Skip to main content
Top
Published in: Cancer Cell International 1/2020

01-12-2020 | Prostate Cancer | Primary research

SFRP1 increases TMPRSS2-ERG expression promoting neoplastic features in prostate cancer in vitro and in vivo

Authors: Carlos D. Cruz-Hernández, Marian Cruz-Burgos, Sergio A. Cortés-Ramírez, Alberto Losada-García, Ignacio Camacho-Arroyo, Patricia García-López, Elizabeth Langley, Vanessa González-Covarrubias, Monserrat Llaguno-Munive, Martha E. Albino-Sánchez, José L. Cruz-Colín, Carlos Pérez-Plasencia, Fredy O. Beltrán-Anaya, Mauricio Rodríguez-Dorantes

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Prostate cancer (PCa) is the second cause of cancer related death in North American men. Androgens play an important role in its progression by regulating the expression of several genes including fusion ones that results from structural chromosome rearrangements. TMPRSS2-ERG is a fusion gene commonly observed in over 50% of PCa tumors, and its expression can be transcriptionally regulated by the androgen receptor (AR) given its androgen responsive elements. TMPRSS2-ERG could be involved in epithelial–mesenchymal transition (EMT) during tumor development. ERG has been reported as a key transcriptional factor in the AR-ERG-WNT network where five SFRP proteins, structurally similar to WNT ligands and considered to be WNT pathway antagonists, can regulate signaling in the extracellular space  by binding to WNT proteins or Frizzled receptors. It has been shown that over-expression of SFRP1 protein can regulate the transcriptional activity of AR and inhibits the formation of colonies in LNCaP cells. However, the effect of SFRP1 has been controversial since differential effects have been observed depending on its concentration and tissue location. In this study, we explored the role of exogenous SFRP1 protein in cells expressing the TMPRSS2-ERG fusion.

Methods

To evaluate the effect of exogenous SFRP1 protein on PCa cells expressing TMPRSS2-ERG, we performed in silico analysis from TCGA cohort, expression assays by RT-qPCR and Western blot, cell viability and cell cycle measurements by cytometry, migration and invasion assays by xCELLigance system and murine xenografts.

Results

We demonstrated that SFRP1 protein increased ERG expression by promoting cellular migration in vitro and increasing tumor growth in vivo in PCa cells with the TMPRSS2-ERG fusion.

Conclusions

These results suggest the possible role of exogenous SFRP1 protein as a modulator of AR-ERG-WNT signaling network in cells positive to TMPRSS2-ERG. Further, investigation is needed to determine if SFRP1 protein could be a target in against this type of PCa.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel R, Miller K, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):29.CrossRef Siegel R, Miller K, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):29.CrossRef
3.
4.
go back to reference Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Men’s Health. 2018;12:1807–23.CrossRef Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Men’s Health. 2018;12:1807–23.CrossRef
6.
7.
go back to reference Heim S, Mitelman F. Molecular screening for new fusion genes in cancer. Nat Genet. 2008;40:685–6.PubMedCrossRef Heim S, Mitelman F. Molecular screening for new fusion genes in cancer. Nat Genet. 2008;40:685–6.PubMedCrossRef
8.
go back to reference Mani R-S, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326(5957):1230.PubMedPubMedCentralCrossRef Mani R-S, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326(5957):1230.PubMedPubMedCentralCrossRef
9.
go back to reference Tan SH, Furusato B, Fang X, He F, Mohamed AA, Griner NB, et al. Evaluation of ERG responsive proteome in prostate cancer. Prostate. 2014;74(1):70–89.PubMedCrossRef Tan SH, Furusato B, Fang X, He F, Mohamed AA, Griner NB, et al. Evaluation of ERG responsive proteome in prostate cancer. Prostate. 2014;74(1):70–89.PubMedCrossRef
10.
go back to reference Hu Y, Dobi A, Sreenath T, Cook C, Tadase AY, Ravindranath L, et al. Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin Cancer Res. 2008;14(15):4719–25.PubMedCrossRef Hu Y, Dobi A, Sreenath T, Cook C, Tadase AY, Ravindranath L, et al. Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin Cancer Res. 2008;14(15):4719–25.PubMedCrossRef
11.
go back to reference Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.PubMedCrossRef Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.PubMedCrossRef
12.
go back to reference Graff RE, Pettersson A, Lis RT, DuPre N, Jordahl KM, Nuttall E, et al. The TMPRSS2:ERG fusion and response to androgen deprivation therapy for prostate cancer. Prostate. 2015;75(9):897–906.PubMedPubMedCentralCrossRef Graff RE, Pettersson A, Lis RT, DuPre N, Jordahl KM, Nuttall E, et al. The TMPRSS2:ERG fusion and response to androgen deprivation therapy for prostate cancer. Prostate. 2015;75(9):897–906.PubMedPubMedCentralCrossRef
14.
15.
go back to reference Medici D, Hay ED, Goodenough DA. Cooperation between snail and LEF-1 transcription factors is essential for TGF-epithelial-mesenchymal transition. Mol Biol Cell. 2006;17(4):1871–9.PubMedPubMedCentralCrossRef Medici D, Hay ED, Goodenough DA. Cooperation between snail and LEF-1 transcription factors is essential for TGF-epithelial-mesenchymal transition. Mol Biol Cell. 2006;17(4):1871–9.PubMedPubMedCentralCrossRef
16.
go back to reference Kim K, Lu Z, Hay ED. Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int. 2002;26(5):463–76.PubMedCrossRef Kim K, Lu Z, Hay ED. Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int. 2002;26(5):463–76.PubMedCrossRef
17.
go back to reference Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, et al. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010;70(17):6735–45.PubMedCrossRef Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, et al. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010;70(17):6735–45.PubMedCrossRef
18.
go back to reference Font-Tello A, Juanpere N, De Muga S, Lorenzo M, Lorente JA, Fumado L, et al. Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate. 2015;75(11):1216–26.PubMedCrossRef Font-Tello A, Juanpere N, De Muga S, Lorenzo M, Lorente JA, Fumado L, et al. Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate. 2015;75(11):1216–26.PubMedCrossRef
19.
go back to reference Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443–54.PubMedPubMedCentralCrossRef Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443–54.PubMedPubMedCentralCrossRef
20.
go back to reference Kawano Y, Diez S, Darrington RS, Waxman J, Kypta RM, Uysal-Onganer P, et al. Secreted Frizzled-related protein-1 is a negative regulator of androgen receptor activity in prostate cancer. Br J Cancer. 2009;100(7):1165–74.PubMedPubMedCentralCrossRef Kawano Y, Diez S, Darrington RS, Waxman J, Kypta RM, Uysal-Onganer P, et al. Secreted Frizzled-related protein-1 is a negative regulator of androgen receptor activity in prostate cancer. Br J Cancer. 2009;100(7):1165–74.PubMedPubMedCentralCrossRef
21.
go back to reference Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003;116:2627–34.PubMedCrossRef Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003;116:2627–34.PubMedCrossRef
22.
go back to reference Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H. Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 2005;65(10):4218–27.PubMedCrossRef Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H. Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 2005;65(10):4218–27.PubMedCrossRef
23.
go back to reference Zheng L, Sun D, Fan W, Zhang Z, Li Q, Jiang T. Diagnostic value of SFRP1 as a favorable predictive and prognostic biomarker in patients with prostate cancer. PLoS ONE. 2015;10:1–16. Zheng L, Sun D, Fan W, Zhang Z, Li Q, Jiang T. Diagnostic value of SFRP1 as a favorable predictive and prognostic biomarker in patients with prostate cancer. PLoS ONE. 2015;10:1–16.
24.
go back to reference Qu Y, Ray PS, Li J, Cai Q, Bagaria SP, Moran C, et al. High levels of secreted frizzled-related protein 1 correlate with poor prognosis and promote tumourigenesis in gastric cancer. Eur J Cancer. 2013;49(17):3718–28.PubMedCrossRef Qu Y, Ray PS, Li J, Cai Q, Bagaria SP, Moran C, et al. High levels of secreted frizzled-related protein 1 correlate with poor prognosis and promote tumourigenesis in gastric cancer. Eur J Cancer. 2013;49(17):3718–28.PubMedCrossRef
25.
go back to reference Joesting MS, Cheever TR, Volzing KG, Yamaguchi TP, Wolf V, Naf D, et al. Secreted frizzled related protein 1 is a paracrine modulator of epithelial branching morphogenesis, proliferation, and secretory gene expression in the prostate. Dev Biol. 2008;317:161–73.PubMedPubMedCentralCrossRef Joesting MS, Cheever TR, Volzing KG, Yamaguchi TP, Wolf V, Naf D, et al. Secreted frizzled related protein 1 is a paracrine modulator of epithelial branching morphogenesis, proliferation, and secretory gene expression in the prostate. Dev Biol. 2008;317:161–73.PubMedPubMedCentralCrossRef
26.
go back to reference Joesting MS, Perrin S, Elenbaas B, Joesting MS, Perrin S, Elenbaas B, et al. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res. 2005;22:10423–30.CrossRef Joesting MS, Perrin S, Elenbaas B, Joesting MS, Perrin S, Elenbaas B, et al. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res. 2005;22:10423–30.CrossRef
27.
go back to reference Hägglöf C, Bergh A. The stroma—a key regulator in prostate function and malignancy. Cancer. 2012;4:531–48.CrossRef Hägglöf C, Bergh A. The stroma—a key regulator in prostate function and malignancy. Cancer. 2012;4:531–48.CrossRef
28.
go back to reference Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.PubMedPubMedCentralCrossRef Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.PubMedPubMedCentralCrossRef
29.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cbioportal complementary data sources and analysis options. Sci Signal. 2014;6:pl1. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cbioportal complementary data sources and analysis options. Sci Signal. 2014;6:pl1.
30.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.PubMedCrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.PubMedCrossRef
31.
go back to reference Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–16.PubMedPubMedCentralCrossRef Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–16.PubMedPubMedCentralCrossRef
33.
go back to reference Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—a review. Diagn Pathol. 2014;9:221 (Published 2014 Nov 29).PubMedPubMedCentralCrossRef Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—a review. Diagn Pathol. 2014;9:221 (Published 2014 Nov 29).PubMedPubMedCentralCrossRef
34.
go back to reference Foronjy R, Imai K, Shiomi T, Mercer B, Sklepkiewicz P, Thankachen J, et al. The divergent roles of secreted frizzled related protein-1 (SFRP1) in lung morphogenesis and emphysema. Am J Pathol. 2010;177(2):598–607.PubMedPubMedCentralCrossRef Foronjy R, Imai K, Shiomi T, Mercer B, Sklepkiewicz P, Thankachen J, et al. The divergent roles of secreted frizzled related protein-1 (SFRP1) in lung morphogenesis and emphysema. Am J Pathol. 2010;177(2):598–607.PubMedPubMedCentralCrossRef
35.
go back to reference Shi Y, He B, You L, Jablons DM. Roles of secreted frizzled-related proteins in cancer 1. Acta Pharmacol Sin. 2007;28(9):1499–504.PubMedCrossRef Shi Y, He B, You L, Jablons DM. Roles of secreted frizzled-related proteins in cancer 1. Acta Pharmacol Sin. 2007;28(9):1499–504.PubMedCrossRef
36.
go back to reference Wang H, Liu T, Malbon CC. Structure-function analysis of Frizzleds. 2006;18:934–41. Wang H, Liu T, Malbon CC. Structure-function analysis of Frizzleds. 2006;18:934–41.
38.
go back to reference García-Tobilla P, Solórzano SR, Salido-Guadarrama I, González-Covarrubias V, Morales-Montor G, Díaz-Otañez CE, et al. SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms. Gene. 2016;593(2):292–301.PubMedCrossRef García-Tobilla P, Solórzano SR, Salido-Guadarrama I, González-Covarrubias V, Morales-Montor G, Díaz-Otañez CE, et al. SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms. Gene. 2016;593(2):292–301.PubMedCrossRef
39.
go back to reference Zheng L, Sun D, Fan W, Zhang Z, Li Q, Jiang T. Diagnostic value of SFRP1 as a favorable predictive and prognostic biomarker in patients with prostate cancer. PLoS ONE. 2015;10(2):e0118276.PubMedPubMedCentralCrossRef Zheng L, Sun D, Fan W, Zhang Z, Li Q, Jiang T. Diagnostic value of SFRP1 as a favorable predictive and prognostic biomarker in patients with prostate cancer. PLoS ONE. 2015;10(2):e0118276.PubMedPubMedCentralCrossRef
40.
go back to reference Ghoshal A, Ghosh SS. Expression, purification, and therapeutic implications of recombinant sFRP1. Appl Biochem Biotechnol. 2014;175(4):2087–103.PubMedCrossRef Ghoshal A, Ghosh SS. Expression, purification, and therapeutic implications of recombinant sFRP1. Appl Biochem Biotechnol. 2014;175(4):2087–103.PubMedCrossRef
41.
go back to reference Thiele S, Rauner M, Goettsch C, Rachner TD, Benad P, Fuessel S, et al. Expression profile of WNT molecules in prostate cancer and its regulation by aminobisphosphonates. J Cell Biochem. 2011;112(6):1593–600.PubMedCrossRef Thiele S, Rauner M, Goettsch C, Rachner TD, Benad P, Fuessel S, et al. Expression profile of WNT molecules in prostate cancer and its regulation by aminobisphosphonates. J Cell Biochem. 2011;112(6):1593–600.PubMedCrossRef
42.
go back to reference Joesting MS, Cheever TR, Volzing KG, Yamaguchi TP, Wolf V, Naf D, et al. Secreted frizzled related protein 1 is a paracrine modulator of epithelial branching morphogenesis, proliferation, and secretory gene expression in the prostate. Dev Biol. 2008;317(1):161–73.PubMedPubMedCentralCrossRef Joesting MS, Cheever TR, Volzing KG, Yamaguchi TP, Wolf V, Naf D, et al. Secreted frizzled related protein 1 is a paracrine modulator of epithelial branching morphogenesis, proliferation, and secretory gene expression in the prostate. Dev Biol. 2008;317(1):161–73.PubMedPubMedCentralCrossRef
43.
go back to reference Liang CJ, Wang ZW, Chang YW, Lee KC, Lin WH, Lee JL. SFRPs are biphasic modulators of Wnt-signaling-elicited cancer stem cell properties beyond extracellular control. Cell Rep. 2019;28(6):1511–25.PubMedCrossRef Liang CJ, Wang ZW, Chang YW, Lee KC, Lin WH, Lee JL. SFRPs are biphasic modulators of Wnt-signaling-elicited cancer stem cell properties beyond extracellular control. Cell Rep. 2019;28(6):1511–25.PubMedCrossRef
44.
go back to reference Xavier CP, Melikova M, Chuman Y, Üren A, Baljinnyam B, Rubin JS. Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/β-catenin signaling. Cell Signal. 2014;26(1):94–101.PubMedCrossRef Xavier CP, Melikova M, Chuman Y, Üren A, Baljinnyam B, Rubin JS. Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/β-catenin signaling. Cell Signal. 2014;26(1):94–101.PubMedCrossRef
45.
go back to reference Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 2004;101(3):811–6.PubMedCrossRefPubMedCentral Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 2004;101(3):811–6.PubMedCrossRefPubMedCentral
46.
go back to reference Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, et al. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res. 2004;64(17):5963–72.PubMedCrossRef Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, et al. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res. 2004;64(17):5963–72.PubMedCrossRef
48.
go back to reference van Steenbrugge GJ, van Uffelen CJC, Bolt J, Schröder FH. The human prostatic cancer cell line LNCaP and its derived sublines: an in vitro model for the study of androgen sensitivity. J Steroid Biochem Mol Biol. 1991;40(1–3):207–14.PubMedCrossRef van Steenbrugge GJ, van Uffelen CJC, Bolt J, Schröder FH. The human prostatic cancer cell line LNCaP and its derived sublines: an in vitro model for the study of androgen sensitivity. J Steroid Biochem Mol Biol. 1991;40(1–3):207–14.PubMedCrossRef
49.
go back to reference Joly-Pharaboz MO, Ruffion A, Roch AM, Michel-Calemard L, André J, Chantepie J, et al. Inhibition of growth and induction of apoptosis by androgens of a variant of LNCaP cell line. J Steroid Biochem Mol Biol. 2000;73(5):237–49.PubMedCrossRef Joly-Pharaboz MO, Ruffion A, Roch AM, Michel-Calemard L, André J, Chantepie J, et al. Inhibition of growth and induction of apoptosis by androgens of a variant of LNCaP cell line. J Steroid Biochem Mol Biol. 2000;73(5):237–49.PubMedCrossRef
50.
go back to reference Kirschenbaum A, Ren M, Levine AC. Enhanced androgen sensitivity in serum-free medium of a subline of the LNCaP human prostate cancer cell line. Steroids. 1993;58(9):439–44.PubMedCrossRef Kirschenbaum A, Ren M, Levine AC. Enhanced androgen sensitivity in serum-free medium of a subline of the LNCaP human prostate cancer cell line. Steroids. 1993;58(9):439–44.PubMedCrossRef
51.
go back to reference Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, et al. LNCaP Model of Human Prostatic Carcinoma1. Icancer Res. 1983;43:1809–18. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, et al. LNCaP Model of Human Prostatic Carcinoma1. Icancer Res. 1983;43:1809–18.
52.
go back to reference Steele VE, Arnold JT, Lei H, Izmirlian G, Blackman MR. Comparative effects of DHEA and DHT on gene expression in human LNCaP prostate cancer cells. Anticancer Res. 2006;26(5A):3205–15.PubMed Steele VE, Arnold JT, Lei H, Izmirlian G, Blackman MR. Comparative effects of DHEA and DHT on gene expression in human LNCaP prostate cancer cells. Anticancer Res. 2006;26(5A):3205–15.PubMed
53.
go back to reference Loberg R, St. John L, Day L, Neeley C, Pienta K. Development of the VCaP androgen independent model of prostate cancer. Urol Oncol. 2006;24(2):161–8.PubMedPubMedCentralCrossRef Loberg R, St. John L, Day L, Neeley C, Pienta K. Development of the VCaP androgen independent model of prostate cancer. Urol Oncol. 2006;24(2):161–8.PubMedPubMedCentralCrossRef
54.
go back to reference Kobayashi W, Ozawa M. The transcription factor LEF-1 induces an epithelial-mesenchymal transition in MDCK cells independent of β-catenin. Biochem Biophys Res Commun. 2013;442(1–2):133–8.PubMedCrossRef Kobayashi W, Ozawa M. The transcription factor LEF-1 induces an epithelial-mesenchymal transition in MDCK cells independent of β-catenin. Biochem Biophys Res Commun. 2013;442(1–2):133–8.PubMedCrossRef
56.
go back to reference Mizokami A, Izumi K, Konaka H, Kitagawa Y, Kadono Y, Narimoto K, et al. Understanding prostate-specific antigen dynamics in monitoring metastatic castration-resistant prostate cancer: implications for clinical practice. Asian J Androl. 2017;19(2):143–8.PubMedCrossRef Mizokami A, Izumi K, Konaka H, Kitagawa Y, Kadono Y, Narimoto K, et al. Understanding prostate-specific antigen dynamics in monitoring metastatic castration-resistant prostate cancer: implications for clinical practice. Asian J Androl. 2017;19(2):143–8.PubMedCrossRef
57.
go back to reference Yin L, Rao P, Elson P, Wang J, Ittmann M, Heston WDW. Role of TMPRSS2-ERG gene fusion in negative regulation of PSMA expression. PLoS ONE. 2011;6(6):e21319.PubMedPubMedCentralCrossRef Yin L, Rao P, Elson P, Wang J, Ittmann M, Heston WDW. Role of TMPRSS2-ERG gene fusion in negative regulation of PSMA expression. PLoS ONE. 2011;6(6):e21319.PubMedPubMedCentralCrossRef
58.
go back to reference Farooqi AA, Hou M-F, Chen C-C, Wang C-L, Chang H-W. Androgen receptor and gene network: micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells. Cancer Cell Int. 2014;14(1):34.PubMedPubMedCentralCrossRef Farooqi AA, Hou M-F, Chen C-C, Wang C-L, Chang H-W. Androgen receptor and gene network: micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells. Cancer Cell Int. 2014;14(1):34.PubMedPubMedCentralCrossRef
Metadata
Title
SFRP1 increases TMPRSS2-ERG expression promoting neoplastic features in prostate cancer in vitro and in vivo
Authors
Carlos D. Cruz-Hernández
Marian Cruz-Burgos
Sergio A. Cortés-Ramírez
Alberto Losada-García
Ignacio Camacho-Arroyo
Patricia García-López
Elizabeth Langley
Vanessa González-Covarrubias
Monserrat Llaguno-Munive
Martha E. Albino-Sánchez
José L. Cruz-Colín
Carlos Pérez-Plasencia
Fredy O. Beltrán-Anaya
Mauricio Rodríguez-Dorantes
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01333-5

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine