Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

01-12-2020 | Malaria | Research article

Comprehensive proteomics investigation of P. vivax-infected human plasma and parasite isolates

Authors: Apoorva Venkatesh, Shalini Aggarwal, Swati Kumar, Srushti Rajyaguru, Vipin Kumar, Sheetal Bankar, Jayanthi Shastri, Swati Patankar, Sanjeeva Srivastava

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

In recent times, Plasmodium vivax (P. vivax) has become a serious threat to public health due to its ability to cause severe infection with fatal outcomes. Its unique biology makes it resilient to control measures that are otherwise effective against P. falciparum. A deeper understanding of P. vivax biology and pathogenesis is, therefore, essential for developing the right control strategies. Proteomics of P. falciparum has been helpful in studying disease biology and elucidating molecular mechanisms involved in the development of disease. However, unlike P. falciparum, proteomics data for P. vivax infection is minimal due to the absence of a continuous culture system. The dependence on clinical samples and animal models has drastically limited P. vivax research, creating critical knowledge gaps in our understanding of the disease. This study describes an in-depth proteomics analysis of P. vivax-infected human plasma and parasite isolates, to understand parasite biology, pathogenesis, and to identify new diagnostic targets for P. vivax malaria.

Methods

A mass-spectrometry- (MS) based proteomics approach (Q Exactive) was applied to analyze human plasma and parasite isolates from vivax malaria patients visiting a primary health centre in India. Additionally, a targeted proteomics assay was standardized for validating unique peptides of most recurring parasite proteins.

Results

Thirty-eight P. vivax proteins were detected in human plasma with high confidence. Several glycolytic enzymes were found along with hypothetical, cytoskeletal, ribosomal, and nuclear proteins. Additionally, 103 highly abundant P. vivax proteins were detected in parasite isolates. This represents the highest number of parasite proteins to be reported from clinical samples so far. Interestingly, five of these; three Plasmodium exported proteins (PVX_003545, PVX_003555 and PVX_121935), a hypothetical protein (PVX_083555) and Pvstp1 (subtelomeric transmembrane protein 1, PVX_094303) were found in both plasma and parasite isolates.

Conclusions

A parasite proteomics investigation is essential to understand disease pathobiology and design novel interventions. Control strategies against P. vivax also depend on early diagnosis. This work provides deeper insights into the biology of P. vivax by identifying proteins expressed by the parasite during its complex life-cycle within the human host. The study also reports antigens that may be explored as diagnostic candidates.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization (WHO), World Malaria Report, 2017. World Health Organization (WHO), World Malaria Report, 2017.
2.
go back to reference Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481.CrossRef Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481.CrossRef
3.
go back to reference Aashish A, Manigandan G. Complicated vivax malaria, an often underestimated condition - case report. J Fam Community Med. 2015;22:180–2.CrossRef Aashish A, Manigandan G. Complicated vivax malaria, an often underestimated condition - case report. J Fam Community Med. 2015;22:180–2.CrossRef
6.
go back to reference Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9:555–66.CrossRef Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9:555–66.CrossRef
7.
go back to reference Olliaro PL, Barnwell JW, Barry A, Mendis K, Mueller I, Reeder JC, Shanks GD, Snounou G, Wongsrichanalai C. Implications of Plasmodium vivax biology for control, elimination, and research. Am J Trop Med Hyg. 2016;95:4–14.CrossRef Olliaro PL, Barnwell JW, Barry A, Mendis K, Mueller I, Reeder JC, Shanks GD, Snounou G, Wongsrichanalai C. Implications of Plasmodium vivax biology for control, elimination, and research. Am J Trop Med Hyg. 2016;95:4–14.CrossRef
8.
go back to reference He Q-Y, Chiu J-F. Proteomics in biomarker discovery and drug development. J Cell Biochem. 2003;89:868–86.CrossRef He Q-Y, Chiu J-F. Proteomics in biomarker discovery and drug development. J Cell Biochem. 2003;89:868–86.CrossRef
9.
go back to reference Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12:483–90.CrossRef Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12:483–90.CrossRef
10.
go back to reference Swearingen KE, Lindner SE. Plasmodium parasites viewed through proteomics. Trends Parasitol. 2018;34:945–60.CrossRef Swearingen KE, Lindner SE. Plasmodium parasites viewed through proteomics. Trends Parasitol. 2018;34:945–60.CrossRef
11.
go back to reference Lasonder E, Ishihama Y, Andersen JS, Vermunt AMW, Pain A, Sauerwein RW, Eling WMC, Hall N, Waters AP, Stunnenberg HG, Mann M. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002;419:537–42.CrossRef Lasonder E, Ishihama Y, Andersen JS, Vermunt AMW, Pain A, Sauerwein RW, Eling WMC, Hall N, Waters AP, Stunnenberg HG, Mann M. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002;419:537–42.CrossRef
12.
go back to reference Ray S, Patel SK, Venkatesh A, Bhave A, Kumar V, Singh V, Chatterjee G, Shah VG, Sharma S, Renu D, Nafis N, Gandhe P, Gogtay N, Thatte U, Sehgal K, Verma S, Karak A, Khanra D, Talukdar A, Kochar SK, V. S B, Kochar DK, Rojh D, Varma SG, Gandhi MN, Srikanth R, Patankar S, Srivastava S. Clinicopathological Analysis and Multipronged Quantitative Proteomics Reveal Oxidative Stress and Cytoskeletal Proteins as Possible Markers for Severe Vivax Malaria. Sci. Rep. 2016. https://doi.org/10.1038/srep24557. Ray S, Patel SK, Venkatesh A, Bhave A, Kumar V, Singh V, Chatterjee G, Shah VG, Sharma S, Renu D, Nafis N, Gandhe P, Gogtay N, Thatte U, Sehgal K, Verma S, Karak A, Khanra D, Talukdar A, Kochar SK, V. S B, Kochar DK, Rojh D, Varma SG, Gandhi MN, Srikanth R, Patankar S, Srivastava S. Clinicopathological Analysis and Multipronged Quantitative Proteomics Reveal Oxidative Stress and Cytoskeletal Proteins as Possible Markers for Severe Vivax Malaria. Sci. Rep. 2016. https://​doi.​org/​10.​1038/​srep24557.
13.
14.
go back to reference Bachmann J, Burté F, Pramana S, Conte I, Brown BJ, Orimadegun AE, Ajetunmobi WA, Afolabi NK, Akinkunmi F, Omokhodion S, Akinbami FO, Shokunbi WA, Kampf C, Pawitan Y, Uhlén M, Sodeinde O, Schwenk JM, Wahlgren M, Fernandez-Reyes D, Nilsson P. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004038.CrossRef Bachmann J, Burté F, Pramana S, Conte I, Brown BJ, Orimadegun AE, Ajetunmobi WA, Afolabi NK, Akinkunmi F, Omokhodion S, Akinbami FO, Shokunbi WA, Kampf C, Pawitan Y, Uhlén M, Sodeinde O, Schwenk JM, Wahlgren M, Fernandez-Reyes D, Nilsson P. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog. 2014. https://​doi.​org/​10.​1371/​journal.​ppat.​1004038.CrossRef
15.
go back to reference Bertin GI, Sabbagh A, Argy N, Salnot V, Ezinmegnon S, Agbota G, Ladipo Y, Alao JM, Sagbo G, Guillonneau F, Deloron P. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria. Sci Rep. 2016. https://doi.org/10.1038/srep26773. Bertin GI, Sabbagh A, Argy N, Salnot V, Ezinmegnon S, Agbota G, Ladipo Y, Alao JM, Sagbo G, Guillonneau F, Deloron P. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria. Sci Rep. 2016. https://​doi.​org/​10.​1038/​srep26773.
17.
go back to reference Moreno-Pérez DA, Dégano R, Ibarrola N, Muro A, Patarroyo MA. Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteome. 2015;113:268–80.CrossRef Moreno-Pérez DA, Dégano R, Ibarrola N, Muro A, Patarroyo MA. Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteome. 2015;113:268–80.CrossRef
18.
go back to reference Anderson DC, Lapp SA, Akinyi S, Meyer EVS, Barnwell JW, Korir-Morrison C, Galinski MR. Plasmodium vivax trophozoite-stage proteomes. J Proteome. 2015;115:157–76.CrossRef Anderson DC, Lapp SA, Akinyi S, Meyer EVS, Barnwell JW, Korir-Morrison C, Galinski MR. Plasmodium vivax trophozoite-stage proteomes. J Proteome. 2015;115:157–76.CrossRef
21.
go back to reference Roobsoong W, Roytrakul S, Sattabongkot J, Li J, Udomsangpetch R, Cui L. Determination of the Plasmodium vivax schizont stage proteome. J Proteome. 2011;74:1701–10.CrossRef Roobsoong W, Roytrakul S, Sattabongkot J, Li J, Udomsangpetch R, Cui L. Determination of the Plasmodium vivax schizont stage proteome. J Proteome. 2011;74:1701–10.CrossRef
22.
go back to reference Gualdrón-López M, Flannery EL, Kangwanrangsan N, Chuenchob V, Fernandez-Orth D, Segui-Barber J, Royo F, Falcón-Pérez JM, Fernandez-Becerra C, Lacerda MVG, Kappe SHI, Sattabongkot J, Gonzalez JR, Mikolajczak SA, del Portillo HA. Characterization of Plasmodium vivax proteins in plasma-derived Exosomes from malaria-infected liver-chimeric humanized mice. Front. Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01271. Gualdrón-López M, Flannery EL, Kangwanrangsan N, Chuenchob V, Fernandez-Orth D, Segui-Barber J, Royo F, Falcón-Pérez JM, Fernandez-Becerra C, Lacerda MVG, Kappe SHI, Sattabongkot J, Gonzalez JR, Mikolajczak SA, del Portillo HA. Characterization of Plasmodium vivax proteins in plasma-derived Exosomes from malaria-infected liver-chimeric humanized mice. Front. Microbiol. 2018. https://​doi.​org/​10.​3389/​fmicb.​2018.​01271.
23.
go back to reference Thézénas ML, Huang H, Njie M, Ramaprasad A, Nwakanma DC, Fischer R, Digleria K, Walther M, Conway DJ, Kessler BM, Casals-Pascual C. PfHPRT: a new biomarker candidate of acute Plasmodium falciparum infection. J Proteome Res. 2013;12:1211–22.CrossRef Thézénas ML, Huang H, Njie M, Ramaprasad A, Nwakanma DC, Fischer R, Digleria K, Walther M, Conway DJ, Kessler BM, Casals-Pascual C. PfHPRT: a new biomarker candidate of acute Plasmodium falciparum infection. J Proteome Res. 2013;12:1211–22.CrossRef
24.
go back to reference Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics MCP. 2002;1:845–67.CrossRef Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics MCP. 2002;1:845–67.CrossRef
26.
go back to reference Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RMR, Crabb BS, del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang’a S, Kooij TWA, Korsinczky M, Meyer EV-S, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455:757–63.CrossRef Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RMR, Crabb BS, del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang’a S, Kooij TWA, Korsinczky M, Meyer EV-S, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455:757–63.CrossRef
27.
go back to reference Behr C, Sarthou JL, Rogier C, Trape JF, Dat MH, Michel JC, Aribot G, Dieye A, Claverie JM, Druihle P. Antibodies and reactive T cells against the malaria heat-shock protein Pf72/Hsp70-1 and derived peptides in individuals continuously exposed to Plasmodium falciparum. J Immunol. 1992;149:3321–30.PubMed Behr C, Sarthou JL, Rogier C, Trape JF, Dat MH, Michel JC, Aribot G, Dieye A, Claverie JM, Druihle P. Antibodies and reactive T cells against the malaria heat-shock protein Pf72/Hsp70-1 and derived peptides in individuals continuously exposed to Plasmodium falciparum. J Immunol. 1992;149:3321–30.PubMed
28.
go back to reference Na B-K, Park J-W, Lee H-W, Lin K, Kim S-H, Bae Y-A, Sohn W-M, Kim T-S, Kong Y. Characterization of Plasmodium vivax heat shock protein 70 and evaluation of its value for Serodiagnosis of tertian malaria. Clin Vaccine Immunol. 2007;14:320–2.CrossRef Na B-K, Park J-W, Lee H-W, Lin K, Kim S-H, Bae Y-A, Sohn W-M, Kim T-S, Kong Y. Characterization of Plasmodium vivax heat shock protein 70 and evaluation of its value for Serodiagnosis of tertian malaria. Clin Vaccine Immunol. 2007;14:320–2.CrossRef
29.
go back to reference Grall M, Srivastava IK, Schmidt M, Garcia AM, Mauël J, Perrin LH. Plasmodium falciparum: identification and purification of the phosphoglycerate kinase of the malaria parasite. Exp Parasitol. 1992;75:10–8.CrossRef Grall M, Srivastava IK, Schmidt M, Garcia AM, Mauël J, Perrin LH. Plasmodium falciparum: identification and purification of the phosphoglycerate kinase of the malaria parasite. Exp Parasitol. 1992;75:10–8.CrossRef
30.
go back to reference Mahajan B, Noiva R, Yadava A, Zheng H, Majam V, Mohan KVK, Moch JK, Haynes JD, Nakhasi H, Kumar S. Protein disulfide isomerase assisted protein folding in malaria parasites. Int J Parasitol. 2006;36:1037–48.CrossRef Mahajan B, Noiva R, Yadava A, Zheng H, Majam V, Mohan KVK, Moch JK, Haynes JD, Nakhasi H, Kumar S. Protein disulfide isomerase assisted protein folding in malaria parasites. Int J Parasitol. 2006;36:1037–48.CrossRef
31.
go back to reference Krause RGE, Hurdayal R, Choveaux D, Przyborski JM, Coetzer THT, Goldring JPD. Plasmodium glyceraldehyde-3-phosphate dehydrogenase: a potential malaria diagnostic target. Exp Parasitol. 2017;179:7–19.CrossRef Krause RGE, Hurdayal R, Choveaux D, Przyborski JM, Coetzer THT, Goldring JPD. Plasmodium glyceraldehyde-3-phosphate dehydrogenase: a potential malaria diagnostic target. Exp Parasitol. 2017;179:7–19.CrossRef
32.
go back to reference Heaven MR, Funk AJ, Cobbs AL, Haffey WD, Norris JL, McCullumsmith RE, Greis KD. Systematic evaluation of data-independent Acquisition for Sensitive and Reproducible Proteomics – a prototype Design for a Single Injection Assay. J Mass Spectrom JMS. 2016;51:1–11.CrossRef Heaven MR, Funk AJ, Cobbs AL, Haffey WD, Norris JL, McCullumsmith RE, Greis KD. Systematic evaluation of data-independent Acquisition for Sensitive and Reproducible Proteomics – a prototype Design for a Single Injection Assay. J Mass Spectrom JMS. 2016;51:1–11.CrossRef
33.
go back to reference Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, Hüttenhain R, Koomen JM, Liebler DC, Liu T, MacLean B, Mani DR, Mansfield E, Neubert H, Paulovich AG, Reiter L, Vitek O, Aebersold R, Anderson L, Bethem R, Blonder J, Boja E, Botelho J, Boyne M, Bradshaw RA, Burlingame AL, Chan D, Keshishian H, Kuhn E, Kinsinger C, Lee JSH, Lee S-W, Moritz R, Oses-Prieto J, Rifai N, Ritchie J, Rodriguez H, Srinivas PR, Townsend RR, Van Eyk J, Whiteley G, Wiita A, Weintraub S. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol. Cell. Proteomics MCP. 2014;13:907–17.CrossRef Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, Hüttenhain R, Koomen JM, Liebler DC, Liu T, MacLean B, Mani DR, Mansfield E, Neubert H, Paulovich AG, Reiter L, Vitek O, Aebersold R, Anderson L, Bethem R, Blonder J, Boja E, Botelho J, Boyne M, Bradshaw RA, Burlingame AL, Chan D, Keshishian H, Kuhn E, Kinsinger C, Lee JSH, Lee S-W, Moritz R, Oses-Prieto J, Rifai N, Ritchie J, Rodriguez H, Srinivas PR, Townsend RR, Van Eyk J, Whiteley G, Wiita A, Weintraub S. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol. Cell. Proteomics MCP. 2014;13:907–17.CrossRef
Metadata
Title
Comprehensive proteomics investigation of P. vivax-infected human plasma and parasite isolates
Authors
Apoorva Venkatesh
Shalini Aggarwal
Swati Kumar
Srushti Rajyaguru
Vipin Kumar
Sheetal Bankar
Jayanthi Shastri
Swati Patankar
Sanjeeva Srivastava
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-4885-3

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue