Skip to main content
Top
Published in: BMC Nephrology 1/2015

Open Access 01-12-2015 | Research article

BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R

Authors: Nuoyan Zheng, Donxian Wang, Hongyan Ming, Haiqing Zhang, Xueqing Yu

Published in: BMC Nephrology | Issue 1/2015

Login to get access

Abstract

Background

B cell activating factor belonging to the TNF family (BAFF) is vital for B cell survival, proliferation and activation. Evidence indicates that BAFF is systemically or locally increased in glomerulonephritis (e.g. lupus nephritis, IgA nephropathy). However, the effect of BAFF on human mesangial cells is not known.

Methods

The impact of BAFF on the proliferation of a human mesangial cell line in vitro was investigated. The expression of BAFF receptor (BAFF-R) and downstream signal transduction were explored. The influence of BAFF on the expression of related genes was also studied.

Results

Our data indicated that BAFF had a proliferative effect on human mesangial cells, as supported by the results of cell proliferation assays and the inhibited expression of the pro-apoptotic gene Bim. BAFF-R was expressed on the cell membrane of human mesangial cells and blockade of BAFF/BAFF-R binding abrogated the proliferative effect of BAFF on human mesangial cells. BAFF stimulation led to rapid phosphorylation of NF-κBp65, Akt and MAPK p38 kinase in human mesangial cells, whereas it had no effect on the expression of NF-κB p100 and phosphorylation of Erk. The phosphorylation of Akt was very sensitive to blockade of BAFF/BAFF-R ligation, although activation of MAPK p38 and NF-κBp65 was not. BAFF treatment resulted in decreased expression of BAFF-R, which implied negative feedback regulation after its binding.

Conclusions

BAFF promoted proliferation of human mesangial cells, which was mediated via BAFF-R. The BAFF/BAFF-R interaction triggered Akt, p65 and p38 activation, with Akt phosphorylation being tightly dependent on BAFF/BAFF-R interaction.
Literature
1.
go back to reference Rolink AG, Melchers F. BAFFled B cells survive and thrive: roles of BAFF in B-cell development. Curr Opin Immunol. 2002;14:266–75.CrossRefPubMed Rolink AG, Melchers F. BAFFled B cells survive and thrive: roles of BAFF in B-cell development. Curr Opin Immunol. 2002;14:266–75.CrossRefPubMed
2.
go back to reference Yang M, Hase H, Legarda-Addison D, Varughese L, Seed B, Ting AT. B cell maturation antigen, the receptor for a proliferation-inducing ligand and B cell-activating factor of the TNF family, induces antigen presentation in B cells. J Immunol. 2005;175:2814–24.CrossRefPubMed Yang M, Hase H, Legarda-Addison D, Varughese L, Seed B, Ting AT. B cell maturation antigen, the receptor for a proliferation-inducing ligand and B cell-activating factor of the TNF family, induces antigen presentation in B cells. J Immunol. 2005;175:2814–24.CrossRefPubMed
3.
go back to reference Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293:2111–4.CrossRefPubMed Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293:2111–4.CrossRefPubMed
4.
go back to reference Mccarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest. 2011;121:3991–4002.CrossRefPubMedPubMedCentral Mccarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest. 2011;121:3991–4002.CrossRefPubMedPubMedCentral
5.
go back to reference Bossen C, Schneider P. BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol. 2006;18:263–75.CrossRefPubMed Bossen C, Schneider P. BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol. 2006;18:263–75.CrossRefPubMed
7.
go back to reference Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol. 2001;11:1547–52.CrossRefPubMed Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol. 2001;11:1547–52.CrossRefPubMed
8.
go back to reference Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol. 2002;168:5993–6.CrossRefPubMed Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol. 2002;168:5993–6.CrossRefPubMed
9.
go back to reference Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173:2245–52.CrossRefPubMed Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173:2245–52.CrossRefPubMed
10.
go back to reference Castro I, Wright JA, Damdinsuren B, Hoek KL, Carlesso G, Shinners NP, et al. B cell receptor-mediated sustained c-Rel activation facilitates late transitional B cell survival through control of B cell activating factor receptor and NF-kappaB2. J Immunol. 2009;182:7729–37.CrossRefPubMedPubMedCentral Castro I, Wright JA, Damdinsuren B, Hoek KL, Carlesso G, Shinners NP, et al. B cell receptor-mediated sustained c-Rel activation facilitates late transitional B cell survival through control of B cell activating factor receptor and NF-kappaB2. J Immunol. 2009;182:7729–37.CrossRefPubMedPubMedCentral
11.
go back to reference Secreto F, Manske M, Price-Troska T, Ziesmer S, Hodge LS, Ansell SM. BAFF-R Specific Activation of TRAF6 and the PI3K-Pathway in Lymphoma B Cells. Leuk Lymphoma. 2014;55(8):1884–92.CrossRefPubMedPubMedCentral Secreto F, Manske M, Price-Troska T, Ziesmer S, Hodge LS, Ansell SM. BAFF-R Specific Activation of TRAF6 and the PI3K-Pathway in Lymphoma B Cells. Leuk Lymphoma. 2014;55(8):1884–92.CrossRefPubMedPubMedCentral
12.
go back to reference Badr G, Borhis G, Lefevre EA, Chaoul N, Deshayes F, Dessirier V, et al. BAFF enhances chemotaxis of primary human B cells: a particular synergy between BAFF and CXCL13 on memory B cells. Blood. 2008;111:2744–54.CrossRefPubMed Badr G, Borhis G, Lefevre EA, Chaoul N, Deshayes F, Dessirier V, et al. BAFF enhances chemotaxis of primary human B cells: a particular synergy between BAFF and CXCL13 on memory B cells. Blood. 2008;111:2744–54.CrossRefPubMed
13.
go back to reference Sasaki Y, Calado DP, Derudder E, Zhang B, Shimizu Y, Mackay F, et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci U S A. 2008;105:10883–8.CrossRefPubMedPubMedCentral Sasaki Y, Calado DP, Derudder E, Zhang B, Shimizu Y, Mackay F, et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci U S A. 2008;105:10883–8.CrossRefPubMedPubMedCentral
14.
go back to reference Enzler T, Bonizzi G, Silverman GJ, Otero DC, Widhopf GF, Anzelon-Mills A, et al. Alternative and classical NF-kappa B signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Immunity. 2006;25:403–15.CrossRefPubMed Enzler T, Bonizzi G, Silverman GJ, Otero DC, Widhopf GF, Anzelon-Mills A, et al. Alternative and classical NF-kappa B signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Immunity. 2006;25:403–15.CrossRefPubMed
15.
go back to reference Mackay F, Schneider P. TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine Growth Factor Rev. 2008;19:263–76.CrossRefPubMed Mackay F, Schneider P. TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine Growth Factor Rev. 2008;19:263–76.CrossRefPubMed
16.
go back to reference Chu VT, Enghard P, Riemekasten G, Berek C. In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J Immunol. 2007;179:5947–57.CrossRefPubMed Chu VT, Enghard P, Riemekasten G, Berek C. In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J Immunol. 2007;179:5947–57.CrossRefPubMed
17.
go back to reference Pelekanou V, Notas G, Theodoropoulou K, Kampa M, Takos D, Alexaki VI, et al. Detection of the TNFSF members BAFF, APRIL, TWEAK and their receptors in normal kidney and renal cell carcinomas. Anal Cell Pathol (Amst). 2011;34:49–60.CrossRef Pelekanou V, Notas G, Theodoropoulou K, Kampa M, Takos D, Alexaki VI, et al. Detection of the TNFSF members BAFF, APRIL, TWEAK and their receptors in normal kidney and renal cell carcinomas. Anal Cell Pathol (Amst). 2011;34:49–60.CrossRef
18.
go back to reference Darce JR, Arendt BK, Wu X, Jelinek DF. Regulated expression of BAFF-binding receptors during human B cell differentiation. J Immunol. 2007;179:7276–86.CrossRefPubMed Darce JR, Arendt BK, Wu X, Jelinek DF. Regulated expression of BAFF-binding receptors during human B cell differentiation. J Immunol. 2007;179:7276–86.CrossRefPubMed
19.
go back to reference Eilertsen GO, Van Ghelue M, Strand H, Nossent JC. Increased levels of BAFF in patients with systemic lupus erythematosus are associated with acute-phase reactants, independent of BAFF genetics: a case–control study. Rheumatology (Oxford). 2011;50:2197–205.CrossRef Eilertsen GO, Van Ghelue M, Strand H, Nossent JC. Increased levels of BAFF in patients with systemic lupus erythematosus are associated with acute-phase reactants, independent of BAFF genetics: a case–control study. Rheumatology (Oxford). 2011;50:2197–205.CrossRef
20.
go back to reference Kalled SL, Ambrose C, Hsu YM. BAFF: B cell survival factor and emerging therapeutic target for autoimmune disorders. Expert Opin Ther Targets. 2003;7:115–23.CrossRefPubMed Kalled SL, Ambrose C, Hsu YM. BAFF: B cell survival factor and emerging therapeutic target for autoimmune disorders. Expert Opin Ther Targets. 2003;7:115–23.CrossRefPubMed
21.
go back to reference Ramanujam M, Bethunaickan R, Huang W, Tao H, Madaio MP, Davidson A. Selective blockade of BAFF for the prevention and treatment of systemic lupus erythematosus nephritis in NZM2410 mice. Arthritis Rheum. 2010;62:1457–68.CrossRefPubMedPubMedCentral Ramanujam M, Bethunaickan R, Huang W, Tao H, Madaio MP, Davidson A. Selective blockade of BAFF for the prevention and treatment of systemic lupus erythematosus nephritis in NZM2410 mice. Arthritis Rheum. 2010;62:1457–68.CrossRefPubMedPubMedCentral
22.
go back to reference Xu H, He X, Zhao W, Guo H, Shi Q, Zhu Y, et al. CD256 can be found in antibody-mediated renal allograft rejection tissues. Clin Lab. 2012;58:411–8.PubMed Xu H, He X, Zhao W, Guo H, Shi Q, Zhu Y, et al. CD256 can be found in antibody-mediated renal allograft rejection tissues. Clin Lab. 2012;58:411–8.PubMed
23.
go back to reference Airoldi I, Di Carlo E, Cocco C, Sorrentino C, Fais F, Cilli M, et al. Lack of Il12rb2 signaling predisposes to spontaneous autoimmunity and malignancy. Blood. 2005;106:3846–53.CrossRefPubMed Airoldi I, Di Carlo E, Cocco C, Sorrentino C, Fais F, Cilli M, et al. Lack of Il12rb2 signaling predisposes to spontaneous autoimmunity and malignancy. Blood. 2005;106:3846–53.CrossRefPubMed
24.
go back to reference Veis JH, Yamashita W, Liu YJ, Ooi BS. The biology of mesangial cells in glomerulonephritis. Proc Soc Exp Biol Med. 1990;195:160–7.CrossRefPubMed Veis JH, Yamashita W, Liu YJ, Ooi BS. The biology of mesangial cells in glomerulonephritis. Proc Soc Exp Biol Med. 1990;195:160–7.CrossRefPubMed
25.
go back to reference Wong CY, Cheong SK, Mok PL, Leong CF. Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model. Pathology. 2008;40:52–7.CrossRefPubMed Wong CY, Cheong SK, Mok PL, Leong CF. Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model. Pathology. 2008;40:52–7.CrossRefPubMed
26.
go back to reference Wong CY, Tan EL, Cheong SK. In vitro differentiation of mesenchymal stem cells into mesangial cells when co-cultured with injured mesangial cells. Cell Biol Int. 2014;38:497–501.CrossRefPubMed Wong CY, Tan EL, Cheong SK. In vitro differentiation of mesenchymal stem cells into mesangial cells when co-cultured with injured mesangial cells. Cell Biol Int. 2014;38:497–501.CrossRefPubMed
27.
go back to reference Sun XY, An J, Fu B, Li J. [Isolation, identification and in vitro culture of human glomerular mesangial cells]. Di Yi Jun Yi Da Xue Xue Bao. 2003;23:795–7.PubMed Sun XY, An J, Fu B, Li J. [Isolation, identification and in vitro culture of human glomerular mesangial cells]. Di Yi Jun Yi Da Xue Xue Bao. 2003;23:795–7.PubMed
28.
go back to reference Scindia YM, Deshmukh US, Bagavant H. Mesangial pathology in glomerular disease: targets for therapeutic intervention. Adv Drug Deliv Rev. 2010;62:1337–43.CrossRefPubMedPubMedCentral Scindia YM, Deshmukh US, Bagavant H. Mesangial pathology in glomerular disease: targets for therapeutic intervention. Adv Drug Deliv Rev. 2010;62:1337–43.CrossRefPubMedPubMedCentral
30.
go back to reference Nobiling R, Buhrle CP. The mesangial cell culture: a tool for the study of the electrophysiological and pharmacological properties of the glomerular mesangial cell. Differentiation. 1987;36:47–56.CrossRefPubMed Nobiling R, Buhrle CP. The mesangial cell culture: a tool for the study of the electrophysiological and pharmacological properties of the glomerular mesangial cell. Differentiation. 1987;36:47–56.CrossRefPubMed
31.
go back to reference De Zubiria SA, Herrera-Diaz C. Lupus nephritis: an overview of recent findings. Autoimmune Dis. 2012;2012:849684. De Zubiria SA, Herrera-Diaz C. Lupus nephritis: an overview of recent findings. Autoimmune Dis. 2012;2012:849684.
33.
go back to reference Tomino Y. Pathogenetic and therapeutic approaches to IgA nephropathy using a spontaneous animal model, the ddY mouse. Clin Exp Nephrol. 2011;15:1–7.CrossRefPubMed Tomino Y. Pathogenetic and therapeutic approaches to IgA nephropathy using a spontaneous animal model, the ddY mouse. Clin Exp Nephrol. 2011;15:1–7.CrossRefPubMed
34.
go back to reference Tomino Y. Spontaneous animal model, ddY mouse, for studying the pathogenesis and treatment in patients with immunoglobulin A nephropathy. Nephrology (Carlton). 2010;15:1–6.CrossRef Tomino Y. Spontaneous animal model, ddY mouse, for studying the pathogenesis and treatment in patients with immunoglobulin A nephropathy. Nephrology (Carlton). 2010;15:1–6.CrossRef
35.
go back to reference Neusser MA, Lindenmeyer MT, Edenhofer I, Gaiser S, Kretzler M, Regele H, et al. Intrarenal production of B-cell survival factors in human lupus nephritis. Mod Pathol. 2011;24:98–107.CrossRefPubMed Neusser MA, Lindenmeyer MT, Edenhofer I, Gaiser S, Kretzler M, Regele H, et al. Intrarenal production of B-cell survival factors in human lupus nephritis. Mod Pathol. 2011;24:98–107.CrossRefPubMed
36.
go back to reference He F, Peng F, Xia X, Zhao C, Luo Q, Guan W, et al. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia. 2014;57:1726–36.CrossRefPubMed He F, Peng F, Xia X, Zhao C, Luo Q, Guan W, et al. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia. 2014;57:1726–36.CrossRefPubMed
37.
go back to reference Fletcher CA, Sutherland AP, Groom JR, Batten ML, Ng LG, Gommerman J, et al. Development of nephritis but not sialadenitis in autoimmune-prone BAFF transgenic mice lacking marginal zone B cells. Eur J Immunol. 2006;36:2504–14.CrossRefPubMed Fletcher CA, Sutherland AP, Groom JR, Batten ML, Ng LG, Gommerman J, et al. Development of nephritis but not sialadenitis in autoimmune-prone BAFF transgenic mice lacking marginal zone B cells. Eur J Immunol. 2006;36:2504–14.CrossRefPubMed
38.
go back to reference Mccarthy DD, Chiu S, Gao Y, Summers-Deluca LE, Gommerman JL. BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol. 2006;241:85–94.CrossRefPubMed Mccarthy DD, Chiu S, Gao Y, Summers-Deluca LE, Gommerman JL. BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol. 2006;241:85–94.CrossRefPubMed
39.
go back to reference Sun CY, Shen Y, Chen XW, Yan YC, Wu FX, Dai M, et al. The Characteristics and Significance of Locally Infiltrating B Cells in Lupus Nephritis and Their Association with Local BAFF Expression. Int J Rheumatol. 2013;2013:954292.CrossRefPubMedPubMedCentral Sun CY, Shen Y, Chen XW, Yan YC, Wu FX, Dai M, et al. The Characteristics and Significance of Locally Infiltrating B Cells in Lupus Nephritis and Their Association with Local BAFF Expression. Int J Rheumatol. 2013;2013:954292.CrossRefPubMedPubMedCentral
40.
41.
go back to reference Collins CE, Gavin AL, Migone TS, Hilbert DM, Nemazee D, Stohl W. B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res Ther. 2006;8:R6.CrossRefPubMed Collins CE, Gavin AL, Migone TS, Hilbert DM, Nemazee D, Stohl W. B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res Ther. 2006;8:R6.CrossRefPubMed
42.
go back to reference Morrison MD, Reiley W, Zhang M, Sun SC. An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-kappaB signaling pathway. J Biol Chem. 2005;280:10018–24.CrossRefPubMed Morrison MD, Reiley W, Zhang M, Sun SC. An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-kappaB signaling pathway. J Biol Chem. 2005;280:10018–24.CrossRefPubMed
43.
go back to reference Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med. 2006;203:2551–62.CrossRefPubMedPubMedCentral Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med. 2006;203:2551–62.CrossRefPubMedPubMedCentral
44.
go back to reference Hatzoglou A, Roussel J, Bourgeade MF, Rogier E, Madry C, Inoue J, et al. TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. J Immunol. 2000;165:1322–30.CrossRefPubMed Hatzoglou A, Roussel J, Bourgeade MF, Rogier E, Madry C, Inoue J, et al. TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. J Immunol. 2000;165:1322–30.CrossRefPubMed
45.
go back to reference Bergmann H, Yabas M, Short A, Miosge L, Barthel N, Teh CE, et al. B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8- dendritic cells require the intramembrane endopeptidase SPPL2A. J Exp Med. 2013;210:31–40.CrossRefPubMedPubMedCentral Bergmann H, Yabas M, Short A, Miosge L, Barthel N, Teh CE, et al. B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8- dendritic cells require the intramembrane endopeptidase SPPL2A. J Exp Med. 2013;210:31–40.CrossRefPubMedPubMedCentral
46.
go back to reference Zhu S, Evans S, Yan B, Povsic TJ, Tapson V, Goldschmidt-Clermont PJ, et al. Transcriptional regulation of Bim by FOXO3a and Akt mediates scleroderma serum-induced apoptosis in endothelial progenitor cells. Circulation. 2008;118:2156–65.CrossRefPubMedPubMedCentral Zhu S, Evans S, Yan B, Povsic TJ, Tapson V, Goldschmidt-Clermont PJ, et al. Transcriptional regulation of Bim by FOXO3a and Akt mediates scleroderma serum-induced apoptosis in endothelial progenitor cells. Circulation. 2008;118:2156–65.CrossRefPubMedPubMedCentral
Metadata
Title
BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R
Authors
Nuoyan Zheng
Donxian Wang
Hongyan Ming
Haiqing Zhang
Xueqing Yu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2015
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-015-0064-y

Other articles of this Issue 1/2015

BMC Nephrology 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.