Skip to main content
Top
Published in: Virology Journal 1/2021

01-12-2021 | Dengue Virus | Review

The key amino acids of E protein involved in early flavivirus infection: viral entry

Authors: Tao Hu, Zhen Wu, Shaoxiong Wu, Shun Chen, Anchun Cheng

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Flaviviruses are enveloped viruses that infect multiple hosts. Envelope proteins are the outermost proteins in the structure of flaviviruses and mediate viral infection. Studies indicate that flaviviruses mainly use envelope proteins to bind to cell attachment receptors and endocytic receptors for the entry step. Here, we present current findings regarding key envelope protein amino acids that participate in the flavivirus early infection process. Among these sites, most are located in special positions of the protein structure, such as the α-helix in the stem region and the hinge region between domains I and II, motifs that potentially affect the interaction between different domains. Some of these sites are located in positions involved in conformational changes in envelope proteins. In summary, we summarize and discuss the key envelope protein residues that affect the entry process of flaviviruses, including the process of their discovery and the mechanisms that affect early infection.
Literature
1.
go back to reference Neal JW. Flaviviruses are neurotropic, but how do they invade the CNS? J Infect. 2014;69(3):203–15.PubMedCrossRef Neal JW. Flaviviruses are neurotropic, but how do they invade the CNS? J Infect. 2014;69(3):203–15.PubMedCrossRef
2.
go back to reference Domingues RB, et al. Involvement of the central nervous system in patients with dengue virus infection. J Neurol Sci. 2008;267(1–2):36–40.PubMedCrossRef Domingues RB, et al. Involvement of the central nervous system in patients with dengue virus infection. J Neurol Sci. 2008;267(1–2):36–40.PubMedCrossRef
3.
go back to reference Puerta-Guardo H, et al. Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep. 2019;26(6):1598–613.PubMedPubMedCentralCrossRef Puerta-Guardo H, et al. Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep. 2019;26(6):1598–613.PubMedPubMedCentralCrossRef
4.
go back to reference Chao CH, et al. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15(4):e1007625.PubMedPubMedCentralCrossRef Chao CH, et al. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15(4):e1007625.PubMedPubMedCentralCrossRef
6.
go back to reference Vasilakis N, et al. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol. 2011;9(7):532–41.PubMedPubMedCentralCrossRef Vasilakis N, et al. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol. 2011;9(7):532–41.PubMedPubMedCentralCrossRef
9.
go back to reference Meertens L, et al. Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep. 2017;18(2):324–33.PubMedCrossRef Meertens L, et al. Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep. 2017;18(2):324–33.PubMedCrossRef
10.
go back to reference Richard AS, et al. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci USA. 2017;114(8):2024–9.PubMedPubMedCentralCrossRef Richard AS, et al. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci USA. 2017;114(8):2024–9.PubMedPubMedCentralCrossRef
12.
go back to reference Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol. 2014;9:134–42.PubMedCrossRef Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol. 2014;9:134–42.PubMedCrossRef
15.
go back to reference Stettler K, et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science. 2016;353(6301):823–6.PubMedCrossRef Stettler K, et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science. 2016;353(6301):823–6.PubMedCrossRef
16.
go back to reference Zhang S, et al. Role of BC loop residues in structure, function and antigenicity of the West Nile virus envelope protein receptor-binding domain III. Virology. 2010;403(1):85–91.PubMedCrossRef Zhang S, et al. Role of BC loop residues in structure, function and antigenicity of the West Nile virus envelope protein receptor-binding domain III. Virology. 2010;403(1):85–91.PubMedCrossRef
17.
go back to reference Huerta V, et al. Characterization of the interaction of domain III of the envelope protein of dengue virus with putative receptors from CHO cells. Virus Res. 2008;137(2):225–34.PubMedCrossRef Huerta V, et al. Characterization of the interaction of domain III of the envelope protein of dengue virus with putative receptors from CHO cells. Virus Res. 2008;137(2):225–34.PubMedCrossRef
18.
19.
go back to reference Tsai WY, et al. C-terminal helical domains of dengue virus type 4 E protein affect the expression/stability of prM protein and conformation of prM and E proteins. PLoS One. 2012;7(12):e52600.PubMedPubMedCentralCrossRef Tsai WY, et al. C-terminal helical domains of dengue virus type 4 E protein affect the expression/stability of prM protein and conformation of prM and E proteins. PLoS One. 2012;7(12):e52600.PubMedPubMedCentralCrossRef
20.
go back to reference Dai L, et al. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe. 2016;19(5):696–704.PubMedCrossRef Dai L, et al. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe. 2016;19(5):696–704.PubMedCrossRef
22.
go back to reference Despres P, et al. The 15 amino acid residues preceding the amino terminus of the envelope protein in the yellow fever virus polyprotein precursor act as a signal peptide. Virus Res. 1990;16(1):59–75.PubMedCrossRef Despres P, et al. The 15 amino acid residues preceding the amino terminus of the envelope protein in the yellow fever virus polyprotein precursor act as a signal peptide. Virus Res. 1990;16(1):59–75.PubMedCrossRef
23.
go back to reference Hsieh SC, Tsai WY, Wang WK. The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum. J Virol. 2010;84(9):4782–97.PubMedPubMedCentralCrossRef Hsieh SC, Tsai WY, Wang WK. The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum. J Virol. 2010;84(9):4782–97.PubMedPubMedCentralCrossRef
24.
go back to reference Purdy DE, Chang GJ. Secretion of noninfectious dengue virus-like particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. Virology. 2005;333(2):239–50.PubMedCrossRef Purdy DE, Chang GJ. Secretion of noninfectious dengue virus-like particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. Virology. 2005;333(2):239–50.PubMedCrossRef
25.
go back to reference Johnson AJ, Guirakhoo F, Roehrig JT. The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology. 1994;203(2):241–9.PubMedCrossRef Johnson AJ, Guirakhoo F, Roehrig JT. The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology. 1994;203(2):241–9.PubMedCrossRef
26.
go back to reference Monath TP, et al. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. J Virol. 2002;76(4):1932–43.PubMedPubMedCentralCrossRef Monath TP, et al. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. J Virol. 2002;76(4):1932–43.PubMedPubMedCentralCrossRef
27.
go back to reference Goo L, et al. A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nat Microbiol. 2019;4(1):71–7.PubMedCrossRef Goo L, et al. A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nat Microbiol. 2019;4(1):71–7.PubMedCrossRef
29.
go back to reference Goto A, et al. A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine. 2003;21(25–26):4043–51.PubMedCrossRef Goto A, et al. A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine. 2003;21(25–26):4043–51.PubMedCrossRef
30.
go back to reference Konishi E, Mason PW. Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol. 1993;67(3):1672–5.PubMedPubMedCentralCrossRef Konishi E, Mason PW. Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol. 1993;67(3):1672–5.PubMedPubMedCentralCrossRef
31.
go back to reference Lorenz IC, et al. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol. 2002;76(11):5480–91.PubMedPubMedCentralCrossRef Lorenz IC, et al. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol. 2002;76(11):5480–91.PubMedPubMedCentralCrossRef
33.
go back to reference Mary JA, et al. A synthetic peptide derived from domain III envelope glycoprotein of Dengue virus induces neutralizing antibody. Virus Genes. 2018;54(1):25–32.PubMedCrossRef Mary JA, et al. A synthetic peptide derived from domain III envelope glycoprotein of Dengue virus induces neutralizing antibody. Virus Genes. 2018;54(1):25–32.PubMedCrossRef
34.
go back to reference Bai F, et al. Antiviral peptides targeting the west nile virus envelope protein. J Virol. 2007;81(4):2047–55.PubMedCrossRef Bai F, et al. Antiviral peptides targeting the west nile virus envelope protein. J Virol. 2007;81(4):2047–55.PubMedCrossRef
36.
go back to reference Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–86.PubMedCrossRef Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–86.PubMedCrossRef
37.
go back to reference Chen Y, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 1997;3(8):866–71.PubMedCrossRef Chen Y, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 1997;3(8):866–71.PubMedCrossRef
39.
go back to reference Aliyu IA, et al. Annexin II as a dengue virus serotype 2 interacting protein mediating virus interaction on Vero cells. Viruses. 2019;11(4):335.PubMedCentralCrossRef Aliyu IA, et al. Annexin II as a dengue virus serotype 2 interacting protein mediating virus interaction on Vero cells. Viruses. 2019;11(4):335.PubMedCentralCrossRef
40.
41.
go back to reference Acosta EG, Castilla V, Damonte EB. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol. 2008;89(Pt 2):474–84.PubMedCrossRef Acosta EG, Castilla V, Damonte EB. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol. 2008;89(Pt 2):474–84.PubMedCrossRef
43.
go back to reference Roehrig JT, et al. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion. Virology. 2013;441(2):114–25.PubMedCrossRef Roehrig JT, et al. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion. Virology. 2013;441(2):114–25.PubMedCrossRef
45.
go back to reference Mondotte JA, et al. Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol. 2007;81(13):7136–48.PubMedPubMedCentralCrossRef Mondotte JA, et al. Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol. 2007;81(13):7136–48.PubMedPubMedCentralCrossRef
46.
go back to reference Wang P, et al. DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology. 2016;488:108–19.PubMedCrossRef Wang P, et al. DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology. 2016;488:108–19.PubMedCrossRef
47.
go back to reference Hanna SL, et al. N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol. 2005;79(21):13262–74.PubMedPubMedCentralCrossRef Hanna SL, et al. N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol. 2005;79(21):13262–74.PubMedPubMedCentralCrossRef
48.
go back to reference Lin SR, et al. The helical domains of the stem region of dengue virus envelope protein are involved in both virus assembly and entry. J Virol. 2011;85(10):5159–71.PubMedPubMedCentralCrossRef Lin SR, et al. The helical domains of the stem region of dengue virus envelope protein are involved in both virus assembly and entry. J Virol. 2011;85(10):5159–71.PubMedPubMedCentralCrossRef
49.
go back to reference Chen L, et al. Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res. 2017;141:140–9.PubMedCrossRef Chen L, et al. Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res. 2017;141:140–9.PubMedCrossRef
50.
go back to reference Yang J, et al. Envelope protein mutations L107F and E138K are important for neurovirulence attenuation for Japanese encephalitis virus SA14-14-2 strain. Viruses. 2017;9(1):20.PubMedCentralCrossRef Yang J, et al. Envelope protein mutations L107F and E138K are important for neurovirulence attenuation for Japanese encephalitis virus SA14-14-2 strain. Viruses. 2017;9(1):20.PubMedCentralCrossRef
51.
go back to reference Zhao Z, et al. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol. 2005;86(Pt 8):2209–20.PubMedCrossRef Zhao Z, et al. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol. 2005;86(Pt 8):2209–20.PubMedCrossRef
53.
go back to reference Liu X, et al. The structure differences of Japanese encephalitis virus SA14 and SA14-14-2 E proteins elucidate the virulence attenuation mechanism. Protein Cell. 2019;10(2):149–53.PubMedCrossRef Liu X, et al. The structure differences of Japanese encephalitis virus SA14 and SA14-14-2 E proteins elucidate the virulence attenuation mechanism. Protein Cell. 2019;10(2):149–53.PubMedCrossRef
54.
go back to reference Lee E, Lobigs M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol. 2000;74(19):8867–75.PubMedPubMedCentralCrossRef Lee E, Lobigs M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol. 2000;74(19):8867–75.PubMedPubMedCentralCrossRef
55.
go back to reference Hurrelbrink RJ, McMinn PC. Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein. J Virol. 2001;75(16):7692–702.PubMedPubMedCentralCrossRef Hurrelbrink RJ, McMinn PC. Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein. J Virol. 2001;75(16):7692–702.PubMedPubMedCentralCrossRef
56.
go back to reference Ryman KD, et al. Mutation in a 17D–204 vaccine substrain-specific envelope protein epitope alters the pathogenesis of yellow fever virus in mice. Virology. 1998;244(1):59–65.PubMedCrossRef Ryman KD, et al. Mutation in a 17D–204 vaccine substrain-specific envelope protein epitope alters the pathogenesis of yellow fever virus in mice. Virology. 1998;244(1):59–65.PubMedCrossRef
58.
go back to reference Zhao D, et al. Identification of determinants that mediate binding between Tembusu virus and the cellular receptor heat shock protein A9. J Vet Sci. 2018;19(4):528–35.PubMedPubMedCentralCrossRef Zhao D, et al. Identification of determinants that mediate binding between Tembusu virus and the cellular receptor heat shock protein A9. J Vet Sci. 2018;19(4):528–35.PubMedPubMedCentralCrossRef
59.
go back to reference Yang L, et al. Substantial attenuation of virulence of Tembusu virus strain PS is determined by an arginine at residue 304 of the envelope protein. J Virol. 2021;95(6):e02331-20.PubMedCrossRefPubMedCentral Yang L, et al. Substantial attenuation of virulence of Tembusu virus strain PS is determined by an arginine at residue 304 of the envelope protein. J Virol. 2021;95(6):e02331-20.PubMedCrossRefPubMedCentral
60.
go back to reference Sun M, et al. Basic amino acid substitution at residue 367 of the envelope protein of Tembusu virus plays a critical role in pathogenesis. J Virol. 2020;94(8):e02011-19.PubMedPubMedCentralCrossRef Sun M, et al. Basic amino acid substitution at residue 367 of the envelope protein of Tembusu virus plays a critical role in pathogenesis. J Virol. 2020;94(8):e02011-19.PubMedPubMedCentralCrossRef
61.
go back to reference Liu H, et al. Structure-based mutational analysis of several sites in the E protein: implications for understanding the entry mechanism of Japanese encephalitis virus. J Virol. 2015;89(10):5668–86.PubMedPubMedCentralCrossRef Liu H, et al. Structure-based mutational analysis of several sites in the E protein: implications for understanding the entry mechanism of Japanese encephalitis virus. J Virol. 2015;89(10):5668–86.PubMedPubMedCentralCrossRef
62.
go back to reference Watterson D, Kobe B, Young PR. Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. J Gen Virol. 2012;93(Pt 1):72–82.PubMedCrossRef Watterson D, Kobe B, Young PR. Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. J Gen Virol. 2012;93(Pt 1):72–82.PubMedCrossRef
63.
go back to reference Zhang F, Ren S, Zuo Y. DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol. 2014;33(1):54–66.PubMedCrossRef Zhang F, Ren S, Zuo Y. DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol. 2014;33(1):54–66.PubMedCrossRef
66.
go back to reference Alen MM, et al. Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Res. 2012;96(3):280–7.PubMedCrossRef Alen MM, et al. Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Res. 2012;96(3):280–7.PubMedCrossRef
67.
go back to reference Routhu NK, et al. Glycosylation of Zika virus is important in host-virus interaction and pathogenic potential. Int J Mol Sci. 2019;20(20):5206.PubMedCentralCrossRef Routhu NK, et al. Glycosylation of Zika virus is important in host-virus interaction and pathogenic potential. Int J Mol Sci. 2019;20(20):5206.PubMedCentralCrossRef
68.
go back to reference Zhang S, et al. Chloroquine inhibits endosomal viral RNA release and autophagy-dependent viral replication and effectively prevents maternal to fetal transmission of Zika virus. Antiviral Res. 2019;169:104547.PubMedCrossRef Zhang S, et al. Chloroquine inhibits endosomal viral RNA release and autophagy-dependent viral replication and effectively prevents maternal to fetal transmission of Zika virus. Antiviral Res. 2019;169:104547.PubMedCrossRef
69.
go back to reference Bos S, et al. The envelope residues E152/156/158 of Zika virus influence the early stages of virus infection in human cells. Cells. 2019;8(11):1444.PubMedCentralCrossRef Bos S, et al. The envelope residues E152/156/158 of Zika virus influence the early stages of virus infection in human cells. Cells. 2019;8(11):1444.PubMedCentralCrossRef
70.
go back to reference Scherwitzl I, Mongkolsapaja J, Screaton G. Recent advances in human flavivirus vaccines. Curr Opin Virol. 2017;23:95–101.PubMedCrossRef Scherwitzl I, Mongkolsapaja J, Screaton G. Recent advances in human flavivirus vaccines. Curr Opin Virol. 2017;23:95–101.PubMedCrossRef
71.
go back to reference Sun L, et al. Adaptation and attenuation of duck Tembusu virus strain Du/CH/LSD/110128 following serial passage in chicken embryos. Clin Vaccine Immunol. 2014;21(8):1046–53.PubMedPubMedCentralCrossRef Sun L, et al. Adaptation and attenuation of duck Tembusu virus strain Du/CH/LSD/110128 following serial passage in chicken embryos. Clin Vaccine Immunol. 2014;21(8):1046–53.PubMedPubMedCentralCrossRef
72.
go back to reference Edelman R, et al. A live attenuated dengue-1 vaccine candidate (45AZ5) passaged in primary dog kidney cell culture is attenuated and immunogenic for humans. J Infect Dis. 1994;170(6):1448–55.PubMedCrossRef Edelman R, et al. A live attenuated dengue-1 vaccine candidate (45AZ5) passaged in primary dog kidney cell culture is attenuated and immunogenic for humans. J Infect Dis. 1994;170(6):1448–55.PubMedCrossRef
74.
go back to reference Xin YY, et al. Safety of a live-attenuated Japanese encephalitis virus vaccine (SA14-14-2) for children. Am J Trop Med Hyg. 1988;39(2):214–7.PubMedCrossRef Xin YY, et al. Safety of a live-attenuated Japanese encephalitis virus vaccine (SA14-14-2) for children. Am J Trop Med Hyg. 1988;39(2):214–7.PubMedCrossRef
75.
go back to reference Hennessy S, et al. Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): a case-control study. Lancet. 1996;347(9015):1583–6.PubMedCrossRef Hennessy S, et al. Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): a case-control study. Lancet. 1996;347(9015):1583–6.PubMedCrossRef
76.
go back to reference Mueller DS, et al. Histidine protonation and the activation of viral fusion proteins. Biochem Soc Trans. 2008;36(Pt 1):43–5.PubMedCrossRef Mueller DS, et al. Histidine protonation and the activation of viral fusion proteins. Biochem Soc Trans. 2008;36(Pt 1):43–5.PubMedCrossRef
77.
78.
go back to reference Oliphant T, et al. Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J Virol. 2006;80(24):12149–59.PubMedPubMedCentralCrossRef Oliphant T, et al. Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J Virol. 2006;80(24):12149–59.PubMedPubMedCentralCrossRef
80.
go back to reference McMinn PC, et al. Murray valley encephalitis virus envelope protein antigenic variants with altered hemagglutination properties and reduced neuroinvasiveness in mice. Virology. 1995;211(1):10–20.PubMedCrossRef McMinn PC, et al. Murray valley encephalitis virus envelope protein antigenic variants with altered hemagglutination properties and reduced neuroinvasiveness in mice. Virology. 1995;211(1):10–20.PubMedCrossRef
81.
82.
go back to reference Liu Q, et al. Identification of heat shock protein A9 as a Tembusu virus binding protein on DF-1 cells. Virus Res. 2017;227:110–4.PubMedCrossRef Liu Q, et al. Identification of heat shock protein A9 as a Tembusu virus binding protein on DF-1 cells. Virus Res. 2017;227:110–4.PubMedCrossRef
84.
go back to reference Li C, et al. Inhibition of Japanese encephalitis virus entry into the cells by the envelope glycoprotein domain III (EDIII) and the loop3 peptide derived from EDIII. Antiviral Res. 2012;94(2):179–83.PubMedCrossRef Li C, et al. Inhibition of Japanese encephalitis virus entry into the cells by the envelope glycoprotein domain III (EDIII) and the loop3 peptide derived from EDIII. Antiviral Res. 2012;94(2):179–83.PubMedCrossRef
85.
go back to reference Hung JJ, et al. An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol. 2004;78(1):378–88.PubMedPubMedCentralCrossRef Hung JJ, et al. An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol. 2004;78(1):378–88.PubMedPubMedCentralCrossRef
86.
go back to reference van der Most RG, Corver J, Strauss JH. Mutagenesis of the RGD motif in the yellow fever virus 17D envelope protein. Virology. 1999;265(1):83–95.PubMedCrossRef van der Most RG, Corver J, Strauss JH. Mutagenesis of the RGD motif in the yellow fever virus 17D envelope protein. Virology. 1999;265(1):83–95.PubMedCrossRef
87.
go back to reference Lobigs M, et al. Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology. 1990;176(2):587–95.PubMedCrossRef Lobigs M, et al. Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology. 1990;176(2):587–95.PubMedCrossRef
89.
go back to reference Gavrilovskaya IN, et al. beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci USA. 1998;95(12):7074–9.PubMedPubMedCentralCrossRef Gavrilovskaya IN, et al. beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci USA. 1998;95(12):7074–9.PubMedPubMedCentralCrossRef
90.
go back to reference Lee JW, Chu JJ, Ng ML. Quantifying the specific binding between West Nile virus envelope domain III protein and the cellular receptor alphaVbeta3 integrin. J Biol Chem. 2006;281(3):1352–60.PubMedCrossRef Lee JW, Chu JJ, Ng ML. Quantifying the specific binding between West Nile virus envelope domain III protein and the cellular receptor alphaVbeta3 integrin. J Biol Chem. 2006;281(3):1352–60.PubMedCrossRef
91.
go back to reference Hilgard P, Stockert R. Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology. 2000;32(5):1069–77.PubMedCrossRef Hilgard P, Stockert R. Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology. 2000;32(5):1069–77.PubMedCrossRef
92.
go back to reference Germi R, et al. Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology. 2002;292(1):162–8.PubMedCrossRef Germi R, et al. Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology. 2002;292(1):162–8.PubMedCrossRef
93.
go back to reference Volk DE, et al. Structure of yellow fever virus envelope protein domain III. Virology. 2009;394(1):12–8.PubMedCrossRef Volk DE, et al. Structure of yellow fever virus envelope protein domain III. Virology. 2009;394(1):12–8.PubMedCrossRef
95.
go back to reference Chambers TJ, Nickells M. Neuroadapted yellow fever virus 17D: genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone. J Virol. 2001;75(22):10912–22.PubMedPubMedCentralCrossRef Chambers TJ, Nickells M. Neuroadapted yellow fever virus 17D: genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone. J Virol. 2001;75(22):10912–22.PubMedPubMedCentralCrossRef
96.
go back to reference Hahn CS, et al. Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proc Natl Acad Sci USA. 1987;84(7):2019–23.PubMedPubMedCentralCrossRef Hahn CS, et al. Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proc Natl Acad Sci USA. 1987;84(7):2019–23.PubMedPubMedCentralCrossRef
97.
go back to reference Nickells M, Chambers TJ. Neuroadapted yellow fever virus 17D: determinants in the envelope protein govern neuroinvasiveness for SCID mice. J Virol. 2003;77(22):12232–42.PubMedPubMedCentralCrossRef Nickells M, Chambers TJ. Neuroadapted yellow fever virus 17D: determinants in the envelope protein govern neuroinvasiveness for SCID mice. J Virol. 2003;77(22):12232–42.PubMedPubMedCentralCrossRef
98.
go back to reference Lee E, Lobigs M. E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J Virol. 2008;82(12):6024–33.PubMedPubMedCentralCrossRef Lee E, Lobigs M. E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J Virol. 2008;82(12):6024–33.PubMedPubMedCentralCrossRef
99.
100.
go back to reference Fernandez-Garcia MD, et al. Vaccine and wild-type strains of yellow fever virus engage distinct entry mechanisms and differentially stimulate antiviral immune responses. mBio. 2016;7(1):e01956-15.PubMedPubMedCentralCrossRef Fernandez-Garcia MD, et al. Vaccine and wild-type strains of yellow fever virus engage distinct entry mechanisms and differentially stimulate antiviral immune responses. mBio. 2016;7(1):e01956-15.PubMedPubMedCentralCrossRef
101.
go back to reference Hileman RE, et al. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. BioEssays. 1998;20(2):156–67.PubMedCrossRef Hileman RE, et al. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. BioEssays. 1998;20(2):156–67.PubMedCrossRef
103.
go back to reference Khromykh AA, Varnavski AN, Westaway EG. Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol. 1998;72(7):5967–77.PubMedPubMedCentralCrossRef Khromykh AA, Varnavski AN, Westaway EG. Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol. 1998;72(7):5967–77.PubMedPubMedCentralCrossRef
104.
go back to reference Lu CY, et al. Single-round infectious particle antiviral screening assays for the Japanese encephalitis virus. Viruses. 2017;9(4):76.PubMedCentralCrossRef Lu CY, et al. Single-round infectious particle antiviral screening assays for the Japanese encephalitis virus. Viruses. 2017;9(4):76.PubMedCentralCrossRef
105.
go back to reference de Wispelaere M, Yang PL. Mutagenesis of the DI/DIII linker in dengue virus envelope protein impairs viral particle assembly. J Virol. 2012;86(13):7072–83.PubMedPubMedCentralCrossRef de Wispelaere M, Yang PL. Mutagenesis of the DI/DIII linker in dengue virus envelope protein impairs viral particle assembly. J Virol. 2012;86(13):7072–83.PubMedPubMedCentralCrossRef
106.
go back to reference He Y, et al. Genetically stable reporter virus, subgenomic replicon and packaging system of duck Tembusu virus based on a reverse genetics system. Virology. 2019;533:86–92.PubMedCrossRef He Y, et al. Genetically stable reporter virus, subgenomic replicon and packaging system of duck Tembusu virus based on a reverse genetics system. Virology. 2019;533:86–92.PubMedCrossRef
108.
go back to reference Lv J, et al. The neutralizing antibody response elicited by Tembusu virus is affected dramatically by a single mutation in the stem region of the envelope protein. Front Microbiol. 2020;11:585194.PubMedPubMedCentralCrossRef Lv J, et al. The neutralizing antibody response elicited by Tembusu virus is affected dramatically by a single mutation in the stem region of the envelope protein. Front Microbiol. 2020;11:585194.PubMedPubMedCentralCrossRef
110.
go back to reference Rey FA, et al. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep. 2018;19(2):206–24.PubMedCrossRef Rey FA, et al. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep. 2018;19(2):206–24.PubMedCrossRef
111.
go back to reference Berneck BS, et al. A recombinant Zika virus envelope protein with mutations in the conserved fusion loop leads to reduced antibody cross-reactivity upon vaccination. Vaccines Basel. 2020;8(4):603.PubMedCentralCrossRef Berneck BS, et al. A recombinant Zika virus envelope protein with mutations in the conserved fusion loop leads to reduced antibody cross-reactivity upon vaccination. Vaccines Basel. 2020;8(4):603.PubMedCentralCrossRef
114.
go back to reference Wu Y, et al. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III. Emerg Microbes Infect. 2017;6(10):e89.PubMedPubMedCentral Wu Y, et al. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III. Emerg Microbes Infect. 2017;6(10):e89.PubMedPubMedCentral
116.
go back to reference Dejnirattisai W, et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol. 2015;16(2):170–7.PubMedCrossRef Dejnirattisai W, et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol. 2015;16(2):170–7.PubMedCrossRef
117.
go back to reference Barba-Spaeth G, et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature. 2016;536(7614):48–53.PubMedCrossRef Barba-Spaeth G, et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature. 2016;536(7614):48–53.PubMedCrossRef
118.
119.
go back to reference Wang Q, et al. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci Transl Med. 2016;8(369):369ra179.PubMedCrossRef Wang Q, et al. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci Transl Med. 2016;8(369):369ra179.PubMedCrossRef
120.
go back to reference Cabral-Miranda G, et al. Zika virus-derived E-DIII protein displayed on immunologically optimized VLPs induces neutralizing antibodies without causing enhancement of dengue virus infection. Vaccines Basel. 2019;7(3):72.PubMedCentralCrossRef Cabral-Miranda G, et al. Zika virus-derived E-DIII protein displayed on immunologically optimized VLPs induces neutralizing antibodies without causing enhancement of dengue virus infection. Vaccines Basel. 2019;7(3):72.PubMedCentralCrossRef
121.
go back to reference Slon-Campos JL, et al. A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nat Immunol. 2019;20(10):1291–8.PubMedPubMedCentralCrossRef Slon-Campos JL, et al. A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nat Immunol. 2019;20(10):1291–8.PubMedPubMedCentralCrossRef
122.
go back to reference Hurtado-Monzon AM, et al. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol. 2020;30(4):e2100.PubMedCrossRef Hurtado-Monzon AM, et al. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol. 2020;30(4):e2100.PubMedCrossRef
123.
go back to reference Navarro-Sanchez E, et al. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 2003;4(7):723–8.PubMedPubMedCentralCrossRef Navarro-Sanchez E, et al. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 2003;4(7):723–8.PubMedPubMedCentralCrossRef
124.
go back to reference Taguwa S, et al. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell. 2015;163(5):1108–23.PubMedPubMedCentralCrossRef Taguwa S, et al. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell. 2015;163(5):1108–23.PubMedPubMedCentralCrossRef
125.
go back to reference Cabrera-Hernandez A, et al. Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol. 2007;79(4):386–92.PubMedCrossRef Cabrera-Hernandez A, et al. Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol. 2007;79(4):386–92.PubMedCrossRef
126.
go back to reference Pujhari S, et al. Heat shock protein 70 (Hsp70) mediates Zika virus entry, replication, and egress from host cells. Emerg Microbes Infect. 2019;8(1):8–16.PubMedPubMedCentralCrossRef Pujhari S, et al. Heat shock protein 70 (Hsp70) mediates Zika virus entry, replication, and egress from host cells. Emerg Microbes Infect. 2019;8(1):8–16.PubMedPubMedCentralCrossRef
127.
go back to reference Das S, et al. Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology. 2009;385(1):47–57.PubMedCrossRef Das S, et al. Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology. 2009;385(1):47–57.PubMedCrossRef
129.
go back to reference Upanan S, Kuadkitkan A, Smith DR. Identification of dengue virus binding proteins using affinity chromatography. J Virol Methods. 2008;151(2):325–8.PubMedCrossRef Upanan S, Kuadkitkan A, Smith DR. Identification of dengue virus binding proteins using affinity chromatography. J Virol Methods. 2008;151(2):325–8.PubMedCrossRef
130.
131.
go back to reference Hershkovitz O, et al. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol. 2009;183(4):2610–21.PubMedCrossRef Hershkovitz O, et al. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol. 2009;183(4):2610–21.PubMedCrossRef
132.
go back to reference Zhu Z, et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin alphavbeta5 axis. Cell Stem Cell. 2020;26(2):187-204e10.PubMedCrossRef Zhu Z, et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin alphavbeta5 axis. Cell Stem Cell. 2020;26(2):187-204e10.PubMedCrossRef
133.
135.
go back to reference Carnec X, et al. The phosphatidylserine and phosphatidylethanolamine receptor CD300a binds dengue virus and enhances infection. J Virol. 2016;90(1):92–102.PubMedCrossRef Carnec X, et al. The phosphatidylserine and phosphatidylethanolamine receptor CD300a binds dengue virus and enhances infection. J Virol. 2016;90(1):92–102.PubMedCrossRef
136.
137.
go back to reference Miller JL, et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008;4(2):17.CrossRef Miller JL, et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008;4(2):17.CrossRef
138.
139.
go back to reference Thepparit C, Smith DR. Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol. 2004;78(22):12647–56.PubMedPubMedCentralCrossRef Thepparit C, Smith DR. Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol. 2004;78(22):12647–56.PubMedPubMedCentralCrossRef
140.
go back to reference Mukherjee S, et al. PLVAP and GKN3 are two critical host cell receptors which facilitate Japanese encephalitis virus entry into neurons. Sci Rep. 2018;8(1):11784.PubMedPubMedCentralCrossRef Mukherjee S, et al. PLVAP and GKN3 are two critical host cell receptors which facilitate Japanese encephalitis virus entry into neurons. Sci Rep. 2018;8(1):11784.PubMedPubMedCentralCrossRef
Metadata
Title
The key amino acids of E protein involved in early flavivirus infection: viral entry
Authors
Tao Hu
Zhen Wu
Shaoxiong Wu
Shun Chen
Anchun Cheng
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01611-2

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue