Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020

Authors: Meshesha Balkew, Peter Mumba, Gedeon Yohannes, Ephrem Abiy, Dejene Getachew, Solomon Yared, Amha Worku, Araya Gebresilassie, Fitsum G. Tadesse, Endalamaw Gadisa, Endashaw Esayas, Temesgen Ashine, Desta Ejeta, Sisay Dugassa, Mekonnen Yohannes, Wossenseged Lemma, Delenasaw Yewhalaw, Sheleme Chibsa, Hiwot Teka, Matt Murphy, Melissa Yoshimizu, Dereje Dengela, Sarah Zohdy, Seth Irish

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Anopheles stephensi, an invasive malaria vector, was first detected in Africa nearly 10 years ago. After the initial finding in Djibouti, it has subsequently been found in Ethiopia, Sudan and Somalia. To better inform policies and vector control decisions, it is important to understand the distribution, bionomics, insecticide susceptibility, and transmission potential of An. stephensi. These aspects were studied as part of routine entomological monitoring in Ethiopia between 2018 and 2020.

Methods

Adult mosquitoes were collected using human landing collections, pyrethrum spray catches, CDC light traps, animal-baited tent traps, resting boxes, and manual aspiration from animal shelters. Larvae were collected using hand-held dippers. The source of blood in blood-fed mosquitoes and the presence of sporozoites was assessed through enzyme-linked immunosorbent assays (ELISA). Insecticide susceptibility was assessed for pyrethroids, organophosphates and carbamates.

Results

Adult An. stephensi were collected with aspiration, black resting boxes, and animal-baited traps collecting the highest numbers of mosquitoes. Although sampling efforts were geographically widespread, An. stephensi larvae were collected in urban and rural sites in eastern Ethiopia, but An. stephensi larvae were not found in western Ethiopian sites. Blood-meal analysis revealed a high proportion of blood meals that were taken from goats, and only a small proportion from humans. Plasmodium vivax was detected in wild-collected An. stephensi. High levels of insecticide resistance were detected to pyrethroids, carbamates and organophosphates. Pre-exposure to piperonyl butoxide increased susceptibility to pyrethroids. Larvae were found to be susceptible to temephos.

Conclusions

Understanding the bionomics, insecticide susceptibility and distribution of An. stephensi will improve the quality of a national response in Ethiopia and provide additional information on populations of this invasive species in Africa. Further work is needed to understand the role that An. stephensi will have in Plasmodium transmission and malaria case incidence. While additional data are being collected, national programmes can use the available data to formulate and operationalize national strategies against the threat of An. stephensi.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89.CrossRef Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89.CrossRef
2.
go back to reference Faulde MK, Rueda LM, Kaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti. Horn of Africa Acta Trop. 2014;139:39–43.CrossRef Faulde MK, Rueda LM, Kaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti. Horn of Africa Acta Trop. 2014;139:39–43.CrossRef
3.
go back to reference Gad AM, Harbach RE, Harrison BA. Anopheles (Cellia) ainshamsi, n. sp. (Diptera: Culicidae), a saltwater species from the Red Sea coast of Egypt. Proc Entomol Soc Wash. 2006;108:366–80. Gad AM, Harbach RE, Harrison BA. Anopheles (Cellia) ainshamsi, n. sp. (Diptera: Culicidae), a saltwater species from the Red Sea coast of Egypt. Proc Entomol Soc Wash. 2006;108:366–80.
4.
go back to reference Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.CrossRef Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.CrossRef
5.
go back to reference Balkew M, Mumba P, Dengela D, Yohannes G, Getachew D, Yared S, et al. Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit Vectors. 2020;13:35.CrossRef Balkew M, Mumba P, Dengela D, Yohannes G, Getachew D, Yared S, et al. Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit Vectors. 2020;13:35.CrossRef
6.
go back to reference Seyfarth M, Kaireh BA, Abdi AA, Bouh SM, Faulde MK. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established – malaria emerging. Parasit Res. 2019;118:725–32.CrossRef Seyfarth M, Kaireh BA, Abdi AA, Bouh SM, Faulde MK. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established – malaria emerging. Parasit Res. 2019;118:725–32.CrossRef
7.
go back to reference Tadesse FG, Ashine T, Teka H, Esayas E, Messenger LA, Chali W, et al. Anopheles stephensi mosquitoes as vectors of Plasmodium vivax and falciparum, Horn of Africa. Emerg Infect Dis. 2021;27:603–7.CrossRef Tadesse FG, Ashine T, Teka H, Esayas E, Messenger LA, Chali W, et al. Anopheles stephensi mosquitoes as vectors of Plasmodium vivax and falciparum, Horn of Africa. Emerg Infect Dis. 2021;27:603–7.CrossRef
8.
go back to reference Coetzee M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 2020;19:70.CrossRef Coetzee M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 2020;19:70.CrossRef
9.
go back to reference WHO. Malaria threats. Map invasive vector species. Geneva: World Health Organization; 2020. WHO. Malaria threats. Map invasive vector species. Geneva: World Health Organization; 2020.
10.
go back to reference Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, et al. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol. 1988;25:9–16.CrossRef Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, et al. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol. 1988;25:9–16.CrossRef
11.
go back to reference Wirtz RA, Sattabongkot J, Hall T, Burkot TR, Rosenberg R. Development and evaluation of an enzyme-linked immunosorbent assay for Plasmodium vivax – VK247 sporozoites. J Med Entomol. 1992;29:854–7.CrossRef Wirtz RA, Sattabongkot J, Hall T, Burkot TR, Rosenberg R. Development and evaluation of an enzyme-linked immunosorbent assay for Plasmodium vivax – VK247 sporozoites. J Med Entomol. 1992;29:854–7.CrossRef
12.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2nd ed. Geneva: World Health Organization; 2016. p. 55. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2nd ed. Geneva: World Health Organization; 2016. p. 55.
13.
go back to reference WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides WHO Pesticides Evaluation Scheme: WHO/CDS/WHOPES/GCDPP/2005.13. Geneva, World Health Organization, 2005. WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides WHO Pesticides Evaluation Scheme: WHO/CDS/WHOPES/GCDPP/2005.13. Geneva, World Health Organization, 2005.
14.
go back to reference WHO. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC/81.807. Geneva, World Health Organization, 1981. WHO. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC/81.807. Geneva, World Health Organization, 1981.
15.
go back to reference Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci USA. 2020;117:24900–8.CrossRef Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci USA. 2020;117:24900–8.CrossRef
16.
go back to reference Kent RJ, Norris DE. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg. 2005;73:336–42.CrossRef Kent RJ, Norris DE. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg. 2005;73:336–42.CrossRef
17.
go back to reference Thomas S, Ravishankaran S, Justin NAJA, Asokan A, Mathai MT, Valecha N, Montgomery J, Thomas MB, Eapen A. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J. 2017;16:111.CrossRef Thomas S, Ravishankaran S, Justin NAJA, Asokan A, Mathai MT, Valecha N, Montgomery J, Thomas MB, Eapen A. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J. 2017;16:111.CrossRef
18.
go back to reference PMI VectorLink Ethiopia Project. Final Entomology Report. May 2019-March 2020. 2020. PMI VectorLink Ethiopia Project. Final Entomology Report. May 2019-March 2020. 2020.
19.
go back to reference Enayati A, Hanafi-Bojd AA, Sedaghat MM, Zaim M, Hemingway J. Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malar J. 2020;19:258.CrossRef Enayati A, Hanafi-Bojd AA, Sedaghat MM, Zaim M, Hemingway J. Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malar J. 2020;19:258.CrossRef
20.
go back to reference Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, et al. Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. Malar J. 2020;19:180.CrossRef Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, et al. Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. Malar J. 2020;19:180.CrossRef
21.
go back to reference Ethiopian Public Health Institute (EPHI). 2016. Ethiopia National Malaria Indicator Survey 2015. 110. Ethiopian Public Health Institute (EPHI). 2016. Ethiopia National Malaria Indicator Survey 2015. 110.
22.
go back to reference Durnez L, Van Bortel W, Denis L, Roelants P, Veracx A, Trung HD, et al. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar J. 2011;10:195.CrossRef Durnez L, Van Bortel W, Denis L, Roelants P, Veracx A, Trung HD, et al. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar J. 2011;10:195.CrossRef
23.
go back to reference Owusu HF, Chitnis N, Müller P. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment. Sci Rep. 2017;7:3667.CrossRef Owusu HF, Chitnis N, Müller P. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment. Sci Rep. 2017;7:3667.CrossRef
Metadata
Title
An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020
Authors
Meshesha Balkew
Peter Mumba
Gedeon Yohannes
Ephrem Abiy
Dejene Getachew
Solomon Yared
Amha Worku
Araya Gebresilassie
Fitsum G. Tadesse
Endalamaw Gadisa
Endashaw Esayas
Temesgen Ashine
Desta Ejeta
Sisay Dugassa
Mekonnen Yohannes
Wossenseged Lemma
Delenasaw Yewhalaw
Sheleme Chibsa
Hiwot Teka
Matt Murphy
Melissa Yoshimizu
Dereje Dengela
Sarah Zohdy
Seth Irish
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03801-3

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.