Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Falciparum Malaria | Research

Efficacy and safety of dihydroartemisinin–piperaquine for treatment of Plasmodium falciparum uncomplicated malaria in adult patients on antiretroviral therapy in Malawi and Mozambique: an open label non-randomized interventional trial

Authors: Esperança Sevene, Clifford G. Banda, Mavuto Mukaka, Sonia Maculuve, Salésio Macuacua, Anifa Vala, Mireia Piqueras, Linda Kalilani-Phiri, Jane Mallewa, Dianne J. Terlouw, Saye H. Khoo, David G. Lalloo, Victor Mwapasa

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

HIV-infected individuals on antiretroviral therapy (ART) require treatment with artemisinin-based combination therapy (ACT) when infected with malaria. Dihydroartemisinin–piperaquine (DPQ) is recommended for treatment of Plasmodium falciparum malaria, but its efficacy and safety has not been evaluated in HIV-infected individuals on ART, among whom drug–drug interactions are expected. Day-42 adequate clinical and parasitological response (ACPR) and incidence of adverse events were assessed in HIV-infected individuals on non-nucleoside reverse transcriptase inhibitor-based ART (efavirenz and nevirapine) with uncomplicated P. falciparum malaria treated with dihydroartemisinin–piperaquine.

Methods

An open label single arm clinical trial was conducted in Malawi (Blantyre and Chikhwawa districts) and Mozambique (Manhiça district) involving patients aged 15–65 years with uncomplicated P. falciparum malaria who were on efavirenz-based or nevirapine-based ART. They received a directly-observed 3-day standard treatment of DPQ and were followed up until day 63 for malaria infection and adverse events. Day-42 PCR-corrected-ACPRs (95% confidence interval [CI]) were calculated for the intention-to-treat (ITT) population.

Results

The study enrolled 160 and 61 patients on efavirenz and nevirapine-based ART, with a baseline geometric mean (95% CI) parasite density of 2681 (1964–3661) and 9819 (6606–14,593) parasites/µL, respectively. The day-42 PCR-corrected ACPR (95% CI) was 99.4% (95.6–99.9%) in the efavirenz group and 100% in the nevirapine group. Serious adverse events occurred in 5.0% (8/160) and 3.3% (2/61) of the participants in the efavirenz and nevirapine group, respectively, but none were definitively attributable to DPQ. Cases of prolonged QT interval (> 60 ms from baseline) occurred in 31.2% (48/154) and 13.3% (8/60) of the patients on the efavirenz and nevirapine ART groups, respectively. These were not clinically significant and resolved spontaneously over time. As this study was not designed to compare the efficacy and safety of DPQ in the two ART groups, no formal statistical comparisons were made between the two ART groups.

Conclusions

DPQ was highly efficacious and safe for the treatment of malaria in HIV-infected patients concurrently taking efavirenz- or nevirapine-based ART, despite known pharmacokinetic interactions between dihydroartemisinin–piperaquine and efavirenz- or nevirapine-based ART regimens.
Trial registration Pan African Clinical Trials Registry (PACTR): PACTR201311000659400. Registered on 4 October 2013, https://​pactr.​samrc.​ac.​za/​Search.​aspx
Appendix
Available only for authorised users
Literature
1.
go back to reference Kwenti TE. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Res Rep Trop Med. 2018;9:123–36.PubMedPubMedCentral Kwenti TE. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Res Rep Trop Med. 2018;9:123–36.PubMedPubMedCentral
2.
go back to reference Hewitt K, Steketee R, Mwapasa V, Whitworth J, French N. Interactions between HIV and malaria in non-pregnant adults: evidence and implications. AIDS. 2006;20:1993–2004.CrossRef Hewitt K, Steketee R, Mwapasa V, Whitworth J, French N. Interactions between HIV and malaria in non-pregnant adults: evidence and implications. AIDS. 2006;20:1993–2004.CrossRef
3.
go back to reference Laufer MK, van Oosterhout JJG, Thesing PC, Thumba F, Zijlstra EE, Graham SM, et al. Impact of HIV-associated immunosuppression on malaria infection and disease in Malawi. J Infect Dis. 2006;193:872–8.CrossRef Laufer MK, van Oosterhout JJG, Thesing PC, Thumba F, Zijlstra EE, Graham SM, et al. Impact of HIV-associated immunosuppression on malaria infection and disease in Malawi. J Infect Dis. 2006;193:872–8.CrossRef
4.
go back to reference WHO. Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015. WHO. Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015.
5.
go back to reference Khoo S, Back D, Winstanley P. The potential for interactions between antimalarial and antiretroviral drugs. AIDS. 2005;19:995–1005.CrossRef Khoo S, Back D, Winstanley P. The potential for interactions between antimalarial and antiretroviral drugs. AIDS. 2005;19:995–1005.CrossRef
6.
go back to reference Lee TM-N, Huang L, Johnson MK, Lizak P, Kroetz D, Aweeka F, et al. In vitro metabolism of piperaquine is primarily mediated by CYP3A4. Xenobiotica. 2012;42:1088–95.CrossRef Lee TM-N, Huang L, Johnson MK, Lizak P, Kroetz D, Aweeka F, et al. In vitro metabolism of piperaquine is primarily mediated by CYP3A4. Xenobiotica. 2012;42:1088–95.CrossRef
7.
go back to reference Seden K, Gibbons S, Marzolini C, Schapiro JM, Burger DM, Back DJ, et al. Development of an evidence evaluation and synthesis system for drug–drug interactions, and its application to a systematic review of HIV and malaria co-infection. PLoS ONE. 2017;12:e0173509.CrossRef Seden K, Gibbons S, Marzolini C, Schapiro JM, Burger DM, Back DJ, et al. Development of an evidence evaluation and synthesis system for drug–drug interactions, and its application to a systematic review of HIV and malaria co-infection. PLoS ONE. 2017;12:e0173509.CrossRef
8.
go back to reference Banda CG, Dzinjalamala F, Mukaka M, Mallewa J, Maiden V, Terlouw DJ, et al. Pharmacokinetics of piperaquine and safety profile of dihydroartemisinin–piperaquine coadministered with antiretroviral therapy in malaria-uninfected HIV-positive Malawian adults. Antimicrob Agents Chemother. 2018;62:e00634-18.CrossRef Banda CG, Dzinjalamala F, Mukaka M, Mallewa J, Maiden V, Terlouw DJ, et al. Pharmacokinetics of piperaquine and safety profile of dihydroartemisinin–piperaquine coadministered with antiretroviral therapy in malaria-uninfected HIV-positive Malawian adults. Antimicrob Agents Chemother. 2018;62:e00634-18.CrossRef
9.
go back to reference WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009. WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
10.
go back to reference Banda CG, Chaponda M, Mukaka M, Mulenga M, Hachizovu S, Kabuya JB, et al. Efficacy and safety of artemether–lumefantrine as treatment for Plasmodium falciparum uncomplicated malaria in adult patients on efavirenz-based antiretroviral therapy in Zambia: an open label non-randomized interventional trial. Malar J. 2019;18:180.CrossRef Banda CG, Chaponda M, Mukaka M, Mulenga M, Hachizovu S, Kabuya JB, et al. Efficacy and safety of artemether–lumefantrine as treatment for Plasmodium falciparum uncomplicated malaria in adult patients on efavirenz-based antiretroviral therapy in Zambia: an open label non-randomized interventional trial. Malar J. 2019;18:180.CrossRef
11.
go back to reference Malawi malaria indicator survey 2014. Ministry of Health National Malaria Control Programme, Malawi. 2015. Malawi malaria indicator survey 2014. Ministry of Health National Malaria Control Programme, Malawi. 2015.
12.
go back to reference Galatas B, Guinovart C, Bassat Q, Aponte JJ, Nhamússua L, Macete E, et al. A prospective cohort study to assess the micro-epidemiology of Plasmodium falciparum clinical malaria in Ilha Josina Machel (Manhiça, Mozambique). Malar J. 2016;15:444.CrossRef Galatas B, Guinovart C, Bassat Q, Aponte JJ, Nhamússua L, Macete E, et al. A prospective cohort study to assess the micro-epidemiology of Plasmodium falciparum clinical malaria in Ilha Josina Machel (Manhiça, Mozambique). Malar J. 2016;15:444.CrossRef
13.
go back to reference National Statistical Office. Malawi demographic and health survey 2015–16; 2017. National Statistical Office. Malawi demographic and health survey 2015–16; 2017.
14.
go back to reference Ministerio da Saúde. National survey on prevalence, behavioral risks and information about HIV and AIDS in Mozambique (INSIDE). Maputo: Ministerio da Saúde; 2009. Ministerio da Saúde. National survey on prevalence, behavioral risks and information about HIV and AIDS in Mozambique (INSIDE). Maputo: Ministerio da Saúde; 2009.
15.
go back to reference WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: World Health Organization; 2013. WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: World Health Organization; 2013.
16.
go back to reference Ministry of Health. Malawi integrated HIV program report. 2013. Ministry of Health. Malawi integrated HIV program report. 2013.
17.
go back to reference WHO. Management of severe malaria—a practical handbook. 3rd ed. Geneva: World Health Organization; 2013. WHO. Management of severe malaria—a practical handbook. 3rd ed. Geneva: World Health Organization; 2013.
19.
go back to reference WPRO. Malaria microscopy standard operating procedures. WHO Western Pacific Region; 2018. WPRO. Malaria microscopy standard operating procedures. WHO Western Pacific Region; 2018.
20.
go back to reference Reeder JC, Marshall VM. A simple method for typing Plasmodium falciparum merozoite surface antigens 1 and 2 (MSA-1 and MSA-2) using a dimorphic-form specific polymerase chain reaction. Mol Biochem Parasitol. 1994;68:329–32.CrossRef Reeder JC, Marshall VM. A simple method for typing Plasmodium falciparum merozoite surface antigens 1 and 2 (MSA-1 and MSA-2) using a dimorphic-form specific polymerase chain reaction. Mol Biochem Parasitol. 1994;68:329–32.CrossRef
21.
go back to reference WHO. Methods and techniques for assessing exposure to antimalarial drugs in clinical field studies. Geneva: World Health Organization; 2016. WHO. Methods and techniques for assessing exposure to antimalarial drugs in clinical field studies. Geneva: World Health Organization; 2016.
22.
go back to reference White NJ, Stepniewska K, Barnes K, Price RN, Simpson J. Simplified antimalarial therapeutic monitoring: using the day-7 drug level? Trends Parasitol. 2008;24:159–63.CrossRef White NJ, Stepniewska K, Barnes K, Price RN, Simpson J. Simplified antimalarial therapeutic monitoring: using the day-7 drug level? Trends Parasitol. 2008;24:159–63.CrossRef
23.
go back to reference Lourens C, Watkins WM, Barnes KI, Sibley CH, Guerin PJ, White NJ, et al. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN). Malar J. 2010;9:375.CrossRef Lourens C, Watkins WM, Barnes KI, Sibley CH, Guerin PJ, White NJ, et al. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN). Malar J. 2010;9:375.CrossRef
24.
go back to reference ICH. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use: Clinical safety data management: E2A; 1994. ICH. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use: Clinical safety data management: E2A; 1994.
25.
go back to reference Van Geertruyden J-P, Mulenga M, Mwananyanda L, Chalwe V, Moerman F, Chilengi R, et al. HIV-1 immune suppression and antimalarial treatment outcome in Zambian adults with uncomplicated malaria. J Infect Dis. 2006;194:917–25.CrossRef Van Geertruyden J-P, Mulenga M, Mwananyanda L, Chalwe V, Moerman F, Chilengi R, et al. HIV-1 immune suppression and antimalarial treatment outcome in Zambian adults with uncomplicated malaria. J Infect Dis. 2006;194:917–25.CrossRef
26.
go back to reference Kirkwood BR, Sterne JAC, Kirkwood BR. Essential medical statistics. Hoboken: Blackwell Science; 2003. Kirkwood BR, Sterne JAC, Kirkwood BR. Essential medical statistics. Hoboken: Blackwell Science; 2003.
27.
go back to reference Flegg JA, Guerin PJ, White NJ, Stepniewska K. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J. 2011;10:339.CrossRef Flegg JA, Guerin PJ, White NJ, Stepniewska K. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J. 2011;10:339.CrossRef
28.
go back to reference Gargano N, Ubben D, Tommasini S, Bacchieri A, Corsi M, Bhattacharyya PC, et al. Therapeutic efficacy and safety of dihydroartemisinin–piperaquine versus artesunate–mefloquine in uncomplicated Plasmodium falciparum malaria in India. Malar J. 2012;11:233.CrossRef Gargano N, Ubben D, Tommasini S, Bacchieri A, Corsi M, Bhattacharyya PC, et al. Therapeutic efficacy and safety of dihydroartemisinin–piperaquine versus artesunate–mefloquine in uncomplicated Plasmodium falciparum malaria in India. Malar J. 2012;11:233.CrossRef
29.
go back to reference Sylla K, Abiola A, Tine RCK, Faye B, Sow D, Ndiaye JL, et al. Monitoring the efficacy and safety of three artemisinin based-combinations therapies in Senegal: results from two years surveillance. BMC Infect Dis. 2013;13:598.CrossRef Sylla K, Abiola A, Tine RCK, Faye B, Sow D, Ndiaye JL, et al. Monitoring the efficacy and safety of three artemisinin based-combinations therapies in Senegal: results from two years surveillance. BMC Infect Dis. 2013;13:598.CrossRef
30.
go back to reference Sow D, Ndiaye J-L, Sylla K, Ba MS, Tine RCK, Faye B, et al. Evaluation of the efficacy and safety of three 2-drug combinations for the treatment of uncomplicated Plasmodium falciparum malaria in Senegal: artesunate–amodiaquine, dihydroartemisinin–piperaquine, and artemether–lumefantrine. Med Sante Trop. 2015;26:45–50. Sow D, Ndiaye J-L, Sylla K, Ba MS, Tine RCK, Faye B, et al. Evaluation of the efficacy and safety of three 2-drug combinations for the treatment of uncomplicated Plasmodium falciparum malaria in Senegal: artesunate–amodiaquine, dihydroartemisinin–piperaquine, and artemether–lumefantrine. Med Sante Trop. 2015;26:45–50.
31.
go back to reference Grandesso F, Guindo O, Woi Messe L, Makarimi R, Traore A, Dama S, et al. Efficacy of artesunate-amodiaquine, dihydroartemisinin–piperaquine and artemether–lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Maradi, Niger. Malar J. 2018;17:52.CrossRef Grandesso F, Guindo O, Woi Messe L, Makarimi R, Traore A, Dama S, et al. Efficacy of artesunate-amodiaquine, dihydroartemisinin–piperaquine and artemether–lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Maradi, Niger. Malar J. 2018;17:52.CrossRef
32.
go back to reference Kajubi R, Huang L, Jagannathan P, Chamankhah N, Were M, Ruel T, et al. Antiretroviral therapy with efavirenz accentuates pregnancy-associated reduction of dihydroartemisinin–piperaquine exposure during malaria chemoprevention. Clin Pharmacol Ther. 2017;102:520–8.CrossRef Kajubi R, Huang L, Jagannathan P, Chamankhah N, Were M, Ruel T, et al. Antiretroviral therapy with efavirenz accentuates pregnancy-associated reduction of dihydroartemisinin–piperaquine exposure during malaria chemoprevention. Clin Pharmacol Ther. 2017;102:520–8.CrossRef
33.
go back to reference Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H, et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67:2213–21.CrossRef Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H, et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67:2213–21.CrossRef
34.
go back to reference Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W, et al. Artemether–lumefantrine co-administration with antiretrovirals: population pharmacokinetics and dosing implications. Br J Clin Pharmacol. 2015;79:636–49.CrossRef Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W, et al. Artemether–lumefantrine co-administration with antiretrovirals: population pharmacokinetics and dosing implications. Br J Clin Pharmacol. 2015;79:636–49.CrossRef
35.
go back to reference Kredo T, Mauff K, Van Der Walt JS, Wiesner L, Maartens G, Cohen K, et al. Interaction between artemether–lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55:5616–23.CrossRef Kredo T, Mauff K, Van Der Walt JS, Wiesner L, Maartens G, Cohen K, et al. Interaction between artemether–lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55:5616–23.CrossRef
36.
go back to reference Fehintola FA, Scarsi KK, Ma Q, Parikh S, Morse GD, Taiwo B, et al. Nevirapine-based antiretroviral therapy impacts artesunate and dihydroartemisinin disposition in HIV-infected Nigerian adults. AIDS Res Treat. 2012;2012:703604.PubMedPubMedCentral Fehintola FA, Scarsi KK, Ma Q, Parikh S, Morse GD, Taiwo B, et al. Nevirapine-based antiretroviral therapy impacts artesunate and dihydroartemisinin disposition in HIV-infected Nigerian adults. AIDS Res Treat. 2012;2012:703604.PubMedPubMedCentral
37.
go back to reference Scarsi KK, Fehintola FA, Ma Q, Aweeka FT, Darin KM, Morse GD, et al. Disposition of amodiaquine and desethylamodiaquine in HIV-infected Nigerian subjects on nevirapine-containing antiretroviral therapy. J Antimicrob Chemother. 2014;69:1370–6.CrossRef Scarsi KK, Fehintola FA, Ma Q, Aweeka FT, Darin KM, Morse GD, et al. Disposition of amodiaquine and desethylamodiaquine in HIV-infected Nigerian subjects on nevirapine-containing antiretroviral therapy. J Antimicrob Chemother. 2014;69:1370–6.CrossRef
38.
go back to reference Maganda BA, Minzi OMS, Kamuhabwa AAR, Ngasala B, Sasi PG. Outcome of artemether–lumefantrine treatment for uncomplicated malaria in HIV-infected adult patients on anti-retroviral therapy. Malar J. 2014;13:205.CrossRef Maganda BA, Minzi OMS, Kamuhabwa AAR, Ngasala B, Sasi PG. Outcome of artemether–lumefantrine treatment for uncomplicated malaria in HIV-infected adult patients on anti-retroviral therapy. Malar J. 2014;13:205.CrossRef
40.
go back to reference WWARN Parasite Clearance Study Group WPCS, Abdulla S, Ashley EA, Bassat Q, Bethell D, Björkman A, et al. Baseline data of parasite clearance in patients with falciparum malaria treated with an artemisinin derivative: an individual patient data meta-analysis. Malar J. 2015;14:359.CrossRef WWARN Parasite Clearance Study Group WPCS, Abdulla S, Ashley EA, Bassat Q, Bethell D, Björkman A, et al. Baseline data of parasite clearance in patients with falciparum malaria treated with an artemisinin derivative: an individual patient data meta-analysis. Malar J. 2015;14:359.CrossRef
41.
go back to reference WWARN K13 Genotype-Phenotype Study Group. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments—a WWARN individual patient data meta-analysis. BMC Med. 2019;17:1.CrossRef WWARN K13 Genotype-Phenotype Study Group. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments—a WWARN individual patient data meta-analysis. BMC Med. 2019;17:1.CrossRef
42.
go back to reference Mytton OT, Ashley EA, Peto L, Price RN, La Y, Hae R, et al. Electrocardiographic safety evaluation of dihydroartemisinin piperaquine in the treatment of uncomplicated falciparum malaria. Am J Trop Med Hyg. 2007;77:447–50.CrossRef Mytton OT, Ashley EA, Peto L, Price RN, La Y, Hae R, et al. Electrocardiographic safety evaluation of dihydroartemisinin piperaquine in the treatment of uncomplicated falciparum malaria. Am J Trop Med Hyg. 2007;77:447–50.CrossRef
43.
go back to reference Price RN, Nosten F, White NJ. Prolongation of the QTc interval in African children treated for falciparum malaria. Am J Trop Med Hyg. 1998;59:503.CrossRef Price RN, Nosten F, White NJ. Prolongation of the QTc interval in African children treated for falciparum malaria. Am J Trop Med Hyg. 1998;59:503.CrossRef
45.
go back to reference Manyando C, Njunju EM, D’Alessandro U, van Geertruyden J-P. Safety and efficacy of co-trimoxazole for treatment and prevention of Plasmodium falciparum malaria: a systematic review. PLoS ONE. 2013;8:e56916.CrossRef Manyando C, Njunju EM, D’Alessandro U, van Geertruyden J-P. Safety and efficacy of co-trimoxazole for treatment and prevention of Plasmodium falciparum malaria: a systematic review. PLoS ONE. 2013;8:e56916.CrossRef
46.
go back to reference Mbeye NM, ter Kuile FO, Davies M-A, Phiri KS, Egger M, Wandeler G, et al. Cotrimoxazole prophylactic treatment prevents malaria in children in sub-Saharan Africa: systematic review and meta-analysis. Trop Med Int Health. 2014;19:1057–67.CrossRef Mbeye NM, ter Kuile FO, Davies M-A, Phiri KS, Egger M, Wandeler G, et al. Cotrimoxazole prophylactic treatment prevents malaria in children in sub-Saharan Africa: systematic review and meta-analysis. Trop Med Int Health. 2014;19:1057–67.CrossRef
Metadata
Title
Efficacy and safety of dihydroartemisinin–piperaquine for treatment of Plasmodium falciparum uncomplicated malaria in adult patients on antiretroviral therapy in Malawi and Mozambique: an open label non-randomized interventional trial
Authors
Esperança Sevene
Clifford G. Banda
Mavuto Mukaka
Sonia Maculuve
Salésio Macuacua
Anifa Vala
Mireia Piqueras
Linda Kalilani-Phiri
Jane Mallewa
Dianne J. Terlouw
Saye H. Khoo
David G. Lalloo
Victor Mwapasa
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2909-5

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue