Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Falciparum Malaria | Research article

The potential impact of Anopheles stephensi establishment on the transmission of Plasmodium falciparum in Ethiopia and prospective control measures

Authors: Arran Hamlet, Dereje Dengela, J. Eric Tongren, Fitsum G. Tadesse, Teun Bousema, Marianne Sinka, Aklilu Seyoum, Seth R. Irish, Jennifer S. Armistead, Thomas Churcher

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Sub-Saharan Africa has seen substantial reductions in cases and deaths due to malaria over the past two decades. While this reduction is primarily due to an increasing expansion of interventions, urbanisation has played its part as urban areas typically experience substantially less malaria transmission than rural areas. However, this may be partially lost with the invasion and establishment of Anopheles stephensi. A. stephensi, the primary urban malaria vector in Asia, was first detected in Africa in 2012 in Djibouti and was subsequently identified in Ethiopia in 2016, and later in Sudan and Somalia. In Djibouti, malaria cases have increased 30-fold from 2012 to 2019 though the impact in the wider region remains unclear.

Methods

Here, we have adapted an existing model of mechanistic malaria transmission to estimate the increase in vector density required to explain the trends in malaria cases seen in Djibouti. To account for the observed plasticity in An. stephensi behaviour, and the unknowns of how it will establish in a novel environment, we sample behavioural parameters in order to account for a wide range of uncertainty. This quantification is then applied to Ethiopia, considering temperature-dependent extrinsic incubation periods, pre-existing vector-control interventions and Plasmodium falciparum prevalence in order to assess the potential impact of An. stephensi establishment on P. falciparum transmission. Following this, we estimate the potential impact of scaling up ITN (insecticide-treated nets)/IRS (indoor residual spraying) and implementing piperonyl butoxide (PBO) ITNs and larval source management, as well as their economic costs.

Results

We estimate that annual P. falciparum malaria cases could increase by 50% (95% CI 14–90) if no additional interventions are implemented. The implementation of sufficient control measures to reduce malaria transmission to pre-stephensi levels will cost hundreds of millions of USD.

Conclusions

Substantial heterogeneity across the country is predicted and large increases in vector control interventions could be needed to prevent a major public health emergency.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020.CrossRef World Health Organization. World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020.CrossRef
2.
go back to reference United Nations. DoEaSA, Population Division. World urbanization prospects: the 2018 revision (ST/ESA/SER.A/420). New York: United Nations; 2019. United Nations. DoEaSA, Population Division. World urbanization prospects: the 2018 revision (ST/ESA/SER.A/420). New York: United Nations; 2019.
3.
go back to reference Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol. 2005;3(1):81–90.PubMedPubMedCentralCrossRef Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol. 2005;3(1):81–90.PubMedPubMedCentralCrossRef
4.
go back to reference Trape JF, Zoulani A. Malaria and urbanization in Central Africa: the example of Brazzaville. Part III: relationships between urbanization and the intensity of malaria transmission. Trans R Soc Trop Med Hyg. 1987;81(Suppl 2):19–25.PubMedCrossRef Trape JF, Zoulani A. Malaria and urbanization in Central Africa: the example of Brazzaville. Part III: relationships between urbanization and the intensity of malaria transmission. Trans R Soc Trop Med Hyg. 1987;81(Suppl 2):19–25.PubMedCrossRef
5.
go back to reference Thomas S, Ravishankaran S, Justin NA, Asokan A, Mathai MT, Valecha N, et al. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J. 2017;16(1):111.PubMedPubMedCentralCrossRef Thomas S, Ravishankaran S, Justin NA, Asokan A, Mathai MT, Valecha N, et al. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J. 2017;16(1):111.PubMedPubMedCentralCrossRef
6.
go back to reference Subbarao SK, Nanda N, Rahi M, Raghavendra K. Biology and bionomics of malaria vectors in India: existing information and what more needs to be known for strategizing elimination of malaria. Malar J. 2019;18(1):396.PubMedPubMedCentralCrossRef Subbarao SK, Nanda N, Rahi M, Raghavendra K. Biology and bionomics of malaria vectors in India: existing information and what more needs to be known for strategizing elimination of malaria. Malar J. 2019;18(1):396.PubMedPubMedCentralCrossRef
7.
go back to reference Kumar A, Thavaselvam D. Breeding habitats and their contribution to Anopheles stephensi in Panaji. Indian J Malariol. 1992;29(1):35–40.PubMed Kumar A, Thavaselvam D. Breeding habitats and their contribution to Anopheles stephensi in Panaji. Indian J Malariol. 1992;29(1):35–40.PubMed
8.
go back to reference Gayan Dharmasiri AG, Perera AY, Harishchandra J, Herath H, Aravindan K, Jayasooriya HTR, et al. First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction. Malar J. 2017;16(1):326.PubMedPubMedCentralCrossRef Gayan Dharmasiri AG, Perera AY, Harishchandra J, Herath H, Aravindan K, Jayasooriya HTR, et al. First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction. Malar J. 2017;16(1):326.PubMedPubMedCentralCrossRef
9.
go back to reference Batra CP, Adak T, Sharma VP, Mittal PK. Impact of urbanization on bionomics of an. Culicifacies and an. Stephensi in Delhi. Indian J Malariol. 2001;38(3-4):61–75.PubMed Batra CP, Adak T, Sharma VP, Mittal PK. Impact of urbanization on bionomics of an. Culicifacies and an. Stephensi in Delhi. Indian J Malariol. 2001;38(3-4):61–75.PubMed
10.
go back to reference Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti. Horn Africa Acta tropica. 2014;139:39–43.PubMedCrossRef Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti. Horn Africa Acta tropica. 2014;139:39–43.PubMedCrossRef
11.
go back to reference Seyfarth M, Khaireh BA, Abdi AA, Bouh SM, Faulde MK. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, horn of Africa: populations established-malaria emerging. Parasitol Res. 2019;118(3):725–32.PubMedCrossRef Seyfarth M, Khaireh BA, Abdi AA, Bouh SM, Faulde MK. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, horn of Africa: populations established-malaria emerging. Parasitol Res. 2019;118(3):725–32.PubMedCrossRef
12.
go back to reference de Santi VP, Khaireh BA, Chiniard T, Pradines B, Taudon N, Larreche S, et al. Role of anopheles stephensi mosquitoes in malaria outbreak, Djibouti, 2019. Emerg Infect Dis. 2021;27(6):1697–700.PubMedPubMedCentralCrossRef de Santi VP, Khaireh BA, Chiniard T, Pradines B, Taudon N, Larreche S, et al. Role of anopheles stephensi mosquitoes in malaria outbreak, Djibouti, 2019. Emerg Infect Dis. 2021;27(6):1697–700.PubMedPubMedCentralCrossRef
14.
go back to reference Ahmed A, Khogali R, Elnour MB, Nakao R, Salim B. Emergence of the invasive malaria vector Anopheles stephensi in Khartoum state, Central Sudan. Parasit Vectors. 2021;14(1):511.PubMedPubMedCentralCrossRef Ahmed A, Khogali R, Elnour MB, Nakao R, Salim B. Emergence of the invasive malaria vector Anopheles stephensi in Khartoum state, Central Sudan. Parasit Vectors. 2021;14(1):511.PubMedPubMedCentralCrossRef
15.
go back to reference Ahmed A, Pignatelli P, Elaagip A, Abdel Hamid MM, Alrahman OF, Weetman D. Invasive malaria vector Anopheles stephensi mosquitoes in Sudan, 2016-2018. Emerg Infect Dis. 2021;27(11):2952–4.PubMedPubMedCentralCrossRef Ahmed A, Pignatelli P, Elaagip A, Abdel Hamid MM, Alrahman OF, Weetman D. Invasive malaria vector Anopheles stephensi mosquitoes in Sudan, 2016-2018. Emerg Infect Dis. 2021;27(11):2952–4.PubMedPubMedCentralCrossRef
16.
go back to reference Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.PubMedCrossRef Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.PubMedCrossRef
17.
go back to reference Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, et al. Insecticide resistance in Anopheles stephensi in Somali region, eastern Ethiopia. Malar J. 2020;19(1):180.PubMedPubMedCentralCrossRef Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, et al. Insecticide resistance in Anopheles stephensi in Somali region, eastern Ethiopia. Malar J. 2020;19(1):180.PubMedPubMedCentralCrossRef
18.
go back to reference Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018-2020. Malar J. 2021;20(1):263.PubMedPubMedCentralCrossRef Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018-2020. Malar J. 2021;20(1):263.PubMedPubMedCentralCrossRef
19.
go back to reference Griffin JT, Ferguson NM, Ghani AC. Estimates of the changing age-burden of plasmodium falciparum malaria disease in sub-Saharan Africa. Nat Commun. 2014;5:3136.PubMedCrossRef Griffin JT, Ferguson NM, Ghani AC. Estimates of the changing age-burden of plasmodium falciparum malaria disease in sub-Saharan Africa. Nat Commun. 2014;5:3136.PubMedCrossRef
20.
go back to reference Challenger JD, Olivera Mesa D, Da DF, Yerbanga RS, Lefèvre T, Cohuet A, et al. Predicting the public health impact of a malaria transmission-blocking vaccine. Nat Commun. 2021;12(1):1494.PubMedPubMedCentralCrossRef Challenger JD, Olivera Mesa D, Da DF, Yerbanga RS, Lefèvre T, Cohuet A, et al. Predicting the public health impact of a malaria transmission-blocking vaccine. Nat Commun. 2021;12(1):1494.PubMedPubMedCentralCrossRef
22.
go back to reference White MT, Griffin JT, Churcher TS, Ferguson NM, Basanez MG, Ghani AC. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011;4:153.PubMedPubMedCentralCrossRef White MT, Griffin JT, Churcher TS, Ferguson NM, Basanez MG, Ghani AC. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011;4:153.PubMedPubMedCentralCrossRef
23.
go back to reference Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;16(4):465–72.PubMedPubMedCentralCrossRef Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;16(4):465–72.PubMedPubMedCentralCrossRef
24.
go back to reference Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, et al. Optimising the deployment of vector control tools against malaria: a data-informed modelling study. Lancet Planet Health. 2022;6(2):e100–9. Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, et al. Optimising the deployment of vector control tools against malaria: a data-informed modelling study. Lancet Planet Health. 2022;6(2):e100–9.
25.
go back to reference Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, Schellenberg JA, et al. Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis. PLoS One. 2010;5(2):e8988.PubMedPubMedCentralCrossRef Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, Schellenberg JA, et al. Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis. PLoS One. 2010;5(2):e8988.PubMedPubMedCentralCrossRef
26.
go back to reference Le Menach A, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, et al. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J. 2007;6:10.PubMedPubMedCentralCrossRef Le Menach A, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, et al. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J. 2007;6:10.PubMedPubMedCentralCrossRef
28.
go back to reference Walker PG, Griffin JT, Ferguson NM, Ghani AC. Estimating the most efficient allocation of interventions to achieve reductions in plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4(7):e474–84.PubMedCrossRef Walker PG, Griffin JT, Ferguson NM, Ghani AC. Estimating the most efficient allocation of interventions to achieve reductions in plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4(7):e474–84.PubMedCrossRef
30.
go back to reference Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci U S A. 2020;117(40):24900–8.PubMedPubMedCentralCrossRef Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci U S A. 2020;117(40):24900–8.PubMedPubMedCentralCrossRef
31.
go back to reference Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.CrossRef Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.CrossRef
32.
go back to reference Stopard IJ, Churcher TS, Lambert B. Estimating the extrinsic incubation period of malaria using a mechanistic model of sporogony. PLoS Comput Biol. 2021;17(2):e1008658.PubMedPubMedCentralCrossRef Stopard IJ, Churcher TS, Lambert B. Estimating the extrinsic incubation period of malaria using a mechanistic model of sporogony. PLoS Comput Biol. 2021;17(2):e1008658.PubMedPubMedCentralCrossRef
33.
go back to reference Shapiro LLM, Whitehead SA, Thomas MB. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 2017;15(10):e2003489.PubMedPubMedCentralCrossRef Shapiro LLM, Whitehead SA, Thomas MB. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 2017;15(10):e2003489.PubMedPubMedCentralCrossRef
35.
36.
go back to reference Bompard A, Da DF, Yerbanga SR, Morlais I, Awono-Ambene PH, Dabire RK, et al. High plasmodium infection intensity in naturally infected malaria vectors in Africa. Int J Parasitol. 2020;50(12):985–96.PubMedCrossRef Bompard A, Da DF, Yerbanga SR, Morlais I, Awono-Ambene PH, Dabire RK, et al. High plasmodium infection intensity in naturally infected malaria vectors in Africa. Int J Parasitol. 2020;50(12):985–96.PubMedCrossRef
37.
go back to reference Manouchehri AV, Javadian E, Eshighy N, Motabar M. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976;28(3):228–32.PubMed Manouchehri AV, Javadian E, Eshighy N, Motabar M. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976;28(3):228–32.PubMed
38.
go back to reference Mehravaran A, Vatandoost H, Oshaghi MA, Abai MR, Edalat H, Javadian E, et al. Ecology of Anopheles stephensi in a malarious area, southeast of Iran. Acta Med Iran. 2012;50(1):61–5.PubMed Mehravaran A, Vatandoost H, Oshaghi MA, Abai MR, Edalat H, Javadian E, et al. Ecology of Anopheles stephensi in a malarious area, southeast of Iran. Acta Med Iran. 2012;50(1):61–5.PubMed
39.
go back to reference Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97(2):196–203.PubMedCrossRef Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97(2):196–203.PubMedCrossRef
40.
go back to reference Mojahedi AR, Safari R, Yarian M, Pakari A, Raeisi A, Edalat H, et al. Biting and resting behaviour of malaria vectors in Bandar-Abbas County, Islamic Republic of Iran. East Mediterr Health J. 2020;26(10):1218–26.PubMedCrossRef Mojahedi AR, Safari R, Yarian M, Pakari A, Raeisi A, Edalat H, et al. Biting and resting behaviour of malaria vectors in Bandar-Abbas County, Islamic Republic of Iran. East Mediterr Health J. 2020;26(10):1218–26.PubMedCrossRef
41.
go back to reference Basseri HR, Abai MR, Raeisi A, Shahandeh K. Community sleeping pattern and anopheline biting in southeastern Iran: a country earmarked for malaria elimination. Am J Trop Med Hygiene. 2012;87(3):499–503.CrossRef Basseri HR, Abai MR, Raeisi A, Shahandeh K. Community sleeping pattern and anopheline biting in southeastern Iran: a country earmarked for malaria elimination. Am J Trop Med Hygiene. 2012;87(3):499–503.CrossRef
42.
go back to reference Basseri H, Raeisi A, Ranjbar Khakha M, Pakarai A, Abdolghafar H. Seasonal abundance and host-feeding patterns of anopheline vectors in malaria endemic area of Iran. J Parasitol Res. 2010;2010:671291.PubMedPubMedCentralCrossRef Basseri H, Raeisi A, Ranjbar Khakha M, Pakarai A, Abdolghafar H. Seasonal abundance and host-feeding patterns of anopheline vectors in malaria endemic area of Iran. J Parasitol Res. 2010;2010:671291.PubMedPubMedCentralCrossRef
43.
go back to reference Dash AP, Adak T, Raghavendra K, Singh OP. The biology and control of malaria vectors in India. Curr Sci. 2007;92(11):1571–8. Dash AP, Adak T, Raghavendra K, Singh OP. The biology and control of malaria vectors in India. Curr Sci. 2007;92(11):1571–8.
44.
go back to reference Conn JE, Norris DE, Donnelly MJ, Beebe NW, Burkot TR, Coulibaly MB, et al. Entomological monitoring and evaluation: diverse transmission settings of ICEMR projects will require local and regional malaria elimination strategies. Am J Trop Med Hygiene. 2015;93(3 Suppl):28–41.CrossRef Conn JE, Norris DE, Donnelly MJ, Beebe NW, Burkot TR, Coulibaly MB, et al. Entomological monitoring and evaluation: diverse transmission settings of ICEMR projects will require local and regional malaria elimination strategies. Am J Trop Med Hygiene. 2015;93(3 Suppl):28–41.CrossRef
45.
go back to reference Maghsoodi N, Ladonni H, Basseri HR. Species composition and seasonal activities of malaria vectors in an area at reintroduction prevention stage, Khuzestan, South-Western Iran. J Arthropod Borne Dis. 2015;9(1):60–70.PubMed Maghsoodi N, Ladonni H, Basseri HR. Species composition and seasonal activities of malaria vectors in an area at reintroduction prevention stage, Khuzestan, South-Western Iran. J Arthropod Borne Dis. 2015;9(1):60–70.PubMed
46.
go back to reference Herrel N, Amerasinghe FP, Ensink J, Mukhtar M, van der Hoek W, Konradsen F. Adult anopheline ecology and malaria transmission in irrigated areas of South Punjab, Pakistan. Med Vet Entomol. 2004;18(2):141–52.PubMedCrossRef Herrel N, Amerasinghe FP, Ensink J, Mukhtar M, van der Hoek W, Konradsen F. Adult anopheline ecology and malaria transmission in irrigated areas of South Punjab, Pakistan. Med Vet Entomol. 2004;18(2):141–52.PubMedCrossRef
47.
go back to reference O’Donnell AJ, Rund SSC, Reece SE. Time-of-day of blood-feeding: effects on mosquito life history and malaria transmission. Parasit Vectors. 2019;12(1):301.PubMedPubMedCentralCrossRef O’Donnell AJ, Rund SSC, Reece SE. Time-of-day of blood-feeding: effects on mosquito life history and malaria transmission. Parasit Vectors. 2019;12(1):301.PubMedPubMedCentralCrossRef
48.
go back to reference Reisen WK, Boreham PF. Estimates of malaria vectorial capacity for anopheles culicifacies and Anopheles stephensi in rural Punjab province Pakistan. J Med Entomol. 1982;19(1):98–103.PubMedCrossRef Reisen WK, Boreham PF. Estimates of malaria vectorial capacity for anopheles culicifacies and Anopheles stephensi in rural Punjab province Pakistan. J Med Entomol. 1982;19(1):98–103.PubMedCrossRef
49.
go back to reference Ghosh A, Mandal S, Chandra G. Seasonal distribution, parity, resting, host-seeking behavior and association of malarial parasites of Anopheles stephensi Liston in Kolkata, West Bengal. Entomological Res. 2010;40(1):46–54.CrossRef Ghosh A, Mandal S, Chandra G. Seasonal distribution, parity, resting, host-seeking behavior and association of malarial parasites of Anopheles stephensi Liston in Kolkata, West Bengal. Entomological Res. 2010;40(1):46–54.CrossRef
50.
go back to reference Reisen WK, Mahmood F. Horizontal life table characteristics of the malaria vectors anopheles culicifacies and anopheles Stephensi (Diptera: Culicidae)1. J Med Entomol. 1980;17(3):211–7.CrossRef Reisen WK, Mahmood F. Horizontal life table characteristics of the malaria vectors anopheles culicifacies and anopheles Stephensi (Diptera: Culicidae)1. J Med Entomol. 1980;17(3):211–7.CrossRef
51.
go back to reference Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasit Vectors. 2011;4:89.PubMedPubMedCentralCrossRef Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasit Vectors. 2011;4:89.PubMedPubMedCentralCrossRef
52.
go back to reference Pramanik MK, Aditya G, Raut SK. A survey of anopheline mosquitoes and malarial parasite in commuters in a rural and an urban area in West Bengal, India. J Vector Borne Dis. 2006;43(4):198–202.PubMed Pramanik MK, Aditya G, Raut SK. A survey of anopheline mosquitoes and malarial parasite in commuters in a rural and an urban area in West Bengal, India. J Vector Borne Dis. 2006;43(4):198–202.PubMed
53.
go back to reference Soleimani-Ahmadi M, Vatandoost H, Shaeghi M, Raeisi A, Abedi F, Eshraghian MR, et al. Field evaluation of permethrin long-lasting insecticide treated nets (Olyset((R))) for malaria control in an endemic area, southeast of Iran. Acta Trop. 2012;123(3):146–53.PubMedCrossRef Soleimani-Ahmadi M, Vatandoost H, Shaeghi M, Raeisi A, Abedi F, Eshraghian MR, et al. Field evaluation of permethrin long-lasting insecticide treated nets (Olyset((R))) for malaria control in an endemic area, southeast of Iran. Acta Trop. 2012;123(3):146–53.PubMedCrossRef
55.
go back to reference Iman RL. Latin hypercube sampling. In: Wiley StatsRef: statistics reference online; 2014. Iman RL. Latin hypercube sampling. In: Wiley StatsRef: statistics reference online; 2014.
56.
go back to reference Pfeffer DA, Lucas TCD, May D, Harris J, Rozier J, Twohig KA, et al. malariaAtlas: an R interface to global malariometric data hosted by the malaria atlas project. Malar J. 2018;17(1):352.PubMedPubMedCentralCrossRef Pfeffer DA, Lucas TCD, May D, Harris J, Rozier J, Twohig KA, et al. malariaAtlas: an R interface to global malariometric data hosted by the malaria atlas project. Malar J. 2018;17(1):352.PubMedPubMedCentralCrossRef
57.
go back to reference National Malaria Control and Elimination Programme: A survey on ownership and use of long-lasting insecticidal nets and malaria treatment seeking behavior in Ethiopia (2020). In. Edited by Health Mo. Addis Ababa: Ethiopian Public Health Institute; 2020. National Malaria Control and Elimination Programme: A survey on ownership and use of long-lasting insecticidal nets and malaria treatment seeking behavior in Ethiopia (2020). In. Edited by Health Mo. Addis Ababa: Ethiopian Public Health Institute; 2020.
59.
go back to reference Cairns ME, Walker PG, Okell LC, Griffin JT, Garske T, Asante KP, et al. Seasonality in malaria transmission: implications for case-management with long-acting artemisinin combination therapy in sub-Saharan Africa. Malar J. 2015;14:321.PubMedPubMedCentralCrossRef Cairns ME, Walker PG, Okell LC, Griffin JT, Garske T, Asante KP, et al. Seasonality in malaria transmission: implications for case-management with long-acting artemisinin combination therapy in sub-Saharan Africa. Malar J. 2015;14:321.PubMedPubMedCentralCrossRef
60.
go back to reference Sherrard-Smith E, Griffin JT, Winskill P, Corbel V, Pennetier C, Djenontin A, et al. Systematic review of indoor residual spray efficacy and effectiveness against plasmodium falciparum in Africa. Nat Commun. 2018;9(1):4982.PubMedPubMedCentralCrossRef Sherrard-Smith E, Griffin JT, Winskill P, Corbel V, Pennetier C, Djenontin A, et al. Systematic review of indoor residual spray efficacy and effectiveness against plasmodium falciparum in Africa. Nat Commun. 2018;9(1):4982.PubMedPubMedCentralCrossRef
61.
go back to reference Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BG. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis. 2002;2(10):618–27.PubMedCrossRef Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BG. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis. 2002;2(10):618–27.PubMedCrossRef
Metadata
Title
The potential impact of Anopheles stephensi establishment on the transmission of Plasmodium falciparum in Ethiopia and prospective control measures
Authors
Arran Hamlet
Dereje Dengela
J. Eric Tongren
Fitsum G. Tadesse
Teun Bousema
Marianne Sinka
Aklilu Seyoum
Seth R. Irish
Jennifer S. Armistead
Thomas Churcher
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02324-1

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue