Skip to main content
Top
Published in: Neurological Sciences 1/2019

01-01-2019 | Review Article

Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management

Authors: Ramandeep Kaur, Sidharth Mehan, Shamsher Singh

Published in: Neurological Sciences | Issue 1/2019

Login to get access

Abstract

Parkinson’s disease (PD) is the second most common multifactorial neurodegenerative disorder affecting 3% of population during elder age. The loss of substantia nigra, pars compacta (SNpc) neurons and deficiency of striatal dopaminergic neurons produces stables motor deficient. Further, increase alpha-synuclein accumulation, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation plays a crucial role in the pathogenesis of PD. Alpha-synuclein protein encodes for SNCA gene and disturbs the normal physiological neuronal signaling via altering mitochondrial homeostasis. The level of α-synuclein is increased in both normal aging and PD brain to a greater extent and secondly reduced clearance results in accumulation of Lewy bodies (LB). Emerging evidences indicate that mitochondrial dysfunction might be a common cause but pathological insult through protein misfolding, aggregation, and accumulation leads to neuronal apoptosis. The observation supporting that expression of DJ-1, LLRK2, PARKIN, PINK1, and excessive excitotoxicity mediated by dysbalance between GABA and glutamate reduced mitochondrial functioning and increased neurotoxicity. Therefore, the present review summarizes the various pathological mechanisms and also explores the therapeutic strategies which could be useful to ameliorate movement disorder like Parkinsonism.
Literature
1.
go back to reference Błaszczyk JW (2016) Parkinson’s disease and neurodegeneration: GABA-collapse hypothesis. front. Neurosci 10:269 1–8 Błaszczyk JW (2016) Parkinson’s disease and neurodegeneration: GABA-collapse hypothesis. front. Neurosci 10:269 1–8
2.
go back to reference Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, Tamburin S (2016) Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Park Dis 2016:1–18 Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, Tamburin S (2016) Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Park Dis 2016:1–18
3.
go back to reference Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T (2016) The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 46:292–300CrossRefPubMed Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T (2016) The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 46:292–300CrossRefPubMed
4.
5.
go back to reference Gagnon D, Petryszyn S, Sanchez MG, Bories C, Beaulieu JM, De Koninck Y, Parent A, Parent M (2017) Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 27(7):41432–41448 Gagnon D, Petryszyn S, Sanchez MG, Bories C, Beaulieu JM, De Koninck Y, Parent A, Parent M (2017) Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 27(7):41432–41448
6.
go back to reference Longhena F, Faustini G, Missale C, Pizzi M, Spano P, Bellucci A (2017) The contribution of α-synuclein spreading to Parkinson’s disease synaptopathy., neural Plast. 2017 5012129:1–15 Longhena F, Faustini G, Missale C, Pizzi M, Spano P, Bellucci A (2017) The contribution of α-synuclein spreading to Parkinson’s disease synaptopathy., neural Plast. 2017 5012129:1–15
8.
go back to reference Phillipson OT (2017) Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson’s disease. An integrated strategy for management. Ageing Res Rev 40:149–167CrossRefPubMed Phillipson OT (2017) Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson’s disease. An integrated strategy for management. Ageing Res Rev 40:149–167CrossRefPubMed
9.
go back to reference Ihse E, Yamakado H, van Wijk XM, Lawrence R, Esko JD, Masliah E (2017) Cellular internalization of alpha-synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. Sci Rep 7:9008 1–10CrossRefPubMedPubMedCentral Ihse E, Yamakado H, van Wijk XM, Lawrence R, Esko JD, Masliah E (2017) Cellular internalization of alpha-synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. Sci Rep 7:9008 1–10CrossRefPubMedPubMedCentral
10.
go back to reference Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, Melov S, Andersen JK (2012) Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson’s disease. Free Radic Biol Med 53:993–1003CrossRefPubMedPubMedCentral Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, Melov S, Andersen JK (2012) Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson’s disease. Free Radic Biol Med 53:993–1003CrossRefPubMedPubMedCentral
11.
go back to reference Dunn AR, Stout KA, Ozawa M, Lohr KM, Hoffman CA, Bernstein AI, Li Y, Wang M, Sgobio C, Sastry N, Cai H, Caudle WM, Miller GW (2017) Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A 114(11):2253–2262 Dunn AR, Stout KA, Ozawa M, Lohr KM, Hoffman CA, Bernstein AI, Li Y, Wang M, Sgobio C, Sastry N, Cai H, Caudle WM, Miller GW (2017) Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A 114(11):2253–2262
13.
go back to reference Philippart F, Destreel G, Merino-Sepulveda P, Henny P, Engel D, Seutin V (2016) Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons. J Neurosci 36:7234–7245CrossRefPubMedPubMedCentral Philippart F, Destreel G, Merino-Sepulveda P, Henny P, Engel D, Seutin V (2016) Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons. J Neurosci 36:7234–7245CrossRefPubMedPubMedCentral
14.
go back to reference van Horssen J, van Schaik P, Witte M (2017) Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders? Neurosci Lett 3940(17):30542–30548 van Horssen J, van Schaik P, Witte M (2017) Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders? Neurosci Lett 3940(17):30542–30548
16.
go back to reference Ni H-M, Williams JA, Ding W-X (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4:6–13CrossRefPubMed Ni H-M, Williams JA, Ding W-X (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4:6–13CrossRefPubMed
17.
go back to reference Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell Longev 2016:3164734 1–23CrossRefPubMedPubMedCentral Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell Longev 2016:3164734 1–23CrossRefPubMedPubMedCentral
18.
go back to reference Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714CrossRefPubMedPubMedCentral Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714CrossRefPubMedPubMedCentral
19.
go back to reference Camilleri A, Vassallo N (2014) The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease. CNS Neurosci Ther 20:591–602CrossRefPubMedPubMedCentral Camilleri A, Vassallo N (2014) The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease. CNS Neurosci Ther 20:591–602CrossRefPubMedPubMedCentral
20.
go back to reference Subramaniam SR, Chesselet M-F (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106–107:17–32CrossRefPubMed Subramaniam SR, Chesselet M-F (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106–107:17–32CrossRefPubMed
21.
go back to reference Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W (2017) PINK1, Parkin, and mitochondrial quality control: what can we learn about Parkinson’s disease pathobiology? J Parkinsons Dis 7:13–29CrossRefPubMedPubMedCentral Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W (2017) PINK1, Parkin, and mitochondrial quality control: what can we learn about Parkinson’s disease pathobiology? J Parkinsons Dis 7:13–29CrossRefPubMedPubMedCentral
23.
go back to reference Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139:216–231CrossRefPubMed Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139:216–231CrossRefPubMed
24.
go back to reference Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease, Transl. Neurodegener 5:14 1–8CrossRef Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease, Transl. Neurodegener 5:14 1–8CrossRef
26.
go back to reference Zhuang N, Li L, Chen S, Wang T (2016) PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control. Cell Death Dis 7:e2501–e2501CrossRefPubMedPubMedCentral Zhuang N, Li L, Chen S, Wang T (2016) PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control. Cell Death Dis 7:e2501–e2501CrossRefPubMedPubMedCentral
27.
go back to reference Oh SE, Mouradian MM (2018) Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction. Redox Biol 14:211–217CrossRefPubMed Oh SE, Mouradian MM (2018) Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction. Redox Biol 14:211–217CrossRefPubMed
28.
go back to reference Cookson MR (2012) Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med 2:a009415CrossRefPubMedPubMedCentral Cookson MR (2012) Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med 2:a009415CrossRefPubMedPubMedCentral
30.
go back to reference Rosenbusch KE, Kortholt A (2016) Activation mechanism of LRRK2 and its cellular functions in Parkinson’s disease. Park Dis 2016:1–8 Rosenbusch KE, Kortholt A (2016) Activation mechanism of LRRK2 and its cellular functions in Parkinson’s disease. Park Dis 2016:1–8
31.
go back to reference Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, Nishida M, Song L, Wang D, Federoff HJ (2015) PGC−1α promoter methylation in Parkinson’s disease. PLoS One 10:e0134087CrossRefPubMedPubMedCentral Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, Nishida M, Song L, Wang D, Federoff HJ (2015) PGC−1α promoter methylation in Parkinson’s disease. PLoS One 10:e0134087CrossRefPubMedPubMedCentral
32.
go back to reference Jiang H, Kang S-U, Zhang S, Karuppagounder S, Xu J, Lee Y-K, Kang B-G, Lee Y, Zhang J, Pletnikova O, Troncoso JC, Pirooznia S, Andrabi SA, Dawson VL, Dawson TM (2016) Adult conditional knockout of PGC-1 leads to loss of dopamine neurons. eNeuro 3(4):1–8 Jiang H, Kang S-U, Zhang S, Karuppagounder S, Xu J, Lee Y-K, Kang B-G, Lee Y, Zhang J, Pletnikova O, Troncoso JC, Pirooznia S, Andrabi SA, Dawson VL, Dawson TM (2016) Adult conditional knockout of PGC-1 leads to loss of dopamine neurons. eNeuro 3(4):1–8
33.
go back to reference Lee Y, Stevens DA, Kang S-U, Jiang H, Lee Y-I, Ko HS, Scarffe LA, Umanah GE, Kang H, Ham S, Kam T-I, Allen K, Brahmachari S, Kim JW, Neifert S, Yun SP, Fiesel FC, Springer W, Dawson VL, Shin J-H, Dawson TM (2017) PINK1 primes Parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Rep 18:918–932CrossRefPubMedPubMedCentral Lee Y, Stevens DA, Kang S-U, Jiang H, Lee Y-I, Ko HS, Scarffe LA, Umanah GE, Kang H, Ham S, Kam T-I, Allen K, Brahmachari S, Kim JW, Neifert S, Yun SP, Fiesel FC, Springer W, Dawson VL, Shin J-H, Dawson TM (2017) PINK1 primes Parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Rep 18:918–932CrossRefPubMedPubMedCentral
34.
go back to reference Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 125:717–725CrossRefPubMed Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 125:717–725CrossRefPubMed
35.
go back to reference Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127:624–633CrossRefPubMed Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127:624–633CrossRefPubMed
36.
go back to reference Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R (2017) The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front. Mol. Neurosci 10:191 1–22CrossRefPubMedPubMedCentral Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R (2017) The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front. Mol. Neurosci 10:191 1–22CrossRefPubMedPubMedCentral
39.
go back to reference Kaur K, Gill JS, Bansal PK, Deshmukh R (2017) Neuroinflammation - a major cause for striatal dopaminergic degeneration in Parkinson’s disease. J Neurol Sci 381:308–314CrossRefPubMed Kaur K, Gill JS, Bansal PK, Deshmukh R (2017) Neuroinflammation - a major cause for striatal dopaminergic degeneration in Parkinson’s disease. J Neurol Sci 381:308–314CrossRefPubMed
40.
go back to reference Wang Q, Liu Y, Zhou J (2012) Macroautophagy in sporadic and the genetic form of Parkinson’s disease with the A53T α-synuclein mutation. Transl Neurodegener 2012:1–7 Wang Q, Liu Y, Zhou J (2012) Macroautophagy in sporadic and the genetic form of Parkinson’s disease with the A53T α-synuclein mutation. Transl Neurodegener 2012:1–7
42.
go back to reference Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181–1194CrossRefPubMed Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181–1194CrossRefPubMed
43.
go back to reference Morales I, Farías GA, Cortes N, Maccioni RB (2016) Neuroinflammation and neurodegeneration. In: Update dementia. InTech, pp 18–32 Morales I, Farías GA, Cortes N, Maccioni RB (2016) Neuroinflammation and neurodegeneration. In: Update dementia. InTech, pp 18–32
44.
go back to reference Jäkel S, Dimou L (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation. Front. Cell. Neurosci 11:24 1–17CrossRefPubMedPubMedCentral Jäkel S, Dimou L (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation. Front. Cell. Neurosci 11:24 1–17CrossRefPubMedPubMedCentral
45.
46.
go back to reference Hennessy E, Griffin ÉW, Cunningham C (2015) Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNF-α. J Neurosci 35:8411–8422CrossRefPubMedPubMedCentral Hennessy E, Griffin ÉW, Cunningham C (2015) Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNF-α. J Neurosci 35:8411–8422CrossRefPubMedPubMedCentral
47.
go back to reference Tartey S, Takeuchi O (2017) Pathogen recognition and toll-like receptor targeted therapeutics in innate immune cells. Int Rev Immunol 36:57–73CrossRefPubMed Tartey S, Takeuchi O (2017) Pathogen recognition and toll-like receptor targeted therapeutics in innate immune cells. Int Rev Immunol 36:57–73CrossRefPubMed
48.
go back to reference Drouin-Ouellet J, St-Amour I, Saint-Pierre M, Lamontagne-Proulx J, Kriz J, Barker RA, Cicchetti F (2015) Toll-like receptor expression in the blood and brain of patients and a mouse model of Parkinson’s disease. Int J Neuropsychopharmacol 18(6):pyu103CrossRefPubMedCentral Drouin-Ouellet J, St-Amour I, Saint-Pierre M, Lamontagne-Proulx J, Kriz J, Barker RA, Cicchetti F (2015) Toll-like receptor expression in the blood and brain of patients and a mouse model of Parkinson’s disease. Int J Neuropsychopharmacol 18(6):pyu103CrossRefPubMedCentral
49.
go back to reference Dzamko N, Gysbers A, Perera G, Bahar A, Shankar A, Gao J, Fu Y, Halliday GM (2017) Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 133:303–319CrossRefPubMed Dzamko N, Gysbers A, Perera G, Bahar A, Shankar A, Gao J, Fu Y, Halliday GM (2017) Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 133:303–319CrossRefPubMed
51.
go back to reference Erreni M, Manfredi AA, Garlanda C, Mantovani A, Rovere-Querini P (2017) The long pentraxin PTX3: a prototypical sensor of tissue injury and a regulator of homeostasis. Immunol Rev 280:112–125CrossRefPubMed Erreni M, Manfredi AA, Garlanda C, Mantovani A, Rovere-Querini P (2017) The long pentraxin PTX3: a prototypical sensor of tissue injury and a regulator of homeostasis. Immunol Rev 280:112–125CrossRefPubMed
52.
go back to reference Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324CrossRefPubMed Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324CrossRefPubMed
53.
go back to reference Wynne BM, Zou L, Linck V, Hoover RS, Ma H-P, Eaton DC (2017) Regulation of lung epithelial sodium channels by cytokines and chemokines. Front Immunol 8:766CrossRefPubMedPubMedCentral Wynne BM, Zou L, Linck V, Hoover RS, Ma H-P, Eaton DC (2017) Regulation of lung epithelial sodium channels by cytokines and chemokines. Front Immunol 8:766CrossRefPubMedPubMedCentral
54.
go back to reference Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12CrossRefPubMed Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12CrossRefPubMed
56.
go back to reference Ribeiro FM, Vieira LB, Pires RGW, Olmo RP, Ferguson SSG (2017) Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 115:179–191CrossRefPubMed Ribeiro FM, Vieira LB, Pires RGW, Olmo RP, Ferguson SSG (2017) Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 115:179–191CrossRefPubMed
57.
go back to reference Zhang Y, Tan F, Xu P, Qu S (2016) Recent advance in the relationship between excitatory amino acid transporters and Parkinson’s disease. Neural Plast 2016:1–8 Zhang Y, Tan F, Xu P, Qu S (2016) Recent advance in the relationship between excitatory amino acid transporters and Parkinson’s disease. Neural Plast 2016:1–8
58.
go back to reference Jinsmaa Y, Florang VR, Rees JN, Mexas LM, Eckert LL, Allen EMG, Anderson DG, Doorn JA (2011) Dopamine-derived biological reactive intermediates and protein modifications: implications for Parkinson’s disease. Chem Biol Interact 192:118–121CrossRefPubMedPubMedCentral Jinsmaa Y, Florang VR, Rees JN, Mexas LM, Eckert LL, Allen EMG, Anderson DG, Doorn JA (2011) Dopamine-derived biological reactive intermediates and protein modifications: implications for Parkinson’s disease. Chem Biol Interact 192:118–121CrossRefPubMedPubMedCentral
60.
go back to reference Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG (2017) The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J Diabetes Res 2017:1673081CrossRefPubMedPubMedCentral Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG (2017) The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J Diabetes Res 2017:1673081CrossRefPubMedPubMedCentral
61.
go back to reference Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491PubMedPubMedCentral Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491PubMedPubMedCentral
63.
go back to reference Setya S, Madaan T, Tariq M, Razdan BK, Talegaonkar S (2018) Appraisal of transdermal water-in-oil nanoemulgel of selegiline HCl for the effective management of Parkinson’s disease: pharmacodynamic, pharmacokinetic, and biochemical investigations. AAPS PharmSciTech 19:573–589CrossRefPubMed Setya S, Madaan T, Tariq M, Razdan BK, Talegaonkar S (2018) Appraisal of transdermal water-in-oil nanoemulgel of selegiline HCl for the effective management of Parkinson’s disease: pharmacodynamic, pharmacokinetic, and biochemical investigations. AAPS PharmSciTech 19:573–589CrossRefPubMed
64.
go back to reference Yu W, Chen S, Cao L, Tang J, Xiao W, Xiao B (2017) Ginkgolide K promotes the clearance of A53T mutation alpha-synuclein in SH-SY5Y cells. Cell Biol Toxicol 34(4):291–303 Yu W, Chen S, Cao L, Tang J, Xiao W, Xiao B (2017) Ginkgolide K promotes the clearance of A53T mutation alpha-synuclein in SH-SY5Y cells. Cell Biol Toxicol 34(4):291–303
66.
go back to reference Hu G, Gong X, Wang L, Liu M, Liu Y, Fu X, Wang W, Zhang T, Wang X (2017) Triptolide promotes the clearance of α-synuclein by enhancing autophagy in neuronal cells. Mol Neurobiol 54:2361–2372CrossRefPubMed Hu G, Gong X, Wang L, Liu M, Liu Y, Fu X, Wang W, Zhang T, Wang X (2017) Triptolide promotes the clearance of α-synuclein by enhancing autophagy in neuronal cells. Mol Neurobiol 54:2361–2372CrossRefPubMed
68.
go back to reference Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T, Narasimhan B, Kanthasamy A, Kalyanaraman B, Kanthasamy AG (2016) Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J NeuroImmune Pharmacol 11:259–278CrossRefPubMedPubMedCentral Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T, Narasimhan B, Kanthasamy A, Kalyanaraman B, Kanthasamy AG (2016) Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J NeuroImmune Pharmacol 11:259–278CrossRefPubMedPubMedCentral
69.
go back to reference Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2017) Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s disease. J Neurochem 141:766–782CrossRefPubMedPubMedCentral Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2017) Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s disease. J Neurochem 141:766–782CrossRefPubMedPubMedCentral
70.
go back to reference Yu Y, Yang M, Chen R, Chen H (2017) Observation on the curative effect of madopar combined with pramipexole in the treatment of Parkinson’s diseases. Adv Emerg Med 1(6):1–13 Yu Y, Yang M, Chen R, Chen H (2017) Observation on the curative effect of madopar combined with pramipexole in the treatment of Parkinson’s diseases. Adv Emerg Med 1(6):1–13
71.
go back to reference Cereda E, Cilia R, Canesi M, Tesei S, Mariani CB, Zecchinelli AL, Pezzoli G (2017) Efficacy of rasagiline and selegiline in Parkinson’s disease: a head-to-head 3-year retrospective case-control study. J Neurol 264:1254–1263CrossRefPubMedPubMedCentral Cereda E, Cilia R, Canesi M, Tesei S, Mariani CB, Zecchinelli AL, Pezzoli G (2017) Efficacy of rasagiline and selegiline in Parkinson’s disease: a head-to-head 3-year retrospective case-control study. J Neurol 264:1254–1263CrossRefPubMedPubMedCentral
Metadata
Title
Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management
Authors
Ramandeep Kaur
Sidharth Mehan
Shamsher Singh
Publication date
01-01-2019
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 1/2019
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-018-3585-x

Other articles of this Issue 1/2019

Neurological Sciences 1/2019 Go to the issue