Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Differential expression of porcine microRNAs in African swine fever virus infected pigs: a proof-of-concept study

Authors: Fernando Núñez-Hernández, Lester Josué Pérez, Marta Muñoz, Gonzalo Vera, Francesc Accensi, Armand Sánchez, Fernando Rodríguez, José I. Núñez

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

African swine fever (ASF) is a re-expanding devastating viral disease currently threatening the pig industry worldwide. MicroRNAs are a class of 17–25 nucleotide non- coding RNAs that have been shown to have critical functions in a wide variety of biological processes, such as cell differentiation, cell cycle regulation, carcinogenesis, apoptosis, regulation of immunity as well as in viral infections by cleavage or translational repression of mRNAs. Nevertheless, there is no information about miRNA expression in an ASFV infection.

Methods

In this proof-of-concept study, we have analyzed miRNAs expressed in spleen and submandibular lymph node of experimentally infected pigs with a virulent (E75) or its derived attenuated (E75CV1) ASFV strain, as well as, at different times post-infection with the virulent strain, by high throughput sequencing of small RNA libraries.

Results

Spleen presented a more differential expression pattern than lymph nodes in an ASFV infection. Of the most abundant miRNAs, 12 were differentially expressed in both tissues at two different times in infected animals with the virulent strain. Of these, miR-451, miR-145-5p, miR-181a and miR-122 presented up-regulation at late times post-infection while miR-92a, miR-23a, miR-92b-3p, miR-126-5p, miR-126-3p, miR-30d, miR-23b and miR-92c showed down-regulation. Of the 8 differentially expressed miRNAs identified at the same time post-infection in infected animals with the virulent strain compared with animals infected with its attenuated strain, miR-126-5p, miR-92c, miR-92a, miR-30e-5p and miR-500a-5p presented up-regulation whereas miR-125b, miR-451 and miR-125a were down-regulated. All these miRNAs have been shown to be associated with cellular genes involved in pathways related to the immune response, virus-host interactions as well as with several viral genes.

Conclusion

The study of miRNA expression will contribute to a better understanding of African swine fever virus pathogenesis, essential in the development of any disease control strategy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dixon LK, Chapman DA, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res. 2013;173:3–14.CrossRefPubMed Dixon LK, Chapman DA, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res. 2013;173:3–14.CrossRefPubMed
2.
go back to reference Yanez RJ, Rodriguez JM, Nogal ML, Yuste L, Enriquez C, Rodriguez JF, Vinuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995;208:249–78.CrossRefPubMed Yanez RJ, Rodriguez JM, Nogal ML, Yuste L, Enriquez C, Rodriguez JF, Vinuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995;208:249–78.CrossRefPubMed
3.
go back to reference Eustace Montgomery R. On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol Ther. 1921;34:159–91.CrossRef Eustace Montgomery R. On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol Ther. 1921;34:159–91.CrossRef
4.
go back to reference Giammarioli M, Gallardo C, Oggiano A, Iscaro C, Nieto R, Pellegrini C, Dei Giudici S, Arias M, De Mia GM. Genetic characterisation of African swine fever viruses from recent and historical outbreaks in Sardinia (1978-2009). Virus Genes. 2011;42:377–87.CrossRefPubMed Giammarioli M, Gallardo C, Oggiano A, Iscaro C, Nieto R, Pellegrini C, Dei Giudici S, Arias M, De Mia GM. Genetic characterisation of African swine fever viruses from recent and historical outbreaks in Sardinia (1978-2009). Virus Genes. 2011;42:377–87.CrossRefPubMed
5.
go back to reference Sanchez-Vizcaino JM, Mur L, Martinez-Lopez B. African swine fever: an epidemiological update. Transbound Emerg Dis. 2012;59(Suppl 1):27–35.CrossRefPubMed Sanchez-Vizcaino JM, Mur L, Martinez-Lopez B. African swine fever: an epidemiological update. Transbound Emerg Dis. 2012;59(Suppl 1):27–35.CrossRefPubMed
6.
go back to reference Roelandt S, Van der Stede Y, D'Hondt B, Koenen F. The assessment of African swine fever virus risk to Belgium early 2014, using the quick and Semiquantitative Pandora screening protocol. Transbound Emerg Dis. 2015;64:237–49.CrossRefPubMed Roelandt S, Van der Stede Y, D'Hondt B, Koenen F. The assessment of African swine fever virus risk to Belgium early 2014, using the quick and Semiquantitative Pandora screening protocol. Transbound Emerg Dis. 2015;64:237–49.CrossRefPubMed
7.
go back to reference Guinat C, Reis A, Netherton CL, Goatley L, Pfeiffer DU, Dixon L. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Vet Res. 2014;45:93.CrossRefPubMedPubMedCentral Guinat C, Reis A, Netherton CL, Goatley L, Pfeiffer DU, Dixon L. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Vet Res. 2014;45:93.CrossRefPubMedPubMedCentral
8.
go back to reference Blome S, Gabriel C, Dietze K, Breithaupt A, Beer M. High virulence of African swine fever virus caucasus isolate in European wild boars of all ages. Emerg Infect Dis. 2012;18:708.CrossRefPubMedPubMedCentral Blome S, Gabriel C, Dietze K, Breithaupt A, Beer M. High virulence of African swine fever virus caucasus isolate in European wild boars of all ages. Emerg Infect Dis. 2012;18:708.CrossRefPubMedPubMedCentral
9.
go back to reference Zakaryan H, Cholakyans V, Simonyan L, Misakyan A, Karalova E, Chavushyan A, Karalyan Z. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II. Arch Virol. 2015;160:1407–14.CrossRefPubMed Zakaryan H, Cholakyans V, Simonyan L, Misakyan A, Karalova E, Chavushyan A, Karalyan Z. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II. Arch Virol. 2015;160:1407–14.CrossRefPubMed
10.
go back to reference Lacasta A, Monteagudo PL, Jiménez-Marín Á, Accensi F, Ballester M, Argilaguet J, Galindo-Cardiel I, Segalés J, Salas ML, Domínguez J, et al. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Vet Res. 2015;46:135.CrossRefPubMedPubMedCentral Lacasta A, Monteagudo PL, Jiménez-Marín Á, Accensi F, Ballester M, Argilaguet J, Galindo-Cardiel I, Segalés J, Salas ML, Domínguez J, et al. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Vet Res. 2015;46:135.CrossRefPubMedPubMedCentral
11.
go back to reference O'Donnell V, Risatti GR, Holinka LG, Krug PW, Carlson J, Velazquez-Salinas L, Azzinaro PA, Gladue DP, Borca MV. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J Virol. 2017;91:e01760–16.CrossRefPubMed O'Donnell V, Risatti GR, Holinka LG, Krug PW, Carlson J, Velazquez-Salinas L, Azzinaro PA, Gladue DP, Borca MV. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J Virol. 2017;91:e01760–16.CrossRefPubMed
12.
go back to reference Krug PW, Holinka LG, O’Donnell V, Reese B, Sanford B, Fernandez-Sainz I, Gladue DP, Arzt J, Rodriguez L, Risatti GR, Borca MV. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. J Virol. 2015;89:2324–32.CrossRefPubMed Krug PW, Holinka LG, O’Donnell V, Reese B, Sanford B, Fernandez-Sainz I, Gladue DP, Arzt J, Rodriguez L, Risatti GR, Borca MV. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. J Virol. 2015;89:2324–32.CrossRefPubMed
13.
go back to reference Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–66.CrossRefPubMedPubMedCentral Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–66.CrossRefPubMedPubMedCentral
15.
go back to reference Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.CrossRefPubMedPubMedCentral Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.CrossRefPubMedPubMedCentral
16.
go back to reference Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA. 2005;11:220–6.CrossRefPubMedPubMedCentral Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA. 2005;11:220–6.CrossRefPubMedPubMedCentral
18.
go back to reference Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005;132:4645–52.CrossRefPubMed Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005;132:4645–52.CrossRefPubMed
19.
go back to reference Ketting RF. microRNA biogenesis and function : an overview. Adv Exp Med Biol. 2011;700:1–14.PubMed Ketting RF. microRNA biogenesis and function : an overview. Adv Exp Med Biol. 2011;700:1–14.PubMed
20.
go back to reference Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–24.CrossRefPubMed Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–24.CrossRefPubMed
22.
go back to reference de Villiers EP, Gallardo C, Arias M, da Silva M, Upton C, Martin R, Bishop RP. Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology. 2010;400:128–36.CrossRefPubMed de Villiers EP, Gallardo C, Arias M, da Silva M, Upton C, Martin R, Bishop RP. Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology. 2010;400:128–36.CrossRefPubMed
23.
go back to reference Ruiz-Gonzalvo F, Carnero E, Bruvel V. Immunological responses of pigs to partially attenuated African swine fever virus and their resistance to virulent homologous and heterologous viruses. In: Wilkinson PJ (Ed), African Swine Fever, Proc EUR 8466 EN, CEC/FAO Sardinia. 1983;2066–216. Ruiz-Gonzalvo F, Carnero E, Bruvel V. Immunological responses of pigs to partially attenuated African swine fever virus and their resistance to virulent homologous and heterologous viruses. In: Wilkinson PJ (Ed), African Swine Fever, Proc EUR 8466 EN, CEC/FAO Sardinia. 1983;2066216.
24.
go back to reference Zsak L, Borca MV, Risatti GR, Zsak A, French RA, Lu Z, Kutish GF, Neilan JG, Callahan JD, Nelson WM, Rock DL. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. J Clin Microbiol. 2005;43:112–9.CrossRefPubMedPubMedCentral Zsak L, Borca MV, Risatti GR, Zsak A, French RA, Lu Z, Kutish GF, Neilan JG, Callahan JD, Nelson WM, Rock DL. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. J Clin Microbiol. 2005;43:112–9.CrossRefPubMedPubMedCentral
25.
go back to reference Timoneda O, Nunez-Hernandez F, Balcells I, Munoz M, Castello A, Vera G, Perez LJ, Egea R, Mir G, Cordoba S, et al. The role of viral and host microRNAs in the Aujeszky's disease virus during the infection process. PLoS One. 2014;9:e86965.CrossRefPubMedPubMedCentral Timoneda O, Nunez-Hernandez F, Balcells I, Munoz M, Castello A, Vera G, Perez LJ, Egea R, Mir G, Cordoba S, et al. The role of viral and host microRNAs in the Aujeszky's disease virus during the infection process. PLoS One. 2014;9:e86965.CrossRefPubMedPubMedCentral
27.
go back to reference Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA. 2010;16:2170–80.CrossRefPubMedPubMedCentral Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA. 2010;16:2170–80.CrossRefPubMedPubMedCentral
28.
go back to reference Nunez-Hernandez F, Perez LJ, Munoz M, Vera G, Tomas A, Egea R, Cordoba S, Segales J, Sanchez A, Nunez JI. Identification of microRNAs in PCV2 subclinically infected pigs by high throughput sequencing. Vet Res. 2015;46:18.CrossRefPubMedPubMedCentral Nunez-Hernandez F, Perez LJ, Munoz M, Vera G, Tomas A, Egea R, Cordoba S, Segales J, Sanchez A, Nunez JI. Identification of microRNAs in PCV2 subclinically infected pigs by high throughput sequencing. Vet Res. 2015;46:18.CrossRefPubMedPubMedCentral
29.
go back to reference Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41:W169–73.CrossRefPubMedPubMedCentral Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41:W169–73.CrossRefPubMedPubMedCentral
30.
go back to reference Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28:771–6.CrossRefPubMed Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28:771–6.CrossRefPubMed
32.
go back to reference Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33:W741–8.CrossRefPubMedPubMedCentral Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33:W741–8.CrossRefPubMedPubMedCentral
34.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodological. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodological. 1995;57:289–300.
35.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRefPubMedPubMedCentral Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRefPubMedPubMedCentral
36.
go back to reference Song X, Zhao X, Huang Y, Xiang H, Zhang W, Tong D. Transmissible gastroenteritis virus (TGEV) infection alters the expression of cellular microRNA species that affect transcription of TGEV gene 7. Int J Biol Sci. 2015;11:913–22.CrossRefPubMedPubMedCentral Song X, Zhao X, Huang Y, Xiang H, Zhang W, Tong D. Transmissible gastroenteritis virus (TGEV) infection alters the expression of cellular microRNA species that affect transcription of TGEV gene 7. Int J Biol Sci. 2015;11:913–22.CrossRefPubMedPubMedCentral
37.
go back to reference Liu X, Liao S, Xu Z, Zhu L, Yang F, Guo W. Identification and analysis of the porcine MicroRNA in porcine cytomegalovirus-infected macrophages using deep sequencing. PLoS One. 2016;11:e0150971.CrossRefPubMedPubMedCentral Liu X, Liao S, Xu Z, Zhu L, Yang F, Guo W. Identification and analysis of the porcine MicroRNA in porcine cytomegalovirus-infected macrophages using deep sequencing. PLoS One. 2016;11:e0150971.CrossRefPubMedPubMedCentral
38.
go back to reference Li X, Zhu L, Liu X, Sun X, Zhou Y, Lang Q, Li P, Cai Y, Qiao X, Xu Z. Differential expression of micrornas in porcine parvovirus infected porcine cell line. Virol J. 2015;12:128.CrossRefPubMedPubMedCentral Li X, Zhu L, Liu X, Sun X, Zhou Y, Lang Q, Li P, Cai Y, Qiao X, Xu Z. Differential expression of micrornas in porcine parvovirus infected porcine cell line. Virol J. 2015;12:128.CrossRefPubMedPubMedCentral
39.
go back to reference Hong JS, Kim NH, Choi CY, Lee JS, Na D, Chun T, Lee YS. Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins. Vet Res. 2015;46:39.CrossRefPubMedPubMedCentral Hong JS, Kim NH, Choi CY, Lee JS, Na D, Chun T, Lee YS. Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins. Vet Res. 2015;46:39.CrossRefPubMedPubMedCentral
40.
go back to reference AH J, Yoo D, Liu HC. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages. PLoS One. 2013;8:e82054.CrossRef AH J, Yoo D, Liu HC. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages. PLoS One. 2013;8:e82054.CrossRef
41.
go back to reference Li J, Chen Z, Zhao J, Fang L, Fang R, Xiao J, Chen X, Zhou A, Zhang Y, Ren L, et al. Difference in microRNA expression and editing profile of lung tissues from different pig breeds related to immune responses to HP-PRRSV. Sci Rep. 2015;5:9549.CrossRefPubMedPubMedCentral Li J, Chen Z, Zhao J, Fang L, Fang R, Xiao J, Chen X, Zhou A, Zhang Y, Ren L, et al. Difference in microRNA expression and editing profile of lung tissues from different pig breeds related to immune responses to HP-PRRSV. Sci Rep. 2015;5:9549.CrossRefPubMedPubMedCentral
43.
44.
go back to reference Wu M, J-T G, Yi BIN, Tang Z-Z, Tao G-C. microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Exp Ther Med. 2015;9:1125–32.CrossRefPubMedPubMedCentral Wu M, J-T G, Yi BIN, Tang Z-Z, Tao G-C. microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Exp Ther Med. 2015;9:1125–32.CrossRefPubMedPubMedCentral
45.
go back to reference Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Munoz-Moreno R. African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res. 2013;173:42–57.CrossRefPubMed Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Munoz-Moreno R. African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res. 2013;173:42–57.CrossRefPubMed
46.
go back to reference Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan SP. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 2009;5:e1000394.CrossRefPubMedPubMedCentral Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan SP. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 2009;5:e1000394.CrossRefPubMedPubMedCentral
47.
go back to reference Galindo I, Cuesta-Geijo MA, Hlavova K, Munoz-Moreno R, Barrado-Gil L, Dominguez J, Alonso C. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Res. 2015;200:45–55.CrossRefPubMed Galindo I, Cuesta-Geijo MA, Hlavova K, Munoz-Moreno R, Barrado-Gil L, Dominguez J, Alonso C. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Res. 2015;200:45–55.CrossRefPubMed
48.
go back to reference Liang Y, Nylander KD, Yan C, Schor NF. Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. Mol Pharmacol. 2002;61:142–9.CrossRefPubMed Liang Y, Nylander KD, Yan C, Schor NF. Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. Mol Pharmacol. 2002;61:142–9.CrossRefPubMed
49.
go back to reference B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41:7683–99.CrossRefPubMedPubMedCentral B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41:7683–99.CrossRefPubMedPubMedCentral
50.
go back to reference Yanez RJ, Boursnell M, Nogal ML, Yuste L, Vinuela E. African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases. Nucleic Acids Res. 1993;21:2423–7.CrossRefPubMedPubMedCentral Yanez RJ, Boursnell M, Nogal ML, Yuste L, Vinuela E. African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases. Nucleic Acids Res. 1993;21:2423–7.CrossRefPubMedPubMedCentral
51.
go back to reference Coelho J, Martins C, Ferreira F, Leitão A. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase. Virology. 2015;474:82–93.CrossRefPubMed Coelho J, Martins C, Ferreira F, Leitão A. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase. Virology. 2015;474:82–93.CrossRefPubMed
52.
go back to reference Coelho J, Ferreira F, Martins C, Leitão A. Functional characterization and inhibition of the type II DNA topoisomerase coded by African swine fever virus. Virology. 2016;493:209–16.CrossRefPubMed Coelho J, Ferreira F, Martins C, Leitão A. Functional characterization and inhibition of the type II DNA topoisomerase coded by African swine fever virus. Virology. 2016;493:209–16.CrossRefPubMed
53.
go back to reference Hernaez B, Cabezas M, Munoz-Moreno R, Galindo I, Cuesta-Geijo MA, Alonso C. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med. 2013;13:305–16.CrossRefPubMed Hernaez B, Cabezas M, Munoz-Moreno R, Galindo I, Cuesta-Geijo MA, Alonso C. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med. 2013;13:305–16.CrossRefPubMed
54.
go back to reference Banjara S, Caria S, Dixon LK, Hinds MG, Kvansakul M. Structural insight into African swine fever virus A179L-mediated inhibition of apoptosis. J Virol. 2017;91:e02228–16.CrossRefPubMedPubMedCentral Banjara S, Caria S, Dixon LK, Hinds MG, Kvansakul M. Structural insight into African swine fever virus A179L-mediated inhibition of apoptosis. J Virol. 2017;91:e02228–16.CrossRefPubMedPubMedCentral
55.
go back to reference Sanchez EG, Quintas A, Perez-Nunez D, Nogal M, Barroso S, Carrascosa AL, Revilla Y. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog. 2012;8:e1002754. Sanchez EG, Quintas A, Perez-Nunez D, Nogal M, Barroso S, Carrascosa AL, Revilla Y. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog. 2012;8:e1002754.
56.
go back to reference Cuesta-Geijo MA, Galindo I, Hernáez B, Quetglas JI, Dalmau-Mena I, Alonso C. Endosomal maturation, Rab7 GTPase and Phosphoinositides in African swine fever virus entry. PLoS One. 2012;7:e48853.CrossRefPubMedPubMedCentral Cuesta-Geijo MA, Galindo I, Hernáez B, Quetglas JI, Dalmau-Mena I, Alonso C. Endosomal maturation, Rab7 GTPase and Phosphoinositides in African swine fever virus entry. PLoS One. 2012;7:e48853.CrossRefPubMedPubMedCentral
57.
go back to reference Munoz-Moreno R, Galindo I, Cuesta-Geijo MA, Barrado-Gil L, Alonso C. Host cell targets for African swine fever virus. Virus Res. 2015;209:118–27.CrossRefPubMed Munoz-Moreno R, Galindo I, Cuesta-Geijo MA, Barrado-Gil L, Alonso C. Host cell targets for African swine fever virus. Virus Res. 2015;209:118–27.CrossRefPubMed
58.
go back to reference Galindo I, Hernaez B, Munoz-Moreno R, Cuesta-Geijo MA, Dalmau-Mena I, Alonso C. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 2012;3:e341.CrossRefPubMedPubMedCentral Galindo I, Hernaez B, Munoz-Moreno R, Cuesta-Geijo MA, Dalmau-Mena I, Alonso C. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 2012;3:e341.CrossRefPubMedPubMedCentral
59.
go back to reference Luna JM, Scheel TK, Danino T, Shaw KS, Mele A, Fak JJ, Nishiuchi E, Takacs CN, Catanese MT, de Jong YP, et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell. 2015;160:1099–110.CrossRefPubMedPubMedCentral Luna JM, Scheel TK, Danino T, Shaw KS, Mele A, Fak JJ, Nishiuchi E, Takacs CN, Catanese MT, de Jong YP, et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell. 2015;160:1099–110.CrossRefPubMedPubMedCentral
Metadata
Title
Differential expression of porcine microRNAs in African swine fever virus infected pigs: a proof-of-concept study
Authors
Fernando Núñez-Hernández
Lester Josué Pérez
Marta Muñoz
Gonzalo Vera
Francesc Accensi
Armand Sánchez
Fernando Rodríguez
José I. Núñez
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0864-8

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.