Skip to main content
Top
Published in: Malaria Journal 1/2020

01-12-2020 | Malaria | Research

Extensive genetic diversity of Plasmodium vivax dbp-II in Rio de Janeiro Atlantic Forest and Brazilian Amazon Basin: evidence of positive selection

Authors: Natália Ketrin Almeida-de-Oliveira, Lidiane Lima-Cury, Rebecca de Abreu-Fernandes, Aline de Rosa Lavigne, Anielle de Pina-Costa, Daiana de Souza Perce-da-Silva, Marcos Catanho, Patrícia Brasil, Cláudio Tadeu Daniel-Ribeiro, Maria de Fátima Ferreira-da-Cruz

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Plasmodium vivax is the most widespread human malaria parasite outside Africa and is the predominant parasite in the Americas. Increasing reports of P. vivax disease severity, together with the emergence of drug-resistant strains, underscore the urgency of the development of vaccines against P. vivax. Polymorphisms on DBP-II-gene could act as an immune evasion mechanism and, consequently, limited the vaccine efficacy. This study aimed to investigate the pvdbp-II genetic diversity in two Brazilian regions with different epidemiological patterns: the unstable transmission area in the Atlantic Forest (AF) of Rio de Janeiro and; the fixed malaria-endemic area in Brazilian Amazon (BA).

Methods

216 Brazilian P. vivax infected blood samples, diagnosed by microscopic examination and PCR, were investigated. The region flanking pvdbp-II was amplified by PCR and sequenced. Genetic polymorphisms of pvdbp-II were estimated based on the number of segregating sites and nucleotide and haplotype diversities; the degree of differentiation between-regions was evaluated applying Wright’s statistics. Natural selection was calculated using the rate of nonsynonymous per synonymous substitutions with the Z-test, and the evolutionary distance was estimated based on the reconstructed tree.

Results

79 samples from AF and 137 from BA were successfully sequenced. The analyses showed 28 polymorphic sites distributed in 21 codons, with only 5% of the samples Salvador 1 type. The highest rates of polymorphic sites were found in B- and T cell epitopes. Unexpectedly, the nucleotide diversity in pvdbp-II was higher in AF (0.01) than in BA (0.008). Among the 28 SNPs detected, 18 are shared between P. vivax isolates from AF and BA regions, but 8 SNPs were exclusively detected in AF—I322S, K371N, E385Q, E385T, K386T, K411N, I419L and I419R—and 2 (N375D and I419M) arose exclusively in BA. These findings could suggest the potential of these geographical clusters as population-specific-signatures that may be useful to track the origin of infections. The sample size should be increased in order to confirm this possibility.

Conclusions

The results highlight that the pvdbp-II polymorphisms are positively selected by host’s immune pressure. The characterization of pvdbp-II polymorphisms might be useful for designing effective DBP-II-based vaccines.
Appendix
Available only for authorised users
Literature
3.
go back to reference Lacerda MVG, Mourão MPG, Alexandre MA, Siqueira AM, Magalhães BML, Martinez-Espinosa FE, et al. Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature. Malar J. 2012;11:12.CrossRef Lacerda MVG, Mourão MPG, Alexandre MA, Siqueira AM, Magalhães BML, Martinez-Espinosa FE, et al. Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature. Malar J. 2012;11:12.CrossRef
4.
go back to reference de Santana Filho FS, Lima Arcanjo AR, Chehuan YM, Costa MR, Martinez-Espinosa FE, Vieira JL, et al. Chloroquine-resistant Plasmodium vivax, Brazilian Amazon. Emerg Infect Dis. 2007;13:1125–6.CrossRef de Santana Filho FS, Lima Arcanjo AR, Chehuan YM, Costa MR, Martinez-Espinosa FE, Vieira JL, et al. Chloroquine-resistant Plasmodium vivax, Brazilian Amazon. Emerg Infect Dis. 2007;13:1125–6.CrossRef
5.
go back to reference Auburn S, Böhme U, Steinbiss S, Trimarsanto H, Hostetler J, Sanders M, et al. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes. Wellcome Open Res. 2016;1:4.CrossRef Auburn S, Böhme U, Steinbiss S, Trimarsanto H, Hostetler J, Sanders M, et al. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes. Wellcome Open Res. 2016;1:4.CrossRef
6.
go back to reference Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007;77:79–87.CrossRef Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007;77:79–87.CrossRef
7.
go back to reference Singh SK, Singh AP, Pandey S, Yazdani SS, Chittnis CE, Sharma A. Definition of structural elements in Plasmodium vivax and P. knowlesi Duffy-binding domains necessary for erythrocyte invasion. Biochem J. 2003;374:193–8.CrossRef Singh SK, Singh AP, Pandey S, Yazdani SS, Chittnis CE, Sharma A. Definition of structural elements in Plasmodium vivax and P. knowlesi Duffy-binding domains necessary for erythrocyte invasion. Biochem J. 2003;374:193–8.CrossRef
8.
go back to reference Sousa TN, Tarazona-Santos EM, Wilson DJ, Madureira AP, Falcão PRK, Fontes CJF, et al. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in Brazilian Plasmodium vivax populations. Malar J. 2010;9:334.CrossRef Sousa TN, Tarazona-Santos EM, Wilson DJ, Madureira AP, Falcão PRK, Fontes CJF, et al. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in Brazilian Plasmodium vivax populations. Malar J. 2010;9:334.CrossRef
9.
go back to reference De Pina-costa A, Brasil P, Maria S, Santi D, De Araujo MP, Suárez-mutis MC, et al. Malaria in Brazil: what happens outside the Amazonian endemic region. Mem Inst Oswaldo Cruz. 2014;109:618–33.CrossRef De Pina-costa A, Brasil P, Maria S, Santi D, De Araujo MP, Suárez-mutis MC, et al. Malaria in Brazil: what happens outside the Amazonian endemic region. Mem Inst Oswaldo Cruz. 2014;109:618–33.CrossRef
10.
go back to reference Rozas J, Ferrer-Mata A, Carlos anchez-DelBarrio JS, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.CrossRef Rozas J, Ferrer-Mata A, Carlos anchez-DelBarrio JS, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.CrossRef
11.
go back to reference Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002;18:337–8.CrossRef Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002;18:337–8.CrossRef
12.
go back to reference Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRef Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRef
13.
go back to reference Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:18–26. Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:18–26.
14.
go back to reference Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000. Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
15.
go back to reference Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
16.
go back to reference Xainli J, Baisor M, Kastens W, Bockarie M, Adams JH, King CL. Age-dependent cellular immune responses to Plasmodium vivax Duffy binding protein in humans. J Immunol. 2002;169:3200–7.CrossRef Xainli J, Baisor M, Kastens W, Bockarie M, Adams JH, King CL. Age-dependent cellular immune responses to Plasmodium vivax Duffy binding protein in humans. J Immunol. 2002;169:3200–7.CrossRef
17.
go back to reference Cole-Tobian J, King CL. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol. 2003;127:121–32.CrossRef Cole-Tobian J, King CL. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol. 2003;127:121–32.CrossRef
18.
go back to reference Gosi P, Khusmith S, Khalambaheti T, Lanar DE, Schaecher KE, Fukuda MM, et al. Polymorphism patterns in Duffy-binding protein among Thai Plasmodium vivax isolates. Malar J. 2008;7:112.CrossRef Gosi P, Khusmith S, Khalambaheti T, Lanar DE, Schaecher KE, Fukuda MM, et al. Polymorphism patterns in Duffy-binding protein among Thai Plasmodium vivax isolates. Malar J. 2008;7:112.CrossRef
19.
go back to reference Ju H-L, Kang J-M, Moon S-U, Kim J-Y, Lee H-W, Lin K, et al. Genetic polymorphism and natural selection of Duffy binding protein of Plasmodium vivax Myanmar isolates. Malar J. 2012;11:60.CrossRef Ju H-L, Kang J-M, Moon S-U, Kim J-Y, Lee H-W, Lin K, et al. Genetic polymorphism and natural selection of Duffy binding protein of Plasmodium vivax Myanmar isolates. Malar J. 2012;11:60.CrossRef
20.
go back to reference Chootong P, McHenry AM, Ntumngia FB, Sattabongkot J, Adams JH. The association of Duffy binding protein region II polymorphisms and its antigenicity in Plasmodium vivax isolates from Thailand. Parasitol Int. 2014;63:858–64.CrossRef Chootong P, McHenry AM, Ntumngia FB, Sattabongkot J, Adams JH. The association of Duffy binding protein region II polymorphisms and its antigenicity in Plasmodium vivax isolates from Thailand. Parasitol Int. 2014;63:858–64.CrossRef
21.
go back to reference Hoque MR, Mohieldien M, Elfaki A, Ahmed A, Lee S-K, Muh F, et al. Diversity pattern of Duffy binding protein sequence among Duffy-negatives and Duffy-positives in Sudan. Malar J. 2018;17:297.CrossRef Hoque MR, Mohieldien M, Elfaki A, Ahmed A, Lee S-K, Muh F, et al. Diversity pattern of Duffy binding protein sequence among Duffy-negatives and Duffy-positives in Sudan. Malar J. 2018;17:297.CrossRef
22.
go back to reference Premaratne PH, Aravinda BR, Escalante AA, Udagama PV. Genetic diversity of Plasmodium vivax Duffy binding protein II (Pvdbp-II) under unstable transmission and low intensity malaria in Sri Lanka. Infect Genet Evol. 2011;11:1327–39.CrossRef Premaratne PH, Aravinda BR, Escalante AA, Udagama PV. Genetic diversity of Plasmodium vivax Duffy binding protein II (Pvdbp-II) under unstable transmission and low intensity malaria in Sri Lanka. Infect Genet Evol. 2011;11:1327–39.CrossRef
23.
go back to reference De Sousa TN, Carvalho LH, de Brito CFA. Worldwide genetic variability of the duffy binding protein: insights into Plasmodium vivax vaccine development. PLoS ONE. 2011;6:e22944.CrossRef De Sousa TN, Carvalho LH, de Brito CFA. Worldwide genetic variability of the duffy binding protein: insights into Plasmodium vivax vaccine development. PLoS ONE. 2011;6:e22944.CrossRef
24.
go back to reference George MT, Schloegel JL, Ntumngia FB, Barnes SJ, King CL, Casey JL, et al. Identification of an immunogenic broadly inhibitory surface epitope of the Plasmodium vivax Duffy binding protein ligand domain. mSphere. 2019;4:e00194.CrossRef George MT, Schloegel JL, Ntumngia FB, Barnes SJ, King CL, Casey JL, et al. Identification of an immunogenic broadly inhibitory surface epitope of the Plasmodium vivax Duffy binding protein ligand domain. mSphere. 2019;4:e00194.CrossRef
25.
go back to reference Camargos Costa D, Pereira de Assis GM, de Souza Silva FA, Araújo FC, de Souza Junior JC, Braga Hirano ZM, et al. Plasmodium simium, a Plasmodium vivax-related malaria parasite: genetic variability of Duffy binding protein II and the Duffy antigen/receptor for chemokines. PLoS ONE. 2015;10:0131339.CrossRef Camargos Costa D, Pereira de Assis GM, de Souza Silva FA, Araújo FC, de Souza Junior JC, Braga Hirano ZM, et al. Plasmodium simium, a Plasmodium vivax-related malaria parasite: genetic variability of Duffy binding protein II and the Duffy antigen/receptor for chemokines. PLoS ONE. 2015;10:0131339.CrossRef
26.
go back to reference De Sousa TN, Kano FS, De Brito CFA, Carvalho LH. The Duffy binding protein as a key target for a Plasmodium vivax vaccine: lessons from the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2014;109:25–30. De Sousa TN, Kano FS, De Brito CFA, Carvalho LH. The Duffy binding protein as a key target for a Plasmodium vivax vaccine: lessons from the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2014;109:25–30.
Metadata
Title
Extensive genetic diversity of Plasmodium vivax dbp-II in Rio de Janeiro Atlantic Forest and Brazilian Amazon Basin: evidence of positive selection
Authors
Natália Ketrin Almeida-de-Oliveira
Lidiane Lima-Cury
Rebecca de Abreu-Fernandes
Aline de Rosa Lavigne
Anielle de Pina-Costa
Daiana de Souza Perce-da-Silva
Marcos Catanho
Patrícia Brasil
Cláudio Tadeu Daniel-Ribeiro
Maria de Fátima Ferreira-da-Cruz
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03159-y

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue