Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Parkinson's Disease | Research article

Systems pharmacology based approach to investigate the in-vivo therapeutic efficacy of Albizia lebbeck (L.) in experimental model of Parkinson’s disease

Authors: Uzma Saleem, Zohaib Raza, Fareeha Anwar, Zunera Chaudary, Bashir Ahmad

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta and clinically manifested mainly with motor dysfunctions. Plants are rich source of medicinally important bioactive compounds and inhabitants of underdeveloped countries used plants for treatment of various ailments. Albizia lebbeck has been reported to possess antioxidant and neuroprotective properties that suggest the evaluation of its traditional therapeutic potential in neurodegenerative diseases.
The aim of present study was to validate the traditional use of Albizia lebbeck (L.) and delineate its mechanism of action in PD. The systems pharmacology approach was employed to explain the Albizia lebbeck (L.) mechanism of action in PD.

Methods

The haloperidol-induced catalepsy was adopted as experimental model of PD for in-vivo studies in wistar albino rats. The systems pharmacology approach was employed to explain the Albizia lebbeck (L.) mechanism of action in PD.

Results

In-vivo studies revealed that Albizia lebbeck improved the motor functions and endurance as demonstrated in behavioral studies which were further supported by the rescue of endogenous antioxidant defense and reversal of ultrastructural damages in histological studies. System pharmacology approach identified 25 drug like compounds interacting with 132 targets in a bipartite graph that revealed the synergistic mechanism of action at system level. Kaemferol, phytosterol and okanin were found to be the important compounds nodes with prominent target nodes of TDP1 and MAPT.

Conclusion

The therapeutic efficiency of Albizia lebbeck in PD was effectively delineated in our experimental and systems pharmacology approach. Moreover, this approach further facilitates the drug discovery from Albizia lebbeck for PD.
Literature
1.
go back to reference Hussain G, Rasul A, Anwar H, Sohail MU, Kashif Shahid Kamran S, Baig S, Shabbir A, Iqbal J. Epidemiological data of neurological disorders in Pakistan and neighboring countries: a review. Pakistan. J Neurol Sci. 2017;12(4):12. Hussain G, Rasul A, Anwar H, Sohail MU, Kashif Shahid Kamran S, Baig S, Shabbir A, Iqbal J. Epidemiological data of neurological disorders in Pakistan and neighboring countries: a review. Pakistan. J Neurol Sci. 2017;12(4):12.
2.
go back to reference Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson's disease: pathophysiology to management. Neurol Sci. 2019;40(1):13–23.CrossRefPubMed Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson's disease: pathophysiology to management. Neurol Sci. 2019;40(1):13–23.CrossRefPubMed
4.
go back to reference Thanvi B, Lo N, Robinson T. Levodopa-induced dyskinesia in Parkinson's disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J. 2007;83(980):384–8.CrossRefPubMedPubMedCentral Thanvi B, Lo N, Robinson T. Levodopa-induced dyskinesia in Parkinson's disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J. 2007;83(980):384–8.CrossRefPubMedPubMedCentral
5.
go back to reference Fu W, Zhuang W, Zhou S, Wang X. Plant-derived neuroprotective agents in Parkinson's disease. Am J Transl Res. 2015;7(7):1189–202.PubMedPubMedCentral Fu W, Zhuang W, Zhou S, Wang X. Plant-derived neuroprotective agents in Parkinson's disease. Am J Transl Res. 2015;7(7):1189–202.PubMedPubMedCentral
6.
go back to reference Li Y, Zhang J, Zhang L, Chen X, Pan Y, Chen SS, Zhang S, Wang Z, Xiao W, Yang L, et al. Systems pharmacology to decipher the combinational anti-migraine effects of Tianshu formula. J Ethnopharmacol. 2015;174:45–56.CrossRefPubMed Li Y, Zhang J, Zhang L, Chen X, Pan Y, Chen SS, Zhang S, Wang Z, Xiao W, Yang L, et al. Systems pharmacology to decipher the combinational anti-migraine effects of Tianshu formula. J Ethnopharmacol. 2015;174:45–56.CrossRefPubMed
7.
go back to reference Srivastav Neeti SS, Vijay J, Tiwari Brijesh K. Anti convulsant activity of leaf extracts of Albizia lebbeck linnn in n experimental rats. Int J Pharm Sci Rev Res. 2016:173–6. Srivastav Neeti SS, Vijay J, Tiwari Brijesh K. Anti convulsant activity of leaf extracts of Albizia lebbeck linnn in n experimental rats. Int J Pharm Sci Rev Res. 2016:173–6.
8.
go back to reference Verma DS, Vashishth E, Singh R, Kumari A, Meena A, Pant P, Bhuyan GC, Padhi MM. A review on parts of Albizia lebbeck (L.) Benth. Used as Ayurvedic drugs. Res J Pharm Technol. 2013;6(11):1307–13. Verma DS, Vashishth E, Singh R, Kumari A, Meena A, Pant P, Bhuyan GC, Padhi MM. A review on parts of Albizia lebbeck (L.) Benth. Used as Ayurvedic drugs. Res J Pharm Technol. 2013;6(11):1307–13.
9.
go back to reference Narasimhan PB, Pandikumar P, Ignacimuthu S. Anti-inflammatory activity of Albizia lebbeck Benth., an ethnomedicinal plant, in acute and chronic animal models of inflammation. J Ethnopharmacol. 2009;125(2):356–60.CrossRef Narasimhan PB, Pandikumar P, Ignacimuthu S. Anti-inflammatory activity of Albizia lebbeck Benth., an ethnomedicinal plant, in acute and chronic animal models of inflammation. J Ethnopharmacol. 2009;125(2):356–60.CrossRef
10.
go back to reference Abd El-Ghany AES, Dora G, Abdallah RH, Hassan W, El-Salam EA. Phytochemical and biological study of Albizia lebbeck stem bark. J Chem Pharma Res. 2015;7(5):29–43. Abd El-Ghany AES, Dora G, Abdallah RH, Hassan W, El-Salam EA. Phytochemical and biological study of Albizia lebbeck stem bark. J Chem Pharma Res. 2015;7(5):29–43.
11.
go back to reference Patel T, Shirode D, Pal Roy S, Kumar S, Siddamsetty RS. Evaluation of Antioxidant and Hepatoprotective effects of 70% ethanolic bark extract of Albizzia lebbeck in rats. Int J Res Pharm Sci. 2010;1(3):270–6. Patel T, Shirode D, Pal Roy S, Kumar S, Siddamsetty RS. Evaluation of Antioxidant and Hepatoprotective effects of 70% ethanolic bark extract of Albizzia lebbeck in rats. Int J Res Pharm Sci. 2010;1(3):270–6.
12.
go back to reference Resmi CR, Venukumar MR, Latha MS. Antioxidant activity of Albizzia lebbeck (Linn.) Benth. In alloxan diabetic rats. Indian J Physiol Pharmacol. 2006;50(3):297–302.PubMed Resmi CR, Venukumar MR, Latha MS. Antioxidant activity of Albizzia lebbeck (Linn.) Benth. In alloxan diabetic rats. Indian J Physiol Pharmacol. 2006;50(3):297–302.PubMed
13.
go back to reference Gupta RS, Chaudhary R, Yadav RK, Verma SK, Dobhal MP. Effect of Saponins of Albizia lebbeck (L.) Benth bark on the reproductive system of male albino rats. J Ethnopharmacol. 2005;96(1–2):31–6.CrossRefPubMed Gupta RS, Chaudhary R, Yadav RK, Verma SK, Dobhal MP. Effect of Saponins of Albizia lebbeck (L.) Benth bark on the reproductive system of male albino rats. J Ethnopharmacol. 2005;96(1–2):31–6.CrossRefPubMed
14.
go back to reference El-Hawary S, Sokkar NM, El-Fouly K, Talaat Z. A phytochemical profile of Albizia lebbeck (L.) benth. Cultivated in Egypt. Asian J Biochem. 2011;6(2):122–41.CrossRef El-Hawary S, Sokkar NM, El-Fouly K, Talaat Z. A phytochemical profile of Albizia lebbeck (L.) benth. Cultivated in Egypt. Asian J Biochem. 2011;6(2):122–41.CrossRef
15.
go back to reference Zia-Ul-Haq M, Ahmad S, Qayum M, Ercisli S. Compositional studies and antioxidant potential of Albizia lebbeck L. Benth. Pods and seeds. Turk J Biol. 2013;37(1):25–32. Zia-Ul-Haq M, Ahmad S, Qayum M, Ercisli S. Compositional studies and antioxidant potential of Albizia lebbeck L. Benth. Pods and seeds. Turk J Biol. 2013;37(1):25–32.
16.
go back to reference Wati M, Khabiruddin M. Comparision of antioxidants in phenol extract and methanol extract of Albizia lebbeck from two locations. Int J Pharm Sci Rev Res Int. 2017;45(1):78–82. Wati M, Khabiruddin M. Comparision of antioxidants in phenol extract and methanol extract of Albizia lebbeck from two locations. Int J Pharm Sci Rev Res Int. 2017;45(1):78–82.
17.
go back to reference Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–91.CrossRefPubMedPubMedCentral Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–91.CrossRefPubMedPubMedCentral
18.
go back to reference Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity. 2009;2(5):270–8. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity. 2009;2(5):270–8.
19.
go back to reference Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson's disease. Front Neuroanat. 2015;9:91.PubMedPubMedCentral Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson's disease. Front Neuroanat. 2015;9:91.PubMedPubMedCentral
20.
go back to reference Velraj M, A V, Jayakumari S, Ramamoorthy S, Jeyabalan S. Antidepressant activity of the ethanolic extract of Albizzia lebbeck (Linn) bark in animal models of depression. 2009;1:112–5. Velraj M, A V, Jayakumari S, Ramamoorthy S, Jeyabalan S. Antidepressant activity of the ethanolic extract of Albizzia lebbeck (Linn) bark in animal models of depression. 2009;1:112–5.
21.
go back to reference Kasture VS, Chopde CT, Deshmukh VK. Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J Ethnopharmacol. 2000;71(1–2):65–75.CrossRefPubMed Kasture VS, Chopde CT, Deshmukh VK. Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J Ethnopharmacol. 2000;71(1–2):65–75.CrossRefPubMed
22.
go back to reference Une HD, Sarveiya VP, Pal SC, Kasture VS, Kasture SB. Nootropic and anxiolytic activity of saponins of Albizzia lebbeck leaves. Pharmacol Biochem Behav. 2001;69(3–4):439–44.CrossRefPubMed Une HD, Sarveiya VP, Pal SC, Kasture VS, Kasture SB. Nootropic and anxiolytic activity of saponins of Albizzia lebbeck leaves. Pharmacol Biochem Behav. 2001;69(3–4):439–44.CrossRefPubMed
23.
go back to reference Chitra V, KM, AM, Thamaraikani T,K G. Effect of hydroalcoholic extract of Achyranthes aspera on haloperidol-induced Parkinson’s disease in Wistar rats. 2017;10(9):318–21. Chitra V, KM, AM, Thamaraikani T,K G. Effect of hydroalcoholic extract of Achyranthes aspera on haloperidol-induced Parkinson’s disease in Wistar rats. 2017;10(9):318–21.
24.
go back to reference Mograbi KM, de Castro AC, de Oliveira JA, Sales PJ, Covolan L, Del Bel EA, de Souza AS. Effects of GABAa receptor antagonists on motor behavior in pharmacological Parkinson's disease model in mice. Physiol Rep. 2017;5(6). Mograbi KM, de Castro AC, de Oliveira JA, Sales PJ, Covolan L, Del Bel EA, de Souza AS. Effects of GABAa receptor antagonists on motor behavior in pharmacological Parkinson's disease model in mice. Physiol Rep. 2017;5(6).
25.
go back to reference Caudal D, Guinobert I, Lafoux A, Bardot V, Cotte C, Ripoche I, Chalard P, Huchet C. Skeletal muscle relaxant effect of a standardized extract of Valeriana officinalis L. after acute administration in mice. JTCME J Tradit Complement Med. 2018;8(2):335–40. Caudal D, Guinobert I, Lafoux A, Bardot V, Cotte C, Ripoche I, Chalard P, Huchet C. Skeletal muscle relaxant effect of a standardized extract of Valeriana officinalis L. after acute administration in mice. JTCME J Tradit Complement Med. 2018;8(2):335–40.
26.
go back to reference Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W, Hutamekalin P, Sroyraya M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement Altern Med. 2018;18(1):1–12.CrossRef Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W, Hutamekalin P, Sroyraya M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement Altern Med. 2018;18(1):1–12.CrossRef
27.
go back to reference Justin Thenmozhi A, Raja TR, Janakiraman U, Manivasagam T. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer's disease in Wistar rats. Neurochem Res. 2015;40(4):767–76.CrossRefPubMed Justin Thenmozhi A, Raja TR, Janakiraman U, Manivasagam T. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer's disease in Wistar rats. Neurochem Res. 2015;40(4):767–76.CrossRefPubMed
28.
go back to reference Hira S, Saleem U, Anwar F, Ahmad B. Antioxidants attenuate isolation-and L- DOPA-induced aggression in mice. Front Pharmacol. 2018;8:945. Hira S, Saleem U, Anwar F, Ahmad B. Antioxidants attenuate isolation-and L- DOPA-induced aggression in mice. Front Pharmacol. 2018;8:945.
29.
go back to reference Saleem U, Ahmad B, Ahmad M, Hussain K, Bukhari NI. Investigation of in vivo antioxidant activity of Euphorbia helioscopia latex and leaves methanol extract: a target against oxidative stress induced toxicity. Asian Pac J Trop Med. 2014;7:S369–S375. Saleem U, Ahmad B, Ahmad M, Hussain K, Bukhari NI. Investigation of in vivo antioxidant activity of Euphorbia helioscopia latex and leaves methanol extract: a target against oxidative stress induced toxicity. Asian Pac J Trop Med. 2014;7:S369–S375.
30.
go back to reference Duke J, Bogenschutz MJ. Dr. Duke's phytochemical and ethnobotanical databases. USDA, Agricultural Research Service; 1994. Duke J, Bogenschutz MJ. Dr. Duke's phytochemical and ethnobotanical databases. USDA, Agricultural Research Service; 1994.
31.
go back to reference Karthikeyan Mohanraj BSK, R.P. Vivek-Ananth, R.P. Bharath Chand, S.R. Aparna, P. Mangalapandi, Areejit Samal: IMPPAT: a curated database of Indian medicinal plants, Phytochemistry Ther 2018, 8:4329. Karthikeyan Mohanraj BSK, R.P. Vivek-Ananth, R.P. Bharath Chand, S.R. Aparna, P. Mangalapandi, Areejit Samal: IMPPAT: a curated database of Indian medicinal plants, Phytochemistry Ther 2018, 8:4329.
32.
go back to reference Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.CrossRefPubMedPubMedCentral Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.CrossRefPubMedPubMedCentral
33.
go back to reference Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(W1):W32–8.CrossRefPubMedPubMedCentral Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(W1):W32–8.CrossRefPubMedPubMedCentral
34.
go back to reference Paul D, Thomas MJC, Kejariwal A, Huaiyu mi, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.CrossRef Paul D, Thomas MJC, Kejariwal A, Huaiyu mi, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.CrossRef
35.
go back to reference Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research. 2016;gkw937. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research. 2016;gkw937.
36.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.CrossRefPubMedPubMedCentral Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.CrossRefPubMedPubMedCentral
37.
go back to reference Sanberg PR. Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nat. 1980;284(5755):472–3.CrossRef Sanberg PR. Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nat. 1980;284(5755):472–3.CrossRef
38.
go back to reference Klemm WR. Evidence for a cholinergic role in haloperidol-induced catalepsy. Psychopharmacol. 1985;85(2):139–42.CrossRef Klemm WR. Evidence for a cholinergic role in haloperidol-induced catalepsy. Psychopharmacol. 1985;85(2):139–42.CrossRef
39.
go back to reference Elliott PJ, Close SP, Walsh DM, Hayes AG, Marriott AS. Neuroleptic-induced catalepsy as a model of Parkinson's disease. I. Effect of dopaminergic agents. J Neural Transm Park Dis Dement Sect. 1990;2(2):79–89.CrossRefPubMed Elliott PJ, Close SP, Walsh DM, Hayes AG, Marriott AS. Neuroleptic-induced catalepsy as a model of Parkinson's disease. I. Effect of dopaminergic agents. J Neural Transm Park Dis Dement Sect. 1990;2(2):79–89.CrossRefPubMed
40.
go back to reference Polydoro M, Schroder N, Lima MN, Caldana F, Laranja DC, Bromberg E, Roesler R, Quevedo J, Moreira JC, Dal-Pizzol F. Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav. 2004;78(4):751–6.CrossRefPubMed Polydoro M, Schroder N, Lima MN, Caldana F, Laranja DC, Bromberg E, Roesler R, Quevedo J, Moreira JC, Dal-Pizzol F. Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav. 2004;78(4):751–6.CrossRefPubMed
41.
go back to reference Zucca FA, Basso E, Cupaioli FA, Ferrari E, Sulzer D, Casella L, Zecca L. Neuromelanin of the human substantia nigra: an update. Neurotox Res. 2014;25(1):13–23.CrossRefPubMed Zucca FA, Basso E, Cupaioli FA, Ferrari E, Sulzer D, Casella L, Zecca L. Neuromelanin of the human substantia nigra: an update. Neurotox Res. 2014;25(1):13–23.CrossRefPubMed
42.
go back to reference Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem. 1998;71(5):2112–22.CrossRefPubMed Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem. 1998;71(5):2112–22.CrossRefPubMed
43.
go back to reference Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.CrossRefPubMed Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.CrossRefPubMed
44.
go back to reference Bostantjopoulou S, Kyriazis G, Katsarou Z, Kiosseoglou G, Kazis A, Mentenopoulos G. Superoxide dismutase activity in early and advanced Parkinson's disease. Funct Neurol. 1997;12(2):63–8.PubMed Bostantjopoulou S, Kyriazis G, Katsarou Z, Kiosseoglou G, Kazis A, Mentenopoulos G. Superoxide dismutase activity in early and advanced Parkinson's disease. Funct Neurol. 1997;12(2):63–8.PubMed
46.
go back to reference Koeberle A, Werz O. Multi-target approach for natural products in inflammation. Drug Discov Today. 2014;19(12):1871–82.CrossRefPubMed Koeberle A, Werz O. Multi-target approach for natural products in inflammation. Drug Discov Today. 2014;19(12):1871–82.CrossRefPubMed
47.
go back to reference Liu J, Pei M, Zheng C, Li Y, Wang Y, Lu A, Yang L. A systems-pharmacology analysis of herbal medicines used in health improvement treatment: predicting potential new drugs and targets. Evid Based Complement Alternat Med. 2013;2013:17. Liu J, Pei M, Zheng C, Li Y, Wang Y, Lu A, Yang L. A systems-pharmacology analysis of herbal medicines used in health improvement treatment: predicting potential new drugs and targets. Evid Based Complement Alternat Med. 2013;2013:17.
48.
go back to reference Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nat. 2001;411:41.CrossRef Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nat. 2001;411:41.CrossRef
49.
go back to reference Azuaje FJ, Zhang L, Devaux Y, Wagner DR. Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci Rep. 2011;1:52.CrossRefPubMedPubMedCentral Azuaje FJ, Zhang L, Devaux Y, Wagner DR. Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci Rep. 2011;1:52.CrossRefPubMedPubMedCentral
50.
go back to reference Koschützki D, Schreiber F. Centrality Analysis Methods for Biological Networks and Their Application to Gene Regulatory Networks. Gene Regul Syst Biol. 2008;2:GRSB–S702. Koschützki D, Schreiber F. Centrality Analysis Methods for Biological Networks and Their Application to Gene Regulatory Networks. Gene Regul Syst Biol. 2008;2:GRSB–S702.
52.
go back to reference Katyal S, El Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, PJ MK. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J. 2007;26(22):4720–31.CrossRefPubMedPubMedCentral Katyal S, El Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, PJ MK. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J. 2007;26(22):4720–31.CrossRefPubMedPubMedCentral
53.
go back to reference Zhang CC, Xing A, Tan MS, Tan L, Yu JT. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol. 2016;53(7):4893–904.CrossRefPubMed Zhang CC, Xing A, Tan MS, Tan L, Yu JT. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol. 2016;53(7):4893–904.CrossRefPubMed
54.
go back to reference Das G, Misra AK, Das SK, Ray K, Ray J. Microtubule-associated protein tau (MAPT) influences the risk of Parkinson's disease among Indians. Neurosci Lett. 2009;460(1):16–20.CrossRefPubMed Das G, Misra AK, Das SK, Ray K, Ray J. Microtubule-associated protein tau (MAPT) influences the risk of Parkinson's disease among Indians. Neurosci Lett. 2009;460(1):16–20.CrossRefPubMed
55.
go back to reference Setó-Salvia N, Clarimón J, Pagonabarraga J, et al. Dementia risk in parkinson disease: disentangling the role of mapt haplotypes. Arch Neurol. 2011;68(3):359–64.CrossRefPubMed Setó-Salvia N, Clarimón J, Pagonabarraga J, et al. Dementia risk in parkinson disease: disentangling the role of mapt haplotypes. Arch Neurol. 2011;68(3):359–64.CrossRefPubMed
56.
go back to reference Edwards YJK, Beecham GW, Scott WK, Khuri S, Bademci G, Tekin D, Martin ER, Jiang Z, Mash DC, Mullen J F, et al. Identifying consensus disease pathways in Parkinson's disease using an integrative systems biology approach. PLoS One. 2011;6(2):e16917.CrossRefPubMedPubMedCentral Edwards YJK, Beecham GW, Scott WK, Khuri S, Bademci G, Tekin D, Martin ER, Jiang Z, Mash DC, Mullen J F, et al. Identifying consensus disease pathways in Parkinson's disease using an integrative systems biology approach. PLoS One. 2011;6(2):e16917.CrossRefPubMedPubMedCentral
57.
go back to reference Kong Y, Liang X, Liu L, Zhang D, Wan C, Gan Z, Yuan L. High throughput sequencing identifies MicroRNAs mediating alpha-Synuclein toxicity by targeting Neuroactive-ligand receptor interaction pathway in early stage of Drosophila Parkinson's disease model. PLoS One. 2015;10(9):e0137432.CrossRefPubMedPubMedCentral Kong Y, Liang X, Liu L, Zhang D, Wan C, Gan Z, Yuan L. High throughput sequencing identifies MicroRNAs mediating alpha-Synuclein toxicity by targeting Neuroactive-ligand receptor interaction pathway in early stage of Drosophila Parkinson's disease model. PLoS One. 2015;10(9):e0137432.CrossRefPubMedPubMedCentral
58.
go back to reference Chen CPLH, Alder JT, Bray L, Kingsbury AE, Francis PT, Foster OJF. Post-Synaptic 5-HT1A and 5-HT2A Receptors Are Increased in Parkinson's Disease Neocortex. Annals NY Acad Sci. 1998;861(1):288–9.CrossRef Chen CPLH, Alder JT, Bray L, Kingsbury AE, Francis PT, Foster OJF. Post-Synaptic 5-HT1A and 5-HT2A Receptors Are Increased in Parkinson's Disease Neocortex. Annals NY Acad Sci. 1998;861(1):288–9.CrossRef
59.
60.
go back to reference Pagano G, Niccolini F, Politis M. The serotonergic system in Parkinson's patients with dyskinesia: evidence from imaging studies. J Neural transm Vienna. 2018;125(8):1217–23.CrossRefPubMed Pagano G, Niccolini F, Politis M. The serotonergic system in Parkinson's patients with dyskinesia: evidence from imaging studies. J Neural transm Vienna. 2018;125(8):1217–23.CrossRefPubMed
61.
go back to reference Threlfell S, Cragg SJ. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci. 2011;5:11.CrossRefPubMedPubMedCentral Threlfell S, Cragg SJ. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci. 2011;5:11.CrossRefPubMedPubMedCentral
62.
go back to reference Perez-Lloret S, Barrantes FJ: Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. Npj Parkinson'S Disease 2016, 2:16001. Perez-Lloret S, Barrantes FJ: Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. Npj Parkinson'S Disease 2016, 2:16001.
63.
go back to reference Bohush A, Niewiadomska G, Filipek A. Role of mitogen activated protein kinase signaling in Parkinson's disease. Int J Mol Sci. 2018;19(10):2973.CrossRefPubMedCentral Bohush A, Niewiadomska G, Filipek A. Role of mitogen activated protein kinase signaling in Parkinson's disease. Int J Mol Sci. 2018;19(10):2973.CrossRefPubMedCentral
Metadata
Title
Systems pharmacology based approach to investigate the in-vivo therapeutic efficacy of Albizia lebbeck (L.) in experimental model of Parkinson’s disease
Authors
Uzma Saleem
Zohaib Raza
Fareeha Anwar
Zunera Chaudary
Bashir Ahmad
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2772-5

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue