Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Systemic Lupus Erythematosus | Research article

Susceptibility of BAFF-var allele carriers to severe SLE with occurrence of lupus nephritis

Authors: Justa Friebus-Kardash, Marten Trendelenburg, Ute Eisenberger, Camillo Ribi, Carlo Chizzolini, Uyen Huynh-Do, Karl Sebastian Lang, Benjamin Wilde, Andreas Kribben, Oliver Witzke, Sebastian Dolff, Cornelia Hardt

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Dysregulation of the B-cell activating factor (BAFF) system is involved in the pathogenesis of systemic lupus erythematosus (SLE). Increased serum concentrations of BAFF are related to lupus nephritis and disease activity among SLE patients. Recently, a variant of the BAFF-encoding gene, BAFF-var, was identified to be associated with autoimmune diseases, in particular SLE, and to promote the production of soluble BAFF. The present study aimed to assess the prevalence of BAFF-var in a cohort of 195 SLE patients and to analyze the association of the BAFF-var genotype (TNSF13B) with various manifestations of SLE.

Methods

A cohort of 195 SLE patients from Central Europe, including 153 patients from the Swiss SLE Cohort Study and 42 patients from the University Hospital Essen, Germany, underwent genotyping for detection of BAFF-var allele.

Results

Of the 195 patients, 18 (9.2%) tested positive for BAFF-var variant according to the minor allele frequency of 4.6%. The presence of BAFF-var was associated with the occurrence of lupus nephritis (p = 0.038) (p = 0.03 and p = 0.003). Among various organ manifestations of SLE, the presence of BAFF-var was associated with the occurrence of lupus nephritis (p = 0.038; odds ratio [OR], 2.4; 95% confidence interval [CI], 0.89–6.34) and renal activity markers such as proteinuria and hematuria (p = 0.03; OR, 2.4; 95% CI, 0.9–6.4 for proteinuria; p = 0.003; OR, 3.9; 95% CI, 1.43–10.76 for hematuria). SLE patients carrying the BAFF-var allele exhibited increased disease activity at study entry, as determined by the physician’s global assessment (PGA: p = 0.002; OR, 4.8; 95% CI, 1.54–14.93) and the SLE Disease Activity Index (p = 0.012; OR, 3.5; 95% CI, 1.12–11.18). Consistent with that, the percentage of patients treated with immunosuppressive agents at study entry was higher among those carrying the BAFF-var allele than among those tested negative for BAFF-var (p = 0.006; OR, 3.7; 95% CI, 1.27–10.84).

Conclusions

Our results indicate an association between the BAFF-var genotype and increased severity of SLE. Determining the BAFF-var status of SLE patients may improve the risk stratification of patients for whom the development of lupus nephritis is more likely and thus may be helpful in the follow-up care and treatment of SLE patients.
Literature
1.
go back to reference Mirabelli G, Cannarile F, Bruni C, Vagelli R, De Luca R, Carli L. One year in review 2015: systemic lupus erythematosus. Clin Exp Rheumatol. 2015;33:414–25.PubMed Mirabelli G, Cannarile F, Bruni C, Vagelli R, De Luca R, Carli L. One year in review 2015: systemic lupus erythematosus. Clin Exp Rheumatol. 2015;33:414–25.PubMed
2.
go back to reference Korbet SM, Schwartz MM, Evans J, Lewis EJ, Collaborative Study Group. Severe lupus nephritis: racial differences in presentation and outcome. J Am Soc Nephrol. 2007;18:244–54.CrossRef Korbet SM, Schwartz MM, Evans J, Lewis EJ, Collaborative Study Group. Severe lupus nephritis: racial differences in presentation and outcome. J Am Soc Nephrol. 2007;18:244–54.CrossRef
3.
go back to reference Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum. 2004;34:501–37.CrossRef Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum. 2004;34:501–37.CrossRef
4.
go back to reference Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358:929–39.CrossRef Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358:929–39.CrossRef
5.
go back to reference Gualtierotti R, Biggioggero M, Penatti AE, Meroni PL. Updating on the pathogenesis of systemic lupus erythematosus. Autoimmun Rev. 2010;10:3–7.CrossRef Gualtierotti R, Biggioggero M, Penatti AE, Meroni PL. Updating on the pathogenesis of systemic lupus erythematosus. Autoimmun Rev. 2010;10:3–7.CrossRef
6.
go back to reference Pan Q, Chen J, Guo L, Lu X, Liao S, Zhao C, et al. Mechanistic insights into environmental and genetic risk factors for systemic lupus erythematosus. Am J Transl Res. 2019;11:1241–54.PubMedPubMedCentral Pan Q, Chen J, Guo L, Lu X, Liao S, Zhao C, et al. Mechanistic insights into environmental and genetic risk factors for systemic lupus erythematosus. Am J Transl Res. 2019;11:1241–54.PubMedPubMedCentral
8.
go back to reference Bangert E, Wakani L, Merchant M, Strand V, Touma Z. Impact of belimumab on patient-reported outcomes in systemic lupus erythematosus: review of clinical studies. Patient Relat Outcome Meas. 2019;10:1–7.CrossRef Bangert E, Wakani L, Merchant M, Strand V, Touma Z. Impact of belimumab on patient-reported outcomes in systemic lupus erythematosus: review of clinical studies. Patient Relat Outcome Meas. 2019;10:1–7.CrossRef
9.
go back to reference Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10:365–73.CrossRef Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10:365–73.CrossRef
10.
go back to reference Sanchez-Niño MD, Ortiz A. That obscure object of Desire': in systemic lupus erythematosus B-cell activating factor/B-lymphocyte stimulator is targeted both by the immune system and by physicians. Nephrol Dial Transplant. 2015;30:394–400.CrossRef Sanchez-Niño MD, Ortiz A. That obscure object of Desire': in systemic lupus erythematosus B-cell activating factor/B-lymphocyte stimulator is targeted both by the immune system and by physicians. Nephrol Dial Transplant. 2015;30:394–400.CrossRef
11.
go back to reference Friebus-Kardash J, Branco L, Ribi C, Chizzolini C, Huynh-Do U, Dubler D, Roux-Lombard P, Dolff S, Kribben A, Eisenberger U, Trendelenburg M. Immune complexes containing serum B-cell activating factor and immunoglobulin G correlate with disease activity in systemic lupus erythematosus. Nephrol Dial Transplant. 2018;33:54–64.CrossRef Friebus-Kardash J, Branco L, Ribi C, Chizzolini C, Huynh-Do U, Dubler D, Roux-Lombard P, Dolff S, Kribben A, Eisenberger U, Trendelenburg M. Immune complexes containing serum B-cell activating factor and immunoglobulin G correlate with disease activity in systemic lupus erythematosus. Nephrol Dial Transplant. 2018;33:54–64.CrossRef
12.
go back to reference Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF. Association of serum B cell activating factor from the tumour necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) with central nervous system and renal disease in systemic lupus erythematosus. Lupus. 2013;22:873–84.CrossRef Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF. Association of serum B cell activating factor from the tumour necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) with central nervous system and renal disease in systemic lupus erythematosus. Lupus. 2013;22:873–84.CrossRef
13.
go back to reference Petri M, Stohl W, Chatham W, McCune WJ, Chevrier M, Ryel J, et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 2008;58:2453–9.CrossRef Petri M, Stohl W, Chatham W, McCune WJ, Chevrier M, Ryel J, et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 2008;58:2453–9.CrossRef
14.
go back to reference Elbirt D, Asher I, Mahlab-Guri K, Bezalel-Rosenberg S, Edelstein V, Sthoeger Z. BLyS levels in sera of patients with systemic lupus erythematosus: clinical and serological correlation. Isr Med Assoc J. 2014;16:491–6.PubMed Elbirt D, Asher I, Mahlab-Guri K, Bezalel-Rosenberg S, Edelstein V, Sthoeger Z. BLyS levels in sera of patients with systemic lupus erythematosus: clinical and serological correlation. Isr Med Assoc J. 2014;16:491–6.PubMed
15.
go back to reference Blair HA, Duggan ST. Belimumab: a review in systemic lupus erythematosus. Drugs. 2018;78:355–66.CrossRef Blair HA, Duggan ST. Belimumab: a review in systemic lupus erythematosus. Drugs. 2018;78:355–66.CrossRef
16.
go back to reference Teng YKO, Bruce IN, Diamond B, Furie RA, van Vollenhoven RF, Gordon D, et al. Phase III, multicentre, randomised, double-blind, placebo-controlled, 104-week study of subcutaneous belimumab administered in combination with rituximab in adults with systemic lupus erythematosus (SLE): BLISS-BELIEVE study protocol. BMJ Open. 2019;9:e025687.CrossRef Teng YKO, Bruce IN, Diamond B, Furie RA, van Vollenhoven RF, Gordon D, et al. Phase III, multicentre, randomised, double-blind, placebo-controlled, 104-week study of subcutaneous belimumab administered in combination with rituximab in adults with systemic lupus erythematosus (SLE): BLISS-BELIEVE study protocol. BMJ Open. 2019;9:e025687.CrossRef
17.
go back to reference Steri M, Orrù V, Idda ML, et al. Overexpression of the cytokine BAFF and autoimmunity risk. N Engl J Med. 2017;376:1615–26.CrossRef Steri M, Orrù V, Idda ML, et al. Overexpression of the cytokine BAFF and autoimmunity risk. N Engl J Med. 2017;376:1615–26.CrossRef
18.
go back to reference Idda ML, Lodde V, McClusky WG, et al. Cooperative translational control of polymorphic BAFF by NF90 and miR-15a. Nucleic Acids Res. 2018;46:12040–51.CrossRef Idda ML, Lodde V, McClusky WG, et al. Cooperative translational control of polymorphic BAFF by NF90 and miR-15a. Nucleic Acids Res. 2018;46:12040–51.CrossRef
19.
go back to reference González-Serna D, Ortiz-Fernández L, Vargas S, et al. Association of a rare variant of the TNFSF13B gene with susceptibility to rheumatoid arthritis and systemic lupus erythematosus. Sci Rep. 2018;8:8195.CrossRef González-Serna D, Ortiz-Fernández L, Vargas S, et al. Association of a rare variant of the TNFSF13B gene with susceptibility to rheumatoid arthritis and systemic lupus erythematosus. Sci Rep. 2018;8:8195.CrossRef
20.
go back to reference Castrejón I, Tani C, Jolly M, Huang A, Mosca M. Indices to assess patients with systemic lupus erythematosus in clinical trials, long-term observational studies, and clinical care. Clin Exp Rheumatol. 2014;32:S-85–95. Castrejón I, Tani C, Jolly M, Huang A, Mosca M. Indices to assess patients with systemic lupus erythematosus in clinical trials, long-term observational studies, and clinical care. Clin Exp Rheumatol. 2014;32:S-85–95.
21.
go back to reference Ceccarelli F, Perricone C, Massaro L, Cipriano E, Alessandri C, Spinelli FR, et al. Assessment of disease activity in systemic lupus erythematosus: lights and shadows. Autoimmun Rev. 2015;14:601–8.CrossRef Ceccarelli F, Perricone C, Massaro L, Cipriano E, Alessandri C, Spinelli FR, et al. Assessment of disease activity in systemic lupus erythematosus: lights and shadows. Autoimmun Rev. 2015;14:601–8.CrossRef
22.
go back to reference Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.CrossRef Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.CrossRef
23.
go back to reference Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K. Analysis on the association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun. 2002;3:424–9.CrossRef Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K. Analysis on the association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun. 2002;3:424–9.CrossRef
24.
go back to reference Schwarting A, Relle M, Meineck M, Föhr B, Triantafyllias K, Weinmann A, et al. Renal tubular epithelial cell-derived BAFF expression mediates kidney damage and correlates with activity of proliferative lupus nephritis in mouse and men. Lupus. 2018;27:243–56.CrossRef Schwarting A, Relle M, Meineck M, Föhr B, Triantafyllias K, Weinmann A, et al. Renal tubular epithelial cell-derived BAFF expression mediates kidney damage and correlates with activity of proliferative lupus nephritis in mouse and men. Lupus. 2018;27:243–56.CrossRef
25.
go back to reference Sun CY, Shen Y, Chen XW, Yan YC, Wu FX, Dai M, et al. The characteristics and significance of locally infiltrating B cells in lupus nephritis and their association with local BAFF expression. Int J Rheumatol. 2013;2013:954292.CrossRef Sun CY, Shen Y, Chen XW, Yan YC, Wu FX, Dai M, et al. The characteristics and significance of locally infiltrating B cells in lupus nephritis and their association with local BAFF expression. Int J Rheumatol. 2013;2013:954292.CrossRef
26.
go back to reference Kang S, Fedoriw Y, Brenneman EK, Truong YK, Kikly K, Vilen BJ. BAFF induces tertiary lymphoid structures and positions T cells within the glomeruli during lupus nephritis. J Immunol. 2017;198:2602–11.CrossRef Kang S, Fedoriw Y, Brenneman EK, Truong YK, Kikly K, Vilen BJ. BAFF induces tertiary lymphoid structures and positions T cells within the glomeruli during lupus nephritis. J Immunol. 2017;198:2602–11.CrossRef
27.
go back to reference Zheng N, Wang D, Ming H, Zhang H, Yu X. BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R. BMC Nephrol. 2015;16:72.CrossRef Zheng N, Wang D, Ming H, Zhang H, Yu X. BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R. BMC Nephrol. 2015;16:72.CrossRef
28.
go back to reference Dass S, Rawstron AC, Vital EM, Henshaw K, McGonagle D, Emery P. Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. Arthritis Rheum. 2008;58:2993–9.CrossRef Dass S, Rawstron AC, Vital EM, Henshaw K, McGonagle D, Emery P. Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. Arthritis Rheum. 2008;58:2993–9.CrossRef
29.
go back to reference Juge PA, Gazal S, Constantin A, Mariette X, Combe B, Tebib J, et al. Variants of genes implicated in type 1 interferon pathway and B-cell activation modulate the EULAR response to rituximab at 24 weeks in rheumatoid arthritis. RMD Open. 2017;3:e000448.CrossRef Juge PA, Gazal S, Constantin A, Mariette X, Combe B, Tebib J, et al. Variants of genes implicated in type 1 interferon pathway and B-cell activation modulate the EULAR response to rituximab at 24 weeks in rheumatoid arthritis. RMD Open. 2017;3:e000448.CrossRef
Metadata
Title
Susceptibility of BAFF-var allele carriers to severe SLE with occurrence of lupus nephritis
Authors
Justa Friebus-Kardash
Marten Trendelenburg
Ute Eisenberger
Camillo Ribi
Carlo Chizzolini
Uyen Huynh-Do
Karl Sebastian Lang
Benjamin Wilde
Andreas Kribben
Oliver Witzke
Sebastian Dolff
Cornelia Hardt
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1623-4

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue