Skip to main content
Top
Published in: Cancer Cell International 1/2020

01-12-2020 | giant cell tumor | Review

Role of cancer stem cells in the development of giant cell tumor of bone

Authors: Abdul Rouf War, Kai Dang, Shanfen Jiang, Zhongwei Xiao, Zhiping Miao, Tuanmin Yang, Yu Li, Airong Qian

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

The primary bone tumor is usually observed in adolescence age group which has been shown to be part of nearly 20% of the sarcomas known today. Giant cell tumor of bone (GCTB) can be benign as well as malignant tumor which exhibits localized dynamism and is usually associated with the end point of a long bone. Giant cell tumor (GCT) involves mononuclear stromal cells which proliferate at a high rate, multinucleated giant cells and stromal cells are equally present in this type of tumor. Cancer stem cells (CSCs) have been confirmed to play a potential role in the development of GCT. Cancer stem cell-based microRNAs have been shown to contribute to a greater extent in giant cell tumor of bone. CSCs and microRNAs present in the tumors specifically are a great concern today which need in-depth knowledge as well as advanced techniques to treat the bone cancer effectively. In this review, we attempted to summarize the role played by cancer stem cells involving certain important molecules/factors such as; Mesenchymal Stem Cells (MSCs), miRNAs and signaling mechanism such as; mTOR/PI3K-AKT, towards the formation of giant cell tumor of bone, in order to get an insight regarding various effective strategies and research advancements to obtain adequate knowledge related to CSCs which may help to focus on highly effective treatment procedures for bone tumors.
Literature
1.
go back to reference Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125(4):555–81.PubMedCrossRef Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125(4):555–81.PubMedCrossRef
2.
go back to reference Wani SH, Lone SA. Cancer: Diseases. Educreation Publishing; 2018. Wani SH, Lone SA. Cancer: Diseases. Educreation Publishing; 2018.
3.
go back to reference Wu JS, Hochman MG. Bone tumors: a practical guide to imaging. Berlin: Springer Science & Business Media; 2012.CrossRef Wu JS, Hochman MG. Bone tumors: a practical guide to imaging. Berlin: Springer Science & Business Media; 2012.CrossRef
4.
go back to reference Nam J. Investigating the immune microenvironment in osteosarcomas. 2017. Nam J. Investigating the immune microenvironment in osteosarcomas. 2017.
5.
go back to reference Miglioretti DL, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatric. 2013;167(8):700–7.CrossRef Miglioretti DL, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatric. 2013;167(8):700–7.CrossRef
6.
go back to reference Lewis M. Paleopathology of children: identification of pathological conditions in the human skeletal remains of non-adults. Cambridge: Academic Press; 2017. Lewis M. Paleopathology of children: identification of pathological conditions in the human skeletal remains of non-adults. Cambridge: Academic Press; 2017.
7.
go back to reference Chen W, et al. Primary bone malignancy: effective treatment with high-intensity focused ultrasound ablation. Radiology. 2010;255(3):967–78.PubMedCrossRef Chen W, et al. Primary bone malignancy: effective treatment with high-intensity focused ultrasound ablation. Radiology. 2010;255(3):967–78.PubMedCrossRef
8.
go back to reference Hameed M, Dorfman H. Primary malignant bone tumors—recent developments. In: Seminars in diagnostic pathology. Amsterdam: Elsevier; 2011. Hameed M, Dorfman H. Primary malignant bone tumors—recent developments. In: Seminars in diagnostic pathology. Amsterdam: Elsevier; 2011.
9.
go back to reference Burr DB, Allen MR. Basic and applied bone biology. Cambridge: Academic Press; 2019. Burr DB, Allen MR. Basic and applied bone biology. Cambridge: Academic Press; 2019.
10.
go back to reference Allen-Rhoades W, Whittle SB, Rainusso N. Pediatric solid tumors in children and adolescents: an overview. Allen-Rhoades W, Whittle SB, Rainusso N. Pediatric solid tumors in children and adolescents: an overview.
11.
go back to reference Ward E, et al. Childhood and adolescent cancer statistics, 2014. CA. 2014;64(2):83–103.PubMed Ward E, et al. Childhood and adolescent cancer statistics, 2014. CA. 2014;64(2):83–103.PubMed
12.
go back to reference van der Heijden L, et al. Giant cell tumour of bone in the denosumab era. Eur J Cancer. 2017;77:75–83.PubMedCrossRef van der Heijden L, et al. Giant cell tumour of bone in the denosumab era. Eur J Cancer. 2017;77:75–83.PubMedCrossRef
13.
go back to reference Khurana JS, McCarthy EF, Zhang PJ. Essentials in bone and soft-tissue pathology. Berlin: Springer Science & Business Media; 2010.CrossRef Khurana JS, McCarthy EF, Zhang PJ. Essentials in bone and soft-tissue pathology. Berlin: Springer Science & Business Media; 2010.CrossRef
14.
15.
go back to reference Durrbaum M, Storchova Z. Consequences of aneuploidy in Cancer: transcriptome and beyond. Recent Results Cancer Res. 2015;200:195–224.PubMedCrossRef Durrbaum M, Storchova Z. Consequences of aneuploidy in Cancer: transcriptome and beyond. Recent Results Cancer Res. 2015;200:195–224.PubMedCrossRef
16.
go back to reference Pereira M, et al. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci. 2018;131(11):216267.CrossRef Pereira M, et al. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci. 2018;131(11):216267.CrossRef
17.
go back to reference Milde R, et al. Multinucleated giant cells are specialized for complement-mediated phagocytosis and large target destruction. Cell Rep. 2015;13(9):1937–48.PubMedPubMedCentralCrossRef Milde R, et al. Multinucleated giant cells are specialized for complement-mediated phagocytosis and large target destruction. Cell Rep. 2015;13(9):1937–48.PubMedPubMedCentralCrossRef
18.
go back to reference Steensma MR, et al. Targeting the giant cell tumor stromal cell: functional characterization and a novel therapeutic strategy. PLoS ONE. 2013;8(7):e69101.PubMedPubMedCentralCrossRef Steensma MR, et al. Targeting the giant cell tumor stromal cell: functional characterization and a novel therapeutic strategy. PLoS ONE. 2013;8(7):e69101.PubMedPubMedCentralCrossRef
19.
go back to reference War AR, Yu L, Airong Q. Involvement of giant cells in the development of bone tumor. J Cancer Sci Ther. 2019;11:153–61. War AR, Yu L, Airong Q. Involvement of giant cells in the development of bone tumor. J Cancer Sci Ther. 2019;11:153–61.
20.
go back to reference Yin Y, et al. MiR-30a attenuates osteoclastogenesis via targeting DC-STAMP-c-Fos-NFATc1 signaling. Am J Transl Res. 2017;9(12):5743.PubMedPubMedCentral Yin Y, et al. MiR-30a attenuates osteoclastogenesis via targeting DC-STAMP-c-Fos-NFATc1 signaling. Am J Transl Res. 2017;9(12):5743.PubMedPubMedCentral
21.
go back to reference Zhang S, et al. Tumor budding, micropapillary pattern, and polyploidy giant cancer cells in colorectal cancer: current status and future prospects. Stem Cells Int. 2016;2016:4810734.PubMedPubMedCentral Zhang S, et al. Tumor budding, micropapillary pattern, and polyploidy giant cancer cells in colorectal cancer: current status and future prospects. Stem Cells Int. 2016;2016:4810734.PubMedPubMedCentral
22.
go back to reference Zhang L, et al. Number of polyploid giant cancer cells and expression of EZH2 are associated with VM formation and tumor grade in human ovarian tumor. BioMed Res Int. 2014;2014:903542.PubMedPubMedCentral Zhang L, et al. Number of polyploid giant cancer cells and expression of EZH2 are associated with VM formation and tumor grade in human ovarian tumor. BioMed Res Int. 2014;2014:903542.PubMedPubMedCentral
23.
go back to reference Lopez-Sánchez LM, et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS ONE. 2014;9(6):e99143.PubMedPubMedCentralCrossRef Lopez-Sánchez LM, et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS ONE. 2014;9(6):e99143.PubMedPubMedCentralCrossRef
24.
go back to reference Xuan B, et al. Dysregulation in actin cytoskeletal organization drives increased stiffness and migratory persistence in polyploidal giant cancer cells. Scientific Rep. 2018;8(1):11935.CrossRef Xuan B, et al. Dysregulation in actin cytoskeletal organization drives increased stiffness and migratory persistence in polyploidal giant cancer cells. Scientific Rep. 2018;8(1):11935.CrossRef
25.
go back to reference Zhang D, et al. Daughter cells and erythroid cells budding from PGCCs and their clinicopathological significances in colorectal cancer. J Cancer. 2017;8(3):469.PubMedPubMedCentralCrossRef Zhang D, et al. Daughter cells and erythroid cells budding from PGCCs and their clinicopathological significances in colorectal cancer. J Cancer. 2017;8(3):469.PubMedPubMedCentralCrossRef
26.
go back to reference Zhang D, Wang Y, Zhang S. Asymmetric cell division in polyploid giant cancer cells and low eukaryotic cells. BioMed Res Int. 2014;2014:432652.PubMedPubMedCentral Zhang D, Wang Y, Zhang S. Asymmetric cell division in polyploid giant cancer cells and low eukaryotic cells. BioMed Res Int. 2014;2014:432652.PubMedPubMedCentral
27.
go back to reference Hsu CW, Chen YC, Su HH, Huang GJ, Shu CW, Wu TT, Pan HW. Targeting TPX2 suppresses the tumorigenesis of hepatocellular carcinoma cells resulting in arrested mitotic phase progression and increased genomic instability. J Cancer. 2017;8(8):1378.PubMedPubMedCentralCrossRef Hsu CW, Chen YC, Su HH, Huang GJ, Shu CW, Wu TT, Pan HW. Targeting TPX2 suppresses the tumorigenesis of hepatocellular carcinoma cells resulting in arrested mitotic phase progression and increased genomic instability. J Cancer. 2017;8(8):1378.PubMedPubMedCentralCrossRef
28.
go back to reference Chen J, et al. Polyploid giant cancer cells (PGCCs): the evil roots of cancer. Curr Cancer Drug Targets. 2019;19(5):360–7.PubMedCrossRef Chen J, et al. Polyploid giant cancer cells (PGCCs): the evil roots of cancer. Curr Cancer Drug Targets. 2019;19(5):360–7.PubMedCrossRef
29.
go back to reference Zhang S, et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33(1):116.PubMedCrossRef Zhang S, et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33(1):116.PubMedCrossRef
30.
go back to reference Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 mutations: an updated view of their role in chromatin deregulation and cancer. Cancers. 2019;11(5):660.PubMedCentralCrossRef Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 mutations: an updated view of their role in chromatin deregulation and cancer. Cancers. 2019;11(5):660.PubMedCentralCrossRef
31.
go back to reference Fei F, et al. The subcellular location of cyclin B1 and CDC25 associated with the formation of polyploid giant cancer cells and their clinicopathological significance. Lab Invest. 2019;99(4):483.PubMedCrossRef Fei F, et al. The subcellular location of cyclin B1 and CDC25 associated with the formation of polyploid giant cancer cells and their clinicopathological significance. Lab Invest. 2019;99(4):483.PubMedCrossRef
32.
go back to reference White-Gilbertson S, et al. Genetic and pharmacological inhibition of acid ceramidase prevents asymmetric cell division by neosis. J Lipid Res. 2019;60(7):1225–35.PubMedCrossRefPubMedCentral White-Gilbertson S, et al. Genetic and pharmacological inhibition of acid ceramidase prevents asymmetric cell division by neosis. J Lipid Res. 2019;60(7):1225–35.PubMedCrossRefPubMedCentral
33.
go back to reference Mirzayans R, Andrais B, Murray D. Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers. 2018;10(4):118.PubMedCentralCrossRef Mirzayans R, Andrais B, Murray D. Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers. 2018;10(4):118.PubMedCentralCrossRef
34.
go back to reference Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene. 2017;36(34):4887.PubMedPubMedCentralCrossRef Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene. 2017;36(34):4887.PubMedPubMedCentralCrossRef
35.
go back to reference Yang Z, et al. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply. J Cancer Res Clin Oncol. 2018;144(4):617–27.PubMedCrossRef Yang Z, et al. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply. J Cancer Res Clin Oncol. 2018;144(4):617–27.PubMedCrossRef
36.
go back to reference Xu L, et al. Intratibial injection of patient-derived tumor cells from giant cell tumor of bone elicits osteolytic reaction in nude mouse. Oncol Lett. 2018;16(4):4649–55.PubMedPubMedCentral Xu L, et al. Intratibial injection of patient-derived tumor cells from giant cell tumor of bone elicits osteolytic reaction in nude mouse. Oncol Lett. 2018;16(4):4649–55.PubMedPubMedCentral
37.
go back to reference Fellenberg J, Sähr H, Kunz P, Zhao Z, Liu L, Tichy D, Herr I. Restoration of miR-127-3p and miR-376a-3p counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells by targeting COA1, GLE1 and PDIA6. Cancer Lett. 2016;371(1):134–41.PubMedCrossRef Fellenberg J, Sähr H, Kunz P, Zhao Z, Liu L, Tichy D, Herr I. Restoration of miR-127-3p and miR-376a-3p counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells by targeting COA1, GLE1 and PDIA6. Cancer Lett. 2016;371(1):134–41.PubMedCrossRef
38.
go back to reference Noh BJ, Park YK. Giant cell tumor of bone: updated molecular pathogenesis and tumor biology. Hum Pathol. 2018;81:1–8.PubMedCrossRef Noh BJ, Park YK. Giant cell tumor of bone: updated molecular pathogenesis and tumor biology. Hum Pathol. 2018;81:1–8.PubMedCrossRef
39.
go back to reference Burke C, et al. Giant cell tumor of bone: documented progression over 4 years from its origin at the metaphysis to the articular surface. Case Rep Radiol. 2016;2016. Burke C, et al. Giant cell tumor of bone: documented progression over 4 years from its origin at the metaphysis to the articular surface. Case Rep Radiol. 2016;2016.
40.
go back to reference Tsoi K, et al. Primary bone sarcomas: what’s hot and what’s not. Bone Joint. 2019;8(5):4–10. Tsoi K, et al. Primary bone sarcomas: what’s hot and what’s not. Bone Joint. 2019;8(5):4–10.
41.
go back to reference Redondo A, et al. Malignant bone tumors (other than Ewing’s): clinical practice guidelines for diagnosis, treatment and follow-up by Spanish Group for Research on Sarcomas (GEIS). Cancer Chemother Pharmacol. 2017;80(6):1113–31.PubMedPubMedCentralCrossRef Redondo A, et al. Malignant bone tumors (other than Ewing’s): clinical practice guidelines for diagnosis, treatment and follow-up by Spanish Group for Research on Sarcomas (GEIS). Cancer Chemother Pharmacol. 2017;80(6):1113–31.PubMedPubMedCentralCrossRef
42.
go back to reference Sun L-M, et al. Giant cell rich osteosarcoma of the mandible with abundant spindle cells and osteoclast-like giant cells mimicking malignancy in giant cell tumor. Int J Clin Exp Pathol. 2015;8(8):9718.PubMedPubMedCentral Sun L-M, et al. Giant cell rich osteosarcoma of the mandible with abundant spindle cells and osteoclast-like giant cells mimicking malignancy in giant cell tumor. Int J Clin Exp Pathol. 2015;8(8):9718.PubMedPubMedCentral
44.
go back to reference Chen J-H, et al. Bispecific antibody binding to RANKL and osteonectin with enhanced localization to the bone. Mol Pharm. 2017;14(11):4113–20.PubMedCrossRef Chen J-H, et al. Bispecific antibody binding to RANKL and osteonectin with enhanced localization to the bone. Mol Pharm. 2017;14(11):4113–20.PubMedCrossRef
45.
go back to reference Singh AS, Chawla NS, Chawla SP. Giant-cell tumor of bone: treatment options and role of denosumab. Biologics. 2015;9:69–74.PubMedPubMedCentral Singh AS, Chawla NS, Chawla SP. Giant-cell tumor of bone: treatment options and role of denosumab. Biologics. 2015;9:69–74.PubMedPubMedCentral
46.
go back to reference Abu-Zaid A, et al. Preoperative denosumab plus surgery in the management of giant cell tumor of bone: a comprehensive narrative literature review. Gulf J Oncolog. 2019;1(30):67–75.PubMed Abu-Zaid A, et al. Preoperative denosumab plus surgery in the management of giant cell tumor of bone: a comprehensive narrative literature review. Gulf J Oncolog. 2019;1(30):67–75.PubMed
47.
go back to reference Shibuya I, et al. In vitro study of the effects of denosumab on giant cell tumor of bone: comparison with Zoledronic Acid. Pathol Oncol Res. 2019;25(1):409–19.PubMedCrossRef Shibuya I, et al. In vitro study of the effects of denosumab on giant cell tumor of bone: comparison with Zoledronic Acid. Pathol Oncol Res. 2019;25(1):409–19.PubMedCrossRef
48.
go back to reference Vaishya R, Agarwal AK, Vijay V. ‘Salvage Treatment’ of aggressive giant cell tumor of bones with denosumab. Cureus. 2015;7(7):e291.PubMedPubMedCentral Vaishya R, Agarwal AK, Vijay V. ‘Salvage Treatment’ of aggressive giant cell tumor of bones with denosumab. Cureus. 2015;7(7):e291.PubMedPubMedCentral
50.
go back to reference Egan C, Jaffe ES. Non-neoplastic histiocytic and dendritic cell disorders in lymph nodes. Semin Diagn Pathol. 2018;35(1):20–33.PubMedCrossRef Egan C, Jaffe ES. Non-neoplastic histiocytic and dendritic cell disorders in lymph nodes. Semin Diagn Pathol. 2018;35(1):20–33.PubMedCrossRef
51.
go back to reference Nishimura M, Yuasa K, Mori K, Miyamoto N, Ito M, Tsurudome M, Nishio M, Kawano M, Komada H, Uchida A, Ito Y. Cytological properties of stromal cells derived from giant cell tumor of bone (GCTSC) which can induce osteoclast formation of human blood monocytes without cell to cell contact. J Orthop Res. 2005;23(5):979–87.PubMedCrossRef Nishimura M, Yuasa K, Mori K, Miyamoto N, Ito M, Tsurudome M, Nishio M, Kawano M, Komada H, Uchida A, Ito Y. Cytological properties of stromal cells derived from giant cell tumor of bone (GCTSC) which can induce osteoclast formation of human blood monocytes without cell to cell contact. J Orthop Res. 2005;23(5):979–87.PubMedCrossRef
52.
go back to reference Ansboro S. Strategies for articular cartilage repair, mesenchymal stem. J Control Release. 2015;10(179):42–51. Ansboro S. Strategies for articular cartilage repair, mesenchymal stem. J Control Release. 2015;10(179):42–51.
53.
go back to reference Chen L, et al. Matrix metalloproteinase-9 expression of GCTSC in peripheral tissue and central tissue of GCTB. J Cell Biochem. 2018;119(7):5805–12.PubMedCrossRef Chen L, et al. Matrix metalloproteinase-9 expression of GCTSC in peripheral tissue and central tissue of GCTB. J Cell Biochem. 2018;119(7):5805–12.PubMedCrossRef
55.
go back to reference Niculescu VF. Carcinogenesis: Recent insights in protist stem cell biology lead to a better understanding of atavistic mechanisms implied in cancer development. MOJ Tumor Res. 2018;1(1):18–29. Niculescu VF. Carcinogenesis: Recent insights in protist stem cell biology lead to a better understanding of atavistic mechanisms implied in cancer development. MOJ Tumor Res. 2018;1(1):18–29.
56.
go back to reference Perera JR, et al. Management of benign bone tumours. Orthopaedics and Trauma. 2017;31(3):151–60.CrossRef Perera JR, et al. Management of benign bone tumours. Orthopaedics and Trauma. 2017;31(3):151–60.CrossRef
57.
go back to reference Ahmed A, et al. Overview of giant cell tumour, outcomes of different surgical procedures. Pak J Surg. 2017;33(4):285–91. Ahmed A, et al. Overview of giant cell tumour, outcomes of different surgical procedures. Pak J Surg. 2017;33(4):285–91.
58.
go back to reference Lin J, et al. Treatment of benign bone lesions of proximal femur using dynamic hip screw and intralesional curettage via Watson-Jones approach. Zhongguo xiu fu chong jian wai ke za zhi. 2018;32(1):31–5.PubMed Lin J, et al. Treatment of benign bone lesions of proximal femur using dynamic hip screw and intralesional curettage via Watson-Jones approach. Zhongguo xiu fu chong jian wai ke za zhi. 2018;32(1):31–5.PubMed
59.
go back to reference Burke ZD, et al. Reconstructive science in orthopedic. Oncology. 2018;33(3):175–82. Burke ZD, et al. Reconstructive science in orthopedic. Oncology. 2018;33(3):175–82.
60.
go back to reference Rigollino AV, et al. Giant cell tumor locally advanced around the knee: treatment and literature review. Revista Brasileira de Ortopedia. 2017;52(4):473–8.PubMedPubMedCentralCrossRef Rigollino AV, et al. Giant cell tumor locally advanced around the knee: treatment and literature review. Revista Brasileira de Ortopedia. 2017;52(4):473–8.PubMedPubMedCentralCrossRef
61.
go back to reference Alhumaid I, Abu-Zaid A. Denosumab therapy in the management of aneurysmal bone cysts: a comprehensive literature review. Cureus. 2019;11(1):e3989.PubMedPubMedCentral Alhumaid I, Abu-Zaid A. Denosumab therapy in the management of aneurysmal bone cysts: a comprehensive literature review. Cureus. 2019;11(1):e3989.PubMedPubMedCentral
62.
go back to reference Amelio JM, et al. Population-based study of giant cell tumor of bone in Sweden (1983–2011). Cancer Epidemiol. 2016;42:82–9.PubMedCrossRef Amelio JM, et al. Population-based study of giant cell tumor of bone in Sweden (1983–2011). Cancer Epidemiol. 2016;42:82–9.PubMedCrossRef
63.
go back to reference Kurucu N, et al. Denosumab treatment in aneurysmal bone cyst: evaluation of nine cases. Pediatric Blood Cancer. 2018;65(4):e26926.CrossRef Kurucu N, et al. Denosumab treatment in aneurysmal bone cyst: evaluation of nine cases. Pediatric Blood Cancer. 2018;65(4):e26926.CrossRef
64.
65.
66.
go back to reference Sun X, et al. MicroRNAs and cancer stem cells: the sword and the shield. Oncogene. 2014;33(42):4967–77.PubMedCrossRef Sun X, et al. MicroRNAs and cancer stem cells: the sword and the shield. Oncogene. 2014;33(42):4967–77.PubMedCrossRef
67.
go back to reference Yuan H-L, Wang T, Zhang K-H. MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. OncoTargets Ther. 2018;11:3891–900.CrossRef Yuan H-L, Wang T, Zhang K-H. MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. OncoTargets Ther. 2018;11:3891–900.CrossRef
69.
go back to reference Zhang J, et al. Circulating MiR-16-5p and MiR-19b-3p as two novel potential biomarkers to indicate progression of gastric cancer. Theranostics. 2015;5(7):733–45.PubMedPubMedCentralCrossRef Zhang J, et al. Circulating MiR-16-5p and MiR-19b-3p as two novel potential biomarkers to indicate progression of gastric cancer. Theranostics. 2015;5(7):733–45.PubMedPubMedCentralCrossRef
71.
go back to reference Annett S, Robson T. Targeting cancer stem cells in the clinic: current status and perspectives. Pharmacol Therap. 2018;187:13–30.CrossRef Annett S, Robson T. Targeting cancer stem cells in the clinic: current status and perspectives. Pharmacol Therap. 2018;187:13–30.CrossRef
73.
go back to reference ALHulais RA, Ralph SJ. Cancer stem cells, stemness markers and selected drug targeting: metastatic colorectal cancer and cyclooxygenase-2/prostaglandin E2 connection to WNT as a model system. J Cancer Metastasis Treat. 2019;5(3):1–23. ALHulais RA, Ralph SJ. Cancer stem cells, stemness markers and selected drug targeting: metastatic colorectal cancer and cyclooxygenase-2/prostaglandin E2 connection to WNT as a model system. J Cancer Metastasis Treat. 2019;5(3):1–23.
74.
go back to reference Eramo A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2007;15:504.PubMedCrossRef Eramo A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2007;15:504.PubMedCrossRef
75.
go back to reference Bielecka ZF, et al. Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev. 2017;92(3):1505–20.PubMedCrossRef Bielecka ZF, et al. Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev. 2017;92(3):1505–20.PubMedCrossRef
76.
go back to reference Caldas-Lopes E, Gomez-Arteaga A, Guzman ML. Approaches to targeting cancer stem cells in solid tumors. Curr Stem Cell Res Ther. 2019;14(5):421–7.PubMedCrossRef Caldas-Lopes E, Gomez-Arteaga A, Guzman ML. Approaches to targeting cancer stem cells in solid tumors. Curr Stem Cell Res Ther. 2019;14(5):421–7.PubMedCrossRef
80.
go back to reference Fazioli F, et al. Post-surgery fluids promote transition of cancer stem cell-to-endothelial and AKT/mTOR activity, contributing to relapse of giant cell tumors of bone. Oncotarget. 2017;8(49):85040.PubMedPubMedCentralCrossRef Fazioli F, et al. Post-surgery fluids promote transition of cancer stem cell-to-endothelial and AKT/mTOR activity, contributing to relapse of giant cell tumors of bone. Oncotarget. 2017;8(49):85040.PubMedPubMedCentralCrossRef
81.
go back to reference Balla P, Maros ME, Barna G, Antal I, Papp G, Sapi Z, Athanasou NA, Benassi MS, Picci P, Krenacs T. Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone. PloS ONE. 2015;10(5):e0125316.PubMedPubMedCentralCrossRef Balla P, Maros ME, Barna G, Antal I, Papp G, Sapi Z, Athanasou NA, Benassi MS, Picci P, Krenacs T. Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone. PloS ONE. 2015;10(5):e0125316.PubMedPubMedCentralCrossRef
82.
go back to reference Gursel DB, et al. Optimization of glioblastoma multiforme stem cell isolation, transfection, and transduction. J Neurooncol. 2011;104(2):509–22.PubMedCrossRef Gursel DB, et al. Optimization of glioblastoma multiforme stem cell isolation, transfection, and transduction. J Neurooncol. 2011;104(2):509–22.PubMedCrossRef
83.
go back to reference Fitzsimmons RE, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. 2018;2018:16.CrossRef Fitzsimmons RE, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. 2018;2018:16.CrossRef
84.
go back to reference Wen Y, et al. COL4A2 in the tissue-specific extracellular matrix plays important role on osteogenic differentiation of periodontal ligament stem cells. Theranostics. 2019;9(15):4265–86.PubMedPubMedCentralCrossRef Wen Y, et al. COL4A2 in the tissue-specific extracellular matrix plays important role on osteogenic differentiation of periodontal ligament stem cells. Theranostics. 2019;9(15):4265–86.PubMedPubMedCentralCrossRef
85.
go back to reference Gronthos S. Stromal precursor cells: purification and the development of bone tissue. 1998. Gronthos S. Stromal precursor cells: purification and the development of bone tissue. 1998.
86.
go back to reference Lan J, et al. Stro-1+ stromal cells have stem-like features in giant cell tumor of bone. J Surg Oncol. 2012;106(7):826–36.PubMedCrossRef Lan J, et al. Stro-1+ stromal cells have stem-like features in giant cell tumor of bone. J Surg Oncol. 2012;106(7):826–36.PubMedCrossRef
87.
88.
go back to reference Saunders A, Faiola F, Wang J. Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells. 2013;31(7):1227–36.PubMedPubMedCentralCrossRef Saunders A, Faiola F, Wang J. Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells. 2013;31(7):1227–36.PubMedPubMedCentralCrossRef
91.
go back to reference Çomunoğlu N, Kepil N, Dervişoğlu S. Histopathology of giant cell tumors of the bone: With special emphasis on fibrohistiocytic and aneurysmal bone cyst like components. Acta orthopaedica et Traumatologica Turcica. 2019;53(1):35–9.PubMedCrossRef Çomunoğlu N, Kepil N, Dervişoğlu S. Histopathology of giant cell tumors of the bone: With special emphasis on fibrohistiocytic and aneurysmal bone cyst like components. Acta orthopaedica et Traumatologica Turcica. 2019;53(1):35–9.PubMedCrossRef
92.
go back to reference Moskovszky L. Chromosomal instability in giant cell tumour of bone. Moskovszky L. Chromosomal instability in giant cell tumour of bone.
93.
go back to reference Wülling M, Delling G, Kaiser E. The origin of the neoplastic stromal cell in giant cell tumor of bone. Hum Pathol. 2003;34(10):983–93.PubMedCrossRef Wülling M, Delling G, Kaiser E. The origin of the neoplastic stromal cell in giant cell tumor of bone. Hum Pathol. 2003;34(10):983–93.PubMedCrossRef
94.
go back to reference Fellenberg J, et al. A microRNA signature differentiates between giant cell tumor derived neoplastic stromal cells and mesenchymal stem cells. Cancer Lett. 2012;321(2):162–8.PubMedCrossRef Fellenberg J, et al. A microRNA signature differentiates between giant cell tumor derived neoplastic stromal cells and mesenchymal stem cells. Cancer Lett. 2012;321(2):162–8.PubMedCrossRef
95.
96.
go back to reference Orosz Z, Athanasou NA. Giant cell-containing tumors of bone. Surg Pathol Clin. 2017;10(3):553–73.PubMedCrossRef Orosz Z, Athanasou NA. Giant cell-containing tumors of bone. Surg Pathol Clin. 2017;10(3):553–73.PubMedCrossRef
97.
go back to reference War AJJCRI. Curcumin co-treatment sensitizes multi-drug resistant Ht29 colon cancer cell line. 2018. 4(117): 2. War AJJCRI. Curcumin co-treatment sensitizes multi-drug resistant Ht29 colon cancer cell line. 2018. 4(117): 2.
99.
go back to reference Kim D, et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2017;7(1):1.PubMedCentralCrossRef Kim D, et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2017;7(1):1.PubMedCentralCrossRef
100.
go back to reference Liu L, et al. Enrichment of c-Met + tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib. Cell Death Dis. 2014;5(10):e1471.PubMedPubMedCentralCrossRef Liu L, et al. Enrichment of c-Met + tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib. Cell Death Dis. 2014;5(10):e1471.PubMedPubMedCentralCrossRef
101.
go back to reference Islam MR. The role of VEGF-induced PI3K/Akt signalling pathway in head and neck cancer cell migration. Dundee: University of Dundee; 2015. Islam MR. The role of VEGF-induced PI3K/Akt signalling pathway in head and neck cancer cell migration. Dundee: University of Dundee; 2015.
102.
go back to reference Thorpe LM. PI3K regulatory subunit p85alpha plays a tumor suppressive role in the transformation of mammary epithelial cells. 2015. Thorpe LM. PI3K regulatory subunit p85alpha plays a tumor suppressive role in the transformation of mammary epithelial cells. 2015.
103.
go back to reference Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550.PubMedCrossRef Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550.PubMedCrossRef
104.
go back to reference Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24.PubMedPubMedCentralCrossRef Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24.PubMedPubMedCentralCrossRef
106.
go back to reference Moreno-Smith M, et al. p53 Nongenotoxic activation and mTORC1 inhibition lead to effective combination for neuroblastoma therapy. Clin Cancer Res. 2017;23(21):6629–39.PubMedPubMedCentralCrossRef Moreno-Smith M, et al. p53 Nongenotoxic activation and mTORC1 inhibition lead to effective combination for neuroblastoma therapy. Clin Cancer Res. 2017;23(21):6629–39.PubMedPubMedCentralCrossRef
108.
go back to reference Tian T, Li X, Zhang J. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci. 2019;20(3):755.PubMedCentralCrossRef Tian T, Li X, Zhang J. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci. 2019;20(3):755.PubMedCentralCrossRef
109.
go back to reference Xia P, Xu X-Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602.PubMedPubMedCentral Xia P, Xu X-Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602.PubMedPubMedCentral
110.
go back to reference Yang C, et al. Downregulation of cancer stem cell properties via mTOR signaling pathway inhibition by rapamycin in nasopharyngeal carcinoma. Int J Oncol. 2015;47(3):909–17.PubMedPubMedCentralCrossRef Yang C, et al. Downregulation of cancer stem cell properties via mTOR signaling pathway inhibition by rapamycin in nasopharyngeal carcinoma. Int J Oncol. 2015;47(3):909–17.PubMedPubMedCentralCrossRef
111.
go back to reference Vanhaesebroeck B, Vogt PK, Rommel C. PI3K: from the bench to the clinic and back. Curr Top Microbiol Immunol. 2010;347:1–19.PubMed Vanhaesebroeck B, Vogt PK, Rommel C. PI3K: from the bench to the clinic and back. Curr Top Microbiol Immunol. 2010;347:1–19.PubMed
112.
114.
go back to reference Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283.PubMedCrossRef Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283.PubMedCrossRef
115.
go back to reference Konicek BW, Dumstorf CA, Graff JR. Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle. 2008;7(16):2466–71.PubMedCrossRef Konicek BW, Dumstorf CA, Graff JR. Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle. 2008;7(16):2466–71.PubMedCrossRef
116.
go back to reference Luo Y, et al. Weighing in on mTOR complex 2 signaling: the expanding role in cell metabolism. Oxid Med Cell Longev. 2018;2018:7838647.PubMedPubMedCentral Luo Y, et al. Weighing in on mTOR complex 2 signaling: the expanding role in cell metabolism. Oxid Med Cell Longev. 2018;2018:7838647.PubMedPubMedCentral
117.
go back to reference Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle. 2008;7(8):965–70.PubMedCrossRef Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle. 2008;7(8):965–70.PubMedCrossRef
118.
go back to reference Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal. 2014;26(1):149–61.PubMedCrossRef Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal. 2014;26(1):149–61.PubMedCrossRef
120.
go back to reference Safa AR. Chapter-7 cancer stem cells, apoptosis pathways and mechanisms of death resistance. In: Dammacco F, Silvestris F, editors. Oncogenomics. Cambridge: Academic Press; 2019. p. 89–101.CrossRef Safa AR. Chapter-7 cancer stem cells, apoptosis pathways and mechanisms of death resistance. In: Dammacco F, Silvestris F, editors. Oncogenomics. Cambridge: Academic Press; 2019. p. 89–101.CrossRef
121.
go back to reference Cai Y, Dodhia S, Su GH. Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget. 2017;8(13):22203.PubMedPubMedCentralCrossRef Cai Y, Dodhia S, Su GH. Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget. 2017;8(13):22203.PubMedPubMedCentralCrossRef
122.
go back to reference Szymonowicz K, et al. New insights into protein kinase B/Akt signaling: role of localized akt activation and compartment-specific target proteins for the cellular radiation response. Cancers. 2018;10(3):78.PubMedCentralCrossRef Szymonowicz K, et al. New insights into protein kinase B/Akt signaling: role of localized akt activation and compartment-specific target proteins for the cellular radiation response. Cancers. 2018;10(3):78.PubMedCentralCrossRef
123.
go back to reference Santoni M, et al. Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochim Biophy Acta. 2014;1845(2):221–31. Santoni M, et al. Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochim Biophy Acta. 2014;1845(2):221–31.
124.
125.
go back to reference Sen B, et al. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J Bone Miner Res. 2014;29(1):78–89.PubMedCrossRef Sen B, et al. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J Bone Miner Res. 2014;29(1):78–89.PubMedCrossRef
126.
go back to reference Sotiropoulou PA, et al. Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discov Today. 2014;19(10):1547–62.PubMedCrossRef Sotiropoulou PA, et al. Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discov Today. 2014;19(10):1547–62.PubMedCrossRef
127.
go back to reference Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013;9(10):584.PubMedCrossRef Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013;9(10):584.PubMedCrossRef
128.
go back to reference Kozlowska U, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019;11(6):347–74.PubMedPubMedCentralCrossRef Kozlowska U, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019;11(6):347–74.PubMedPubMedCentralCrossRef
129.
go back to reference Hu L, et al. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci. 2018;19(2):360.PubMedCentralCrossRef Hu L, et al. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci. 2018;19(2):360.PubMedCentralCrossRef
130.
go back to reference Cho JS, et al. Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps. Exp Biol Med. 2015;240(2):185–93.CrossRef Cho JS, et al. Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps. Exp Biol Med. 2015;240(2):185–93.CrossRef
132.
go back to reference Kim N, Cho S-G. Clinical applications of mesenchymal stem cells. Korean J Int Med. 2013;28(4):387.CrossRef Kim N, Cho S-G. Clinical applications of mesenchymal stem cells. Korean J Int Med. 2013;28(4):387.CrossRef
133.
go back to reference Kimbrel EA, et al. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Devel. 2014;23(14):1611–24.CrossRef Kimbrel EA, et al. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Devel. 2014;23(14):1611–24.CrossRef
134.
135.
go back to reference Yousaf Q, et al. Multipotent potential of human adult mesenchymal stem cells. Biochem Mol Biol J. 2018;04(02):16.CrossRef Yousaf Q, et al. Multipotent potential of human adult mesenchymal stem cells. Biochem Mol Biol J. 2018;04(02):16.CrossRef
136.
go back to reference Ghert M, et al. Properties of the stromal cell in giant cell tumor of bone. Clin Orthop Relat Res. 2007;459:8–13.PubMedCrossRef Ghert M, et al. Properties of the stromal cell in giant cell tumor of bone. Clin Orthop Relat Res. 2007;459:8–13.PubMedCrossRef
137.
go back to reference Romito A, Cobellis G. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016;2016:9451492.PubMedCrossRef Romito A, Cobellis G. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016;2016:9451492.PubMedCrossRef
138.
go back to reference Goff LA, et al. Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Exp Hematol. 2008;36(10):1354–69.PubMedPubMedCentralCrossRef Goff LA, et al. Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Exp Hematol. 2008;36(10):1354–69.PubMedPubMedCentralCrossRef
139.
143.
go back to reference Nugent M. microRNA and bone cancer, in microRNA: Cancer. Cham: Springer; 2015. p. 201–30.CrossRef Nugent M. microRNA and bone cancer, in microRNA: Cancer. Cham: Springer; 2015. p. 201–30.CrossRef
144.
go back to reference Subramanyam D, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29(5):443.PubMedPubMedCentralCrossRef Subramanyam D, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29(5):443.PubMedPubMedCentralCrossRef
145.
go back to reference Lehner B, et al. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone. BMC Cancer. 2014;14(1):495.PubMedPubMedCentralCrossRef Lehner B, et al. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone. BMC Cancer. 2014;14(1):495.PubMedPubMedCentralCrossRef
146.
go back to reference Shi W, et al. Methylation-mediated silencing of miR-133a-3p promotes breast cancer cell migration and stemness via miR-133a-3p/MAML1/DNMT3A positive feedback loop. J Exp Clin Cancer Res. 2019;38(1):429.PubMedPubMedCentralCrossRef Shi W, et al. Methylation-mediated silencing of miR-133a-3p promotes breast cancer cell migration and stemness via miR-133a-3p/MAML1/DNMT3A positive feedback loop. J Exp Clin Cancer Res. 2019;38(1):429.PubMedPubMedCentralCrossRef
147.
go back to reference Herr I, et al. MiR-127 and miR-376a act as tumor suppressors by in vivo targeting of COA1 and PDIA6 in giant cell tumor of bone. Cancer Lett. 2017;409:49–55.PubMedCrossRef Herr I, et al. MiR-127 and miR-376a act as tumor suppressors by in vivo targeting of COA1 and PDIA6 in giant cell tumor of bone. Cancer Lett. 2017;409:49–55.PubMedCrossRef
148.
go back to reference Zuo X-L, et al. miR-337-3p suppresses the proliferation and invasion of hepatocellular carcinoma cells through targeting JAK2. Am J Cancer Res. 2018;8(4):662–74.PubMedPubMedCentral Zuo X-L, et al. miR-337-3p suppresses the proliferation and invasion of hepatocellular carcinoma cells through targeting JAK2. Am J Cancer Res. 2018;8(4):662–74.PubMedPubMedCentral
149.
go back to reference Guo Y, et al. Down-regulation of miR-373 increases the radiosensitivity of lung cancer cells by targeting TIMP2. Int J Biochem Cell Biol. 2018;99:203–10.PubMedCrossRef Guo Y, et al. Down-regulation of miR-373 increases the radiosensitivity of lung cancer cells by targeting TIMP2. Int J Biochem Cell Biol. 2018;99:203–10.PubMedCrossRef
Metadata
Title
Role of cancer stem cells in the development of giant cell tumor of bone
Authors
Abdul Rouf War
Kai Dang
Shanfen Jiang
Zhongwei Xiao
Zhiping Miao
Tuanmin Yang
Yu Li
Airong Qian
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01218-7

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine