigoillot FD, Lyman S, Huckins JF, Adamson B, Chung E, Quattrochi B, et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat Methods. 2012;9(4):363–6.PubMedPubMedCentralCrossRef
38.
40.
go back to reference Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer PR, Lin E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326–8.PubMedPubMedCentralCrossRef Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer PR, Lin E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326–8.PubMedPubMedCentralCrossRef
41.
go back to reference Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159(3):647–61.PubMedPubMedCentralCrossRef Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159(3):647–61.PubMedPubMedCentralCrossRef
42.
go back to reference Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46.PubMedPubMedCentralCrossRef Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46.PubMedPubMedCentralCrossRef
43.
go back to reference Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583–8.PubMedCrossRef Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583–8.PubMedCrossRef
46.
go back to reference Sun X, Yau VK, Briggs BJ, Whittaker GR. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology. 2005;338(1):53–60.PubMedCrossRef Sun X, Yau VK, Briggs BJ, Whittaker GR. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology. 2005;338(1):53–60.PubMedCrossRef
47.
go back to reference Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 2006;80(14):6964–72.PubMedPubMedCentralCrossRef Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 2006;80(14):6964–72.PubMedPubMedCentralCrossRef
48.
go back to reference Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–88.PubMedCrossRef Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–88.PubMedCrossRef
49.
go back to reference Richardson RB, Ohlson MB, Eitson JL, Kumar A, McDougal MB, Boys IN, et al. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat Microbiol. 2018;3(11):1214–23.PubMedPubMedCentralCrossRef Richardson RB, Ohlson MB, Eitson JL, Kumar A, McDougal MB, Boys IN, et al. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat Microbiol. 2018;3(11):1214–23.PubMedPubMedCentralCrossRef
50.
go back to reference Lin DL, Cherepanova NA, Bozzacco L, MacDonald MR, Gilmore R, Tai AW. Dengue virus hijacks a noncanonical oxidoreductase function of a cellular oligosaccharyltransferase complex. MBio. 2017;8(4):e00939-e1017.PubMedPubMedCentralCrossRef Lin DL, Cherepanova NA, Bozzacco L, MacDonald MR, Gilmore R, Tai AW. Dengue virus hijacks a noncanonical oxidoreductase function of a cellular oligosaccharyltransferase complex. MBio. 2017;8(4):e00939-e1017.PubMedPubMedCentralCrossRef
51.
go back to reference Ngo AM, Shurtleff MJ, Popova KD, Kulsuptrakul J, Weissman JS, Puschnik AS. The ER membrane protein complex is required to ensure correct topology and stable expression of flavivirus polyproteins. Elife. 2019;8:e48469.PubMedPubMedCentralCrossRef Ngo AM, Shurtleff MJ, Popova KD, Kulsuptrakul J, Weissman JS, Puschnik AS. The ER membrane protein complex is required to ensure correct topology and stable expression of flavivirus polyproteins. Elife. 2019;8:e48469.PubMedPubMedCentralCrossRef
52.
go back to reference Labeau A, Simon-Loriere E, Hafirassou M-L, Bonnet-Madin L, Tessier S, Zamborlini A, et al. A genome-wide CRISPR-Cas9 screen identifies the dolichol-phosphate mannose synthase complex as a host dependency factor for dengue virus infection. J Virol. 2020;94(7):e01751-e1819.PubMedPubMedCentralCrossRef Labeau A, Simon-Loriere E, Hafirassou M-L, Bonnet-Madin L, Tessier S, Zamborlini A, et al. A genome-wide CRISPR-Cas9 screen identifies the dolichol-phosphate mannose synthase complex as a host dependency factor for dengue virus infection. J Virol. 2020;94(7):e01751-e1819.PubMedPubMedCentralCrossRef
53.
go back to reference Brugier A, Hafirrassou ML, Pourcelot M, Baldaccini M, Kril V, Couture L, et al. RACK1 associates with RNA-binding proteins vigilin and SERBP1 to facilitate dengue virus replication. J Virol. 2022;96(7):e01962-e2021.PubMedPubMedCentralCrossRef Brugier A, Hafirrassou ML, Pourcelot M, Baldaccini M, Kril V, Couture L, et al. RACK1 associates with RNA-binding proteins vigilin and SERBP1 to facilitate dengue virus replication. J Virol. 2022;96(7):e01962-e2021.PubMedPubMedCentralCrossRef
54.
go back to reference Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, et al. Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep. 2016;16(1):232–46.PubMedCrossRef Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, et al. Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep. 2016;16(1):232–46.PubMedCrossRef
55.
go back to reference Hoffmann H-H, Schneider WM, Rozen-Gagnon K, Miles LA, Schuster F, Razooky B, et al. TMEM41B is a pan-flavivirus host factor. Cell. 2021;184(1):133–48.PubMedCrossRef Hoffmann H-H, Schneider WM, Rozen-Gagnon K, Miles LA, Schuster F, Razooky B, et al. TMEM41B is a pan-flavivirus host factor. Cell. 2021;184(1):133–48.PubMedCrossRef
56.
go back to reference Shue B, Chiramel AI, Cerikan B, To T-H, Frölich S, Pederson SM, et al. Genome-wide CRISPR screen identifies RACK1 as a critical host factor for flavivirus replication. J Virol. 2021;95(24):e00596-e621.PubMedPubMedCentralCrossRef Shue B, Chiramel AI, Cerikan B, To T-H, Frölich S, Pederson SM, et al. Genome-wide CRISPR screen identifies RACK1 as a critical host factor for flavivirus replication. J Virol. 2021;95(24):e00596-e621.PubMedPubMedCentralCrossRef
57.
go back to reference Ma H, Dang Y, Wu Y, Jia G, Anaya E, Zhang J, et al. A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death. Cell Rep. 2015;12(4):673–83.PubMedPubMedCentralCrossRef Ma H, Dang Y, Wu Y, Jia G, Anaya E, Zhang J, et al. A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death. Cell Rep. 2015;12(4):673–83.PubMedPubMedCentralCrossRef
58.
go back to reference Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature. 2016;535(7610):164–8.PubMedPubMedCentralCrossRef Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature. 2016;535(7610):164–8.PubMedPubMedCentralCrossRef
59.
go back to reference Shirasago Y, Shimizu Y, Tanida I, Suzuki T, Suzuki R, Sugiyama K, et al. Occludin-knockout human hepatic Huh7. 5.1–8-derived cells are completely resistant to hepatitis C virus infection. Biol Pharm Bull. 2016:b15–01023. Shirasago Y, Shimizu Y, Tanida I, Suzuki T, Suzuki R, Sugiyama K, et al. Occludin-knockout human hepatic Huh7. 5.1–8-derived cells are completely resistant to hepatitis C virus infection. Biol Pharm Bull. 2016:b15–01023.
60.
go back to reference Ren Q, Li C, Yuan P, Cai C, Zhang L, Luo GG, et al. A Dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus. Sci Rep. 2015;5(1):1–7.CrossRef Ren Q, Li C, Yuan P, Cai C, Zhang L, Luo GG, et al. A Dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus. Sci Rep. 2015;5(1):1–7.CrossRef
61.
go back to reference Liang Y, Zhang G, Li Q, Han L, Hu X, Guo Y, et al. TRIM26 is a critical host factor for HCV replication and contributes to host tropism. Sci Adv. 2021;7(2):9732.CrossRef Liang Y, Zhang G, Li Q, Han L, Hu X, Guo Y, et al. TRIM26 is a critical host factor for HCV replication and contributes to host tropism. Sci Adv. 2021;7(2):9732.CrossRef
62.
go back to reference Luu AP, Yao Z, Ramachandran S, Azzopardi SA, Miles LA, Schneider WM, et al. A CRISPR Activation screen identifies an atypical rho GTPase that enhances Zika viral entry. Viruses. 2021;13(11):2113.PubMedPubMedCentralCrossRef Luu AP, Yao Z, Ramachandran S, Azzopardi SA, Miles LA, Schneider WM, et al. A CRISPR Activation screen identifies an atypical rho GTPase that enhances Zika viral entry. Viruses. 2021;13(11):2113.PubMedPubMedCentralCrossRef
63.
go back to reference Wang S, Zhang Q, Tiwari SK, Lichinchi G, Yau EH, Hui H, et al. Integrin αvβ5 internalizes Zika virus during neural stem cells infection and provides a promising target for antiviral therapy. Cell Rep. 2020;30(4):969–83.PubMedPubMedCentralCrossRef Wang S, Zhang Q, Tiwari SK, Lichinchi G, Yau EH, Hui H, et al. Integrin αvβ5 internalizes Zika virus during neural stem cells infection and provides a promising target for antiviral therapy. Cell Rep. 2020;30(4):969–83.PubMedPubMedCentralCrossRef
64.
go back to reference Garcia G Jr, Paul S, Beshara S, Ramanujan VK, Ramaiah A, Nielsen-Saines K, et al. Hippo signaling pathway has a critical role in Zika virus replication and in the pathogenesis of neuroinflammation. Am J Pathol. 2020;190(4):844–61.PubMedPubMedCentralCrossRef Garcia G Jr, Paul S, Beshara S, Ramanujan VK, Ramaiah A, Nielsen-Saines K, et al. Hippo signaling pathway has a critical role in Zika virus replication and in the pathogenesis of neuroinflammation. Am J Pathol. 2020;190(4):844–61.PubMedPubMedCentralCrossRef
65.
go back to reference Shrimal S, Cherepanova NA, Gilmore R, editors. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. In: Seminars in cell & developmental biology; 2015. Elsevier. Shrimal S, Cherepanova NA, Gilmore R, editors. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. In: Seminars in cell & developmental biology; 2015. Elsevier.
66.
go back to reference Wideman JG. The ubiquitous and ancient ER membrane protein complex (EMC): Tether or not? F1000Research. 2015;4. Wideman JG. The ubiquitous and ancient ER membrane protein complex (EMC): Tether or not? F1000Research. 2015;4.
67.
go back to reference Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, et al. Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol. 2012;14(1):93–105.CrossRef Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, et al. Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol. 2012;14(1):93–105.CrossRef
68.
go back to reference Moretti F, Bergman P, Dodgson S, Marcellin D, Claerr I, Goodwin JM, et al. TMEM 41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep. 2018;19(9):e45889.PubMedPubMedCentralCrossRef Moretti F, Bergman P, Dodgson S, Marcellin D, Claerr I, Goodwin JM, et al. TMEM 41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep. 2018;19(9):e45889.PubMedPubMedCentralCrossRef
70.
71.
go back to reference Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol. 2004;11(10):957–62.PubMedCrossRef Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol. 2004;11(10):957–62.PubMedCrossRef
72.
go back to reference Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science. 2011;334(6062):1524–9.PubMedCrossRef Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science. 2011;334(6062):1524–9.PubMedCrossRef
73.
go back to reference Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S, Plitzko JM, et al. Dissecting the molecular organization of the translocon-associated protein complex. Nat Commun. 2017;8(1):1–9.CrossRef Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S, Plitzko JM, et al. Dissecting the molecular organization of the translocon-associated protein complex. Nat Commun. 2017;8(1):1–9.CrossRef
74.
go back to reference Ohlson MB, Eitson JL, Wells AI, Kumar A, Jang S, Ni C, et al. Genome-scale CRISPR screening reveals host factors required for ribosome formation and viral replication. MBio. 2023;14(2):e00127-e223.PubMedPubMedCentralCrossRef Ohlson MB, Eitson JL, Wells AI, Kumar A, Jang S, Ni C, et al. Genome-scale CRISPR screening reveals host factors required for ribosome formation and viral replication. MBio. 2023;14(2):e00127-e223.PubMedPubMedCentralCrossRef
75.
go back to reference Beaulieu-Laroche L, Christin M, Donoghue A, Agosti F, Yousefpour N, Petitjean H, et al. TACAN is an ion channel involved in sensing mechanical pain. Cell. 2020;180(5):956–67.PubMedCrossRef Beaulieu-Laroche L, Christin M, Donoghue A, Agosti F, Yousefpour N, Petitjean H, et al. TACAN is an ion channel involved in sensing mechanical pain. Cell. 2020;180(5):956–67.PubMedCrossRef
76.
go back to reference Malik P, Korfali N, Srsen V, Lazou V, Batrakou DG, Zuleger N, et al. Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope. Cell Mol Life Sci. 2010;67(8):1353–69.PubMedPubMedCentralCrossRef Malik P, Korfali N, Srsen V, Lazou V, Batrakou DG, Zuleger N, et al. Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope. Cell Mol Life Sci. 2010;67(8):1353–69.PubMedPubMedCentralCrossRef
77.
go back to reference Li S, Qian N, Jiang C, Zu W, Liang A, Li M, et al. Gain-of-function genetic screening identifies the antiviral function of TMEM120A via STING activation. Nat Commun. 2022;13(1):105.PubMedPubMedCentralCrossRef Li S, Qian N, Jiang C, Zu W, Liang A, Li M, et al. Gain-of-function genetic screening identifies the antiviral function of TMEM120A via STING activation. Nat Commun. 2022;13(1):105.PubMedPubMedCentralCrossRef
78.
go back to reference Turpin J, Frumence E, Harrabi W, Haddad JG, El Kalamouni C, Desprès P, et al. Zika virus subversion of chaperone GRP78/BiP expression in A549 cells during UPR activation. Biochimie. 2020;175:99–105.PubMedCrossRef Turpin J, Frumence E, Harrabi W, Haddad JG, El Kalamouni C, Desprès P, et al. Zika virus subversion of chaperone GRP78/BiP expression in A549 cells during UPR activation. Biochimie. 2020;175:99–105.PubMedCrossRef
79.
go back to reference Dukhovny A, Lamkiewicz K, Chen Q, Fricke M, Jabrane-Ferrat N, Marz M, et al. A CRISPR activation screen identifies genes that protect against Zika virus infection. J Virol. 2019;93(16):e00211-e219.PubMedPubMedCentralCrossRef Dukhovny A, Lamkiewicz K, Chen Q, Fricke M, Jabrane-Ferrat N, Marz M, et al. A CRISPR activation screen identifies genes that protect against Zika virus infection. J Virol. 2019;93(16):e00211-e219.PubMedPubMedCentralCrossRef
80.
go back to reference Li Y, Muffat J, Javed AO, Keys HR, Lungjangwa T, Bosch I, et al. Genome-wide CRISPR screen for Zika virus resistance in human neural cells. Proc Natl Acad Sci. 2019;116(19):9527–32.PubMedPubMedCentralCrossRef Li Y, Muffat J, Javed AO, Keys HR, Lungjangwa T, Bosch I, et al. Genome-wide CRISPR screen for Zika virus resistance in human neural cells. Proc Natl Acad Sci. 2019;116(19):9527–32.PubMedPubMedCentralCrossRef
82.
go back to reference Schilling M, Bridgeman A, Gray N, Hertzog J, Hublitz P, Kohl A, et al. RIG-I plays a dominant role in the induction of transcriptional changes in Zika virus-infected cells, which protect from virus-induced cell death. Cells. 2020;9(6):1476.PubMedPubMedCentralCrossRef Schilling M, Bridgeman A, Gray N, Hertzog J, Hublitz P, Kohl A, et al. RIG-I plays a dominant role in the induction of transcriptional changes in Zika virus-infected cells, which protect from virus-induced cell death. Cells. 2020;9(6):1476.PubMedPubMedCentralCrossRef
83.
go back to reference Li Y, Banerjee S, Wang Y, Goldstein SA, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci. 2016;113(8):2241–6.PubMedPubMedCentralCrossRef Li Y, Banerjee S, Wang Y, Goldstein SA, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci. 2016;113(8):2241–6.PubMedPubMedCentralCrossRef
84.
go back to reference Yamauchi S, Takeuchi K, Chihara K, Honjoh C, Kato Y, Yoshiki H, et al. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α. Sci Rep. 2016;6(1):1–11.CrossRef Yamauchi S, Takeuchi K, Chihara K, Honjoh C, Kato Y, Yoshiki H, et al. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α. Sci Rep. 2016;6(1):1–11.CrossRef
85.
86.
go back to reference Malathi K, Siddiqui M, Dayal S, Naji M, Ezelle H, Zeng C, et al. RNase L interacts with Filamin A to regulate actin dynamics and barrier function for viral entry. MBio. 2014;5:e02012.PubMedPubMedCentralCrossRef Malathi K, Siddiqui M, Dayal S, Naji M, Ezelle H, Zeng C, et al. RNase L interacts with Filamin A to regulate actin dynamics and barrier function for viral entry. MBio. 2014;5:e02012.PubMedPubMedCentralCrossRef
87.
go back to reference Whelan JN, Parenti NA, Hatterschide J, Renner DM, Li Y, Reyes HM, et al. Zika virus employs the host antiviral RNase L protein to support replication factory assembly. Proc Natl Acad Sci. 2021;118(22):e2101713118.PubMedPubMedCentralCrossRef Whelan JN, Parenti NA, Hatterschide J, Renner DM, Li Y, Reyes HM, et al. Zika virus employs the host antiviral RNase L protein to support replication factory assembly. Proc Natl Acad Sci. 2021;118(22):e2101713118.PubMedPubMedCentralCrossRef
88.
go back to reference Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, et al. Development of a confinable gene drive system in the human disease vector Aedes aegypti. Elife. 2020;9:e51701.PubMedPubMedCentralCrossRef Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, et al. Development of a confinable gene drive system in the human disease vector Aedes aegypti. Elife. 2020;9:e51701.PubMedPubMedCentralCrossRef
92.
go back to reference Wei T, Cheng Q, Farbiak L, Anderson DG, Langer R, Siegwart DJ. Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano. 2020;14(8):9243–62.PubMedPubMedCentralCrossRef Wei T, Cheng Q, Farbiak L, Anderson DG, Langer R, Siegwart DJ. Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano. 2020;14(8):9243–62.PubMedPubMedCentralCrossRef
96.
go back to reference Sampson TR, Saroj SD, Llewellyn AC, Tzeng Y-L, Weiss DS. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature. 2013;497(7448):254–7.PubMedPubMedCentralCrossRef Sampson TR, Saroj SD, Llewellyn AC, Tzeng Y-L, Weiss DS. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature. 2013;497(7448):254–7.PubMedPubMedCentralCrossRef
97.
go back to reference Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci. 2015;112(19):6164–9.PubMedPubMedCentralCrossRef Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci. 2015;112(19):6164–9.PubMedPubMedCentralCrossRef
98.
go back to reference Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573.PubMedPubMedCentralCrossRef Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573.PubMedPubMedCentralCrossRef
99.
go back to reference Ashraf MU, Salman HM, Khalid MF, Khan MHF, Anwar S, Afzal S, et al. CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) as an effective antiviral strategy. Biomed Pharmacother. 2021;136:111239.PubMedCrossRef Ashraf MU, Salman HM, Khalid MF, Khan MHF, Anwar S, Afzal S, et al. CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) as an effective antiviral strategy. Biomed Pharmacother. 2021;136:111239.PubMedCrossRef
100.
go back to reference Li H, Wang S, Dong X, Li Q, Li M, Li J, et al. CRISPR-Cas13a cleavage of dengue virus NS3 gene efficiently inhibits viral replication. Mol Ther-Nucleic Acids. 2020;19:1460–9.PubMedPubMedCentralCrossRef Li H, Wang S, Dong X, Li Q, Li M, Li J, et al. CRISPR-Cas13a cleavage of dengue virus NS3 gene efficiently inhibits viral replication. Mol Ther-Nucleic Acids. 2020;19:1460–9.PubMedPubMedCentralCrossRef
101.
go back to reference Singsuksawat E, Onnome S, Posiri P, Suphatrakul A, Srisuk N, Nantachokchawapan R, et al. Potent programmable antiviral against dengue virus in primary human cells by Cas13b RNP with short spacer and delivery by VLP. Mol Ther-Methods Clin Dev. 2021;21:729–40.PubMedPubMedCentralCrossRef Singsuksawat E, Onnome S, Posiri P, Suphatrakul A, Srisuk N, Nantachokchawapan R, et al. Potent programmable antiviral against dengue virus in primary human cells by Cas13b RNP with short spacer and delivery by VLP. Mol Ther-Methods Clin Dev. 2021;21:729–40.PubMedPubMedCentralCrossRef
102.
go back to reference Chen P, Chen M, Chen Y, Jing X, Zhang N, Zhou X, et al. Targeted inhibition of Zika virus infection in human cells by CRISPR-Cas13b. Virus Res. 2022;312:198707.PubMedCrossRef Chen P, Chen M, Chen Y, Jing X, Zhang N, Zhou X, et al. Targeted inhibition of Zika virus infection in human cells by CRISPR-Cas13b. Virus Res. 2022;312:198707.PubMedCrossRef
103.
go back to reference Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell. 2019;76(5):826–37.PubMedPubMedCentralCrossRef Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell. 2019;76(5):826–37.PubMedPubMedCentralCrossRef
104.
go back to reference Simonin Y, Loustalot F, Desmetz C, Foulongne V, Constant O, Fournier-Wirth C, et al. Zika virus strains potentially display different infectious profiles in human neural cells. EBioMedicine. 2016;12:161–9.PubMedPubMedCentralCrossRef Simonin Y, Loustalot F, Desmetz C, Foulongne V, Constant O, Fournier-Wirth C, et al. Zika virus strains potentially display different infectious profiles in human neural cells. EBioMedicine. 2016;12:161–9.PubMedPubMedCentralCrossRef
Metadata
Title
CRISPR–Cas system to discover host-virus interactions in Flaviviridae
Authors
Zahra Ramezannia
Ali Shamekh
Hossein Bannazadeh Baghi
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02216-7

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue