Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Short Report

Duck enteritis virus (DEV) UL54 protein, a novel partner, interacts with DEV UL24 protein

Authors: Xinghong Gao, Renyong Jia, Mingshu Wang, Qiao Yang, Shun Chen, Mafeng Liu, Zhongqiong Yin, Anchun Cheng

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

UL24 is a multifunctional protein that is conserved among alphaherpesviruses and is believed to play an important role in viral infection and replication.

Results

In this paper, to investigate putative UL24-binding proteins and to explore the functional mechanisms of DEV UL24, yeast two-hybrid (Y2H) was carried out, and further verified the interaction between UL24 and partners by co-immunoprecipitation and fluorescence microscopy experiments. Interaction partners of UL24 protein were screened by yeast two-hybrid (Y2H) with the cDNA library of DEV-CHv strain post-infection DEF cells. A novel partner, DEV UL54 protein, was discovered by Y2H screening and bioinformatic. Co-immunoprecipitation experiments suggested that DEV UL24 interacted with UL54 proteins. And distribution of a part of UL54 protein was changed from nucleus to cytoplasm in DF-1 cells of co-subcellular localization experiments which also showed that DEV UL24 interacted with UL54 proteins.

Conclusions

The interaction between the DEV UL24 and UL54 proteins was discovered for the first time. Thus, DEV UL54 protein as a novel partner interacted with DEV UL24 protein.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adams MJ, Lefkowitz EJ, King AMQ, et al. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016)[J]. Archives of virology. 2016;161(10):2921-49. Adams MJ, Lefkowitz EJ, King AMQ, et al. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016)[J]. Archives of virology. 2016;161(10):2921-49.
2.
go back to reference Fadly AM, Glisson JR, McDougald LR, Nolan L, DE S. Duck virus enteritis diseases of poultry. 12th ed; 2008. p. 384–93. Fadly AM, Glisson JR, McDougald LR, Nolan L, DE S. Duck virus enteritis diseases of poultry. 12th ed; 2008. p. 384–93.
5.
go back to reference Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160:316–25.CrossRefPubMed Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160:316–25.CrossRefPubMed
6.
go back to reference Li Y, Huang B, Ma X, Wu J, Li F, et al. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391:151–61.CrossRefPubMed Li Y, Huang B, Ma X, Wu J, Li F, et al. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391:151–61.CrossRefPubMed
7.
go back to reference He Q, Cheng A, Wang M, Xiang J, Zhu D, et al. Replication kinetics of duck enteritis virus UL16 gene in vitro. Virol J. 2012;9:1–4.CrossRef He Q, Cheng A, Wang M, Xiang J, Zhu D, et al. Replication kinetics of duck enteritis virus UL16 gene in vitro. Virol J. 2012;9:1–4.CrossRef
8.
9.
go back to reference Chang H, Cheng A, Wang M, Zhu D, Jia R, et al. (2010) Research cloning, expression and characterization of gE protein of duck plague virus. Chang H, Cheng A, Wang M, Zhu D, Jia R, et al. (2010) Research cloning, expression and characterization of gE protein of duck plague virus.
10.
go back to reference Lin M, Jia R, Wang M, Gao X, Zhu D, et al. Molecular characterization of duck enteritis virus CHv strain UL49. 5 protein and its colocalization with glycoprotein M. J Vet Sci. 2014;15:389–98.CrossRefPubMedPubMedCentral Lin M, Jia R, Wang M, Gao X, Zhu D, et al. Molecular characterization of duck enteritis virus CHv strain UL49. 5 protein and its colocalization with glycoprotein M. J Vet Sci. 2014;15:389–98.CrossRefPubMedPubMedCentral
11.
go back to reference Lin M, Jia R, Wang M, Gao X, Zhu D, et al. The transcription analysis of duck enteritis virus UL49. 5 gene using real-time quantitative reverse transcription PCR. Virus Genes. 2013;47:298–304.CrossRefPubMed Lin M, Jia R, Wang M, Gao X, Zhu D, et al. The transcription analysis of duck enteritis virus UL49. 5 gene using real-time quantitative reverse transcription PCR. Virus Genes. 2013;47:298–304.CrossRefPubMed
12.
go back to reference Jacobson J, Martin S, Coen D. A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. J Virol. 1989;63:1839–43.PubMedPubMedCentral Jacobson J, Martin S, Coen D. A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. J Virol. 1989;63:1839–43.PubMedPubMedCentral
13.
go back to reference Nascimento R, Costa H, Dias J, Parkhouse R. MHV-68 open reading frame 20 is a nonessential gene delaying lung viral clearance. Arch Virol. 2011;156:375–86.CrossRefPubMed Nascimento R, Costa H, Dias J, Parkhouse R. MHV-68 open reading frame 20 is a nonessential gene delaying lung viral clearance. Arch Virol. 2011;156:375–86.CrossRefPubMed
14.
go back to reference Kniżewski Ł, Kinch L, Grishin NV, Rychlewski L, Ginalski K. Human herpesvirus 1 UL24 gene encodes a potential PD-(D/E) XK endonuclease. J Virol. 2006;80:2575–7.CrossRefPubMedPubMedCentral Kniżewski Ł, Kinch L, Grishin NV, Rychlewski L, Ginalski K. Human herpesvirus 1 UL24 gene encodes a potential PD-(D/E) XK endonuclease. J Virol. 2006;80:2575–7.CrossRefPubMedPubMedCentral
15.
go back to reference Leiva-Torres GA, Rochette P-A, Pearson A. Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. J Gen Virol. 2010;91:1109–16.CrossRefPubMed Leiva-Torres GA, Rochette P-A, Pearson A. Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. J Gen Virol. 2010;91:1109–16.CrossRefPubMed
16.
go back to reference Blakeney S, Kowalski J, Tummolo D, DeStefano J, Cooper D, et al. Herpes simplex virus type 2 UL24 gene is a virulence determinant in murine and guinea pig disease models. J Virol. 2005;79:10498–506.CrossRefPubMedPubMedCentral Blakeney S, Kowalski J, Tummolo D, DeStefano J, Cooper D, et al. Herpes simplex virus type 2 UL24 gene is a virulence determinant in murine and guinea pig disease models. J Virol. 2005;79:10498–506.CrossRefPubMedPubMedCentral
17.
go back to reference Jacobson JG, Chen S-H, Cook WJ, Kramer MF, Coen DM. Importance of the herpes simplex virus UL24 Gene for productive Ganglionic infection in mice. Virology. 1998;242:161–9.CrossRefPubMed Jacobson JG, Chen S-H, Cook WJ, Kramer MF, Coen DM. Importance of the herpes simplex virus UL24 Gene for productive Ganglionic infection in mice. Virology. 1998;242:161–9.CrossRefPubMed
18.
go back to reference Carvalho R, Spilki F, Cunha E, Stocco R, Arns C. Molecular data of UL24 homolog gene (ORF37) from Brazilian isolates of equine herpesvirus type 1. Res Vet Sci. 2012;93:494–7.CrossRefPubMed Carvalho R, Spilki F, Cunha E, Stocco R, Arns C. Molecular data of UL24 homolog gene (ORF37) from Brazilian isolates of equine herpesvirus type 1. Res Vet Sci. 2012;93:494–7.CrossRefPubMed
19.
go back to reference Kasem S, Yu MHH, Yamada S, Kodaira A, Matsumura T, et al. The ORF37 (UL24) is a neuropathogenicity determinant of equine herpesvirus 1 (EHV-1) in the mouse encephalitis model. Virology. 2010;400:259–70.CrossRefPubMed Kasem S, Yu MHH, Yamada S, Kodaira A, Matsumura T, et al. The ORF37 (UL24) is a neuropathogenicity determinant of equine herpesvirus 1 (EHV-1) in the mouse encephalitis model. Virology. 2010;400:259–70.CrossRefPubMed
20.
go back to reference Lin S-R, Jiang MJ, Wang H-H, Hu C-H, Hsu M-S, et al. Human cytomegalovirus UL76 elicits novel Aggresome formation via interaction with S5a of the Ubiquitin Proteasome system. J Virol. 2013;87:11562–78.CrossRefPubMedPubMedCentral Lin S-R, Jiang MJ, Wang H-H, Hu C-H, Hsu M-S, et al. Human cytomegalovirus UL76 elicits novel Aggresome formation via interaction with S5a of the Ubiquitin Proteasome system. J Virol. 2013;87:11562–78.CrossRefPubMedPubMedCentral
21.
go back to reference Costa H, Nascimento R, Sinclair J, Parkhouse RME. Human cytomegalovirus gene UL76 induces IL-8 expression through activation of the DNA damage response. PLoS Pathog. 2013;9:e1003609.CrossRefPubMedPubMedCentral Costa H, Nascimento R, Sinclair J, Parkhouse RME. Human cytomegalovirus gene UL76 induces IL-8 expression through activation of the DNA damage response. PLoS Pathog. 2013;9:e1003609.CrossRefPubMedPubMedCentral
23.
go back to reference Nascimento R, Parkhouse R. Murine gammaherpesvirus 68 ORF20 induces cell-cycle arrest in G2 by inhibiting the Cdc2–cyclin B complex. J Gen Virol. 2007;88:1446–53.CrossRefPubMed Nascimento R, Parkhouse R. Murine gammaherpesvirus 68 ORF20 induces cell-cycle arrest in G2 by inhibiting the Cdc2–cyclin B complex. J Gen Virol. 2007;88:1446–53.CrossRefPubMed
24.
go back to reference Jackson SA, DeLuca NA. Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci. 2003;100:7871–6.CrossRefPubMedPubMedCentral Jackson SA, DeLuca NA. Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci. 2003;100:7871–6.CrossRefPubMedPubMedCentral
25.
go back to reference Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A. 2005;102:5844–9.CrossRefPubMedPubMedCentral Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A. 2005;102:5844–9.CrossRefPubMedPubMedCentral
27.
go back to reference Bertrand L, Leiva-Torres GA, Hyjazie H, Pearson A. Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J Virol. 2010;84:109–18.CrossRefPubMed Bertrand L, Leiva-Torres GA, Hyjazie H, Pearson A. Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J Virol. 2010;84:109–18.CrossRefPubMed
28.
go back to reference Bertrand L, Pearson A. The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J Gen Virol. 2008;89:1142–51.CrossRefPubMed Bertrand L, Pearson A. The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J Gen Virol. 2008;89:1142–51.CrossRefPubMed
29.
go back to reference Lymberopoulos MH, Bourget A, Abdeljelil NB, Pearson A. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology. 2011;412:341–8.CrossRefPubMed Lymberopoulos MH, Bourget A, Abdeljelil NB, Pearson A. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology. 2011;412:341–8.CrossRefPubMed
30.
31.
go back to reference Rickards B, Flint S, Cole MD, LeRoy G. Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 2007;27:937–48.CrossRefPubMed Rickards B, Flint S, Cole MD, LeRoy G. Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 2007;27:937–48.CrossRefPubMed
32.
go back to reference Jia R, Cheng A, Wang M, Zhu D, Ge H, et al. Cloning, expression, purification and characterization of UL24 partial protein of duck enteritis virus. Intervirology. 2009;52:326–34.CrossRefPubMed Jia R, Cheng A, Wang M, Zhu D, Ge H, et al. Cloning, expression, purification and characterization of UL24 partial protein of duck enteritis virus. Intervirology. 2009;52:326–34.CrossRefPubMed
33.
go back to reference Liu X, Liu Q, Xiao K, Li P, Liu Q, et al. Attenuated salmonella Typhimurium delivery of a novel DNA vaccine induces immune responses and provides protection against duck enteritis virus. Vet Microbiol. 2016;186:189–98.CrossRefPubMed Liu X, Liu Q, Xiao K, Li P, Liu Q, et al. Attenuated salmonella Typhimurium delivery of a novel DNA vaccine induces immune responses and provides protection against duck enteritis virus. Vet Microbiol. 2016;186:189–98.CrossRefPubMed
34.
go back to reference Yu X, Jia R, Huang J, Shu B, Zhu D, et al. Attenuated salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet Res. 2012;43:1–10.CrossRef Yu X, Jia R, Huang J, Shu B, Zhu D, et al. Attenuated salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet Res. 2012;43:1–10.CrossRef
35.
go back to reference Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, et al. Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through NUP62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem. 2012;287:12277–92.CrossRefPubMedPubMedCentral Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, et al. Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through NUP62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem. 2012;287:12277–92.CrossRefPubMedPubMedCentral
36.
go back to reference Li M, Wang S, Xing J, Guo H, Zheng C. Molecular characterization of subcellular localization and nucleocytoplasmic shuttling of PRV UL54. BioMed Central Ltd. 2011;5:P78. Li M, Wang S, Xing J, Guo H, Zheng C. Molecular characterization of subcellular localization and nucleocytoplasmic shuttling of PRV UL54. BioMed Central Ltd. 2011;5:P78.
37.
go back to reference Guo H, Ding Q, Lin F, Pan W, Lin J, et al. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2009;145:312–20.CrossRefPubMed Guo H, Ding Q, Lin F, Pan W, Lin J, et al. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2009;145:312–20.CrossRefPubMed
38.
go back to reference Tian X, Devi-Rao G, Golovanov AP, Sandri-Goldin RM. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export. J Virol. 2013;87:7210–7.CrossRefPubMedPubMedCentral Tian X, Devi-Rao G, Golovanov AP, Sandri-Goldin RM. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export. J Virol. 2013;87:7210–7.CrossRefPubMedPubMedCentral
39.
40.
go back to reference Dai-Ju JQ, Li L, Johnson LA, Sandri-Goldin RM. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol. 2006;80:3567–81.CrossRefPubMedPubMedCentral Dai-Ju JQ, Li L, Johnson LA, Sandri-Goldin RM. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol. 2006;80:3567–81.CrossRefPubMedPubMedCentral
41.
go back to reference Gillis PA, Okagaki LH, Rice SA. Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol. 2009;83:1767–77.CrossRefPubMed Gillis PA, Okagaki LH, Rice SA. Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol. 2009;83:1767–77.CrossRefPubMed
42.
go back to reference da Silva LF, Sinani D, Jones C. ICP27 protein encoded by bovine herpesvirus type 1 (bICP27) interferes with promoter activity of the bovine genes encoding beta interferon 1 (IFN-β1) and IFN-β3. Virus Res. 2012;169:162–8.CrossRefPubMedPubMedCentral da Silva LF, Sinani D, Jones C. ICP27 protein encoded by bovine herpesvirus type 1 (bICP27) interferes with promoter activity of the bovine genes encoding beta interferon 1 (IFN-β1) and IFN-β3. Virus Res. 2012;169:162–8.CrossRefPubMedPubMedCentral
43.
go back to reference Bright H, Perez DL, Christy C, Cockle P, Eyles JE, et al. The efficacy of HSV-2 vaccines based on gD and gB is enhanced by the addition of ICP27. Vaccine. 2012;30:7529–35.CrossRefPubMed Bright H, Perez DL, Christy C, Cockle P, Eyles JE, et al. The efficacy of HSV-2 vaccines based on gD and gB is enhanced by the addition of ICP27. Vaccine. 2012;30:7529–35.CrossRefPubMed
44.
go back to reference Jia R, Cheng A, Wang M, Qi X, Zhu D, et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. J Virol Methods. 2009;161:38–43.CrossRefPubMed Jia R, Cheng A, Wang M, Qi X, Zhu D, et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. J Virol Methods. 2009;161:38–43.CrossRefPubMed
45.
go back to reference Jia R, Cheng A, Wang M, Xin H, Guo Y, et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes. 2009;38:96–103.CrossRefPubMed Jia R, Cheng A, Wang M, Xin H, Guo Y, et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes. 2009;38:96–103.CrossRefPubMed
46.
go back to reference Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein–protein interactions. Cold Spring Harbor protocols 2015: pdb. top083345. Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein–protein interactions. Cold Spring Harbor protocols 2015: pdb. top083345.
47.
go back to reference Mehla J, Caufield JH, Uetz P (2015) Mapping protein–protein interactions using yeast two-hybrid assays. Cold Spring Harbor protocols 2015: pdb. prot086157. Mehla J, Caufield JH, Uetz P (2015) Mapping protein–protein interactions using yeast two-hybrid assays. Cold Spring Harbor protocols 2015: pdb. prot086157.
48.
go back to reference Gao X, Jia R, Wang M, Zhu D, Chen S, et al. Construction and identification of a cDNA library for use in the yeast two-hybrid system from duck embryonic fibroblast cells post-infected with duck enteritis virus. Mol Biol Rep. 2014;41:467–75.CrossRefPubMed Gao X, Jia R, Wang M, Zhu D, Chen S, et al. Construction and identification of a cDNA library for use in the yeast two-hybrid system from duck embryonic fibroblast cells post-infected with duck enteritis virus. Mol Biol Rep. 2014;41:467–75.CrossRefPubMed
49.
go back to reference Phillips SL, Cygnar D, Thomas A, Bresnahan WA. Interaction between the human cytomegalovirus tegument proteins UL94 and UL99 is essential for virus replication. J Virol. 2012;86:9995–10005.CrossRefPubMedPubMedCentral Phillips SL, Cygnar D, Thomas A, Bresnahan WA. Interaction between the human cytomegalovirus tegument proteins UL94 and UL99 is essential for virus replication. J Virol. 2012;86:9995–10005.CrossRefPubMedPubMedCentral
50.
go back to reference Guan Y, Guo L, Yang E, Liao Y, Liu L, et al. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140. Virology. 2014;464:1–10.CrossRefPubMed Guan Y, Guo L, Yang E, Liao Y, Liu L, et al. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140. Virology. 2014;464:1–10.CrossRefPubMed
51.
go back to reference Corbin-Lickfett KA, Rojas S, Li L, Cocco MJ, Sandri-Goldin RM. ICP27 phosphorylation site mutants display altered functional interactions with cellular export factors Aly/REF and TAP/NXF1 but are able to bind herpes simplex virus 1 RNA. J Virol. 2010;84:2212–22.CrossRefPubMed Corbin-Lickfett KA, Rojas S, Li L, Cocco MJ, Sandri-Goldin RM. ICP27 phosphorylation site mutants display altered functional interactions with cellular export factors Aly/REF and TAP/NXF1 but are able to bind herpes simplex virus 1 RNA. J Virol. 2010;84:2212–22.CrossRefPubMed
52.
go back to reference Johnson LA, Sandri-Goldin RM. Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol. 2009;83:1184–92.CrossRefPubMed Johnson LA, Sandri-Goldin RM. Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol. 2009;83:1184–92.CrossRefPubMed
53.
go back to reference Johnson LA, Li L, Sandri-Goldin RM. The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol. 2009;83:6335–46.CrossRefPubMedPubMedCentral Johnson LA, Li L, Sandri-Goldin RM. The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol. 2009;83:6335–46.CrossRefPubMedPubMedCentral
54.
go back to reference Hardwicke MA, Sandri-Goldin RM. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol. 1994;68:4797–810.PubMedPubMedCentral Hardwicke MA, Sandri-Goldin RM. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol. 1994;68:4797–810.PubMedPubMedCentral
55.
go back to reference Ben Abdeljelil N, Rochette P-A, Pearson A. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion. Virology. 2013;444:263–73.CrossRefPubMed Ben Abdeljelil N, Rochette P-A, Pearson A. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion. Virology. 2013;444:263–73.CrossRefPubMed
56.
go back to reference Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, et al. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009;5:e1000570.CrossRefPubMedPubMedCentral Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, et al. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009;5:e1000570.CrossRefPubMedPubMedCentral
57.
go back to reference Liu C, Cheng A, Wang M, Chen S, Jia R, et al. Characterization of nucleocytoplasmic shuttling and intracellular localization signals in duck enteritis virus UL54. Biochimie. 2016;127:86–94.CrossRefPubMed Liu C, Cheng A, Wang M, Chen S, Jia R, et al. Characterization of nucleocytoplasmic shuttling and intracellular localization signals in duck enteritis virus UL54. Biochimie. 2016;127:86–94.CrossRefPubMed
Metadata
Title
Duck enteritis virus (DEV) UL54 protein, a novel partner, interacts with DEV UL24 protein
Authors
Xinghong Gao
Renyong Jia
Mingshu Wang
Qiao Yang
Shun Chen
Mafeng Liu
Zhongqiong Yin
Anchun Cheng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0830-5

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue