Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

01-12-2020 | Tuberculosis | Research article

Mycobacterial antigens in pleural fluid mononuclear cells to diagnose pleural tuberculosis in HIV co-infected patients

Authors: Tehmina Mustafa, Ida Wergeland, Kamaldeen Baba, Sharad Pathak, Anwar A. Hoosen, Anne Margarita Dyrhol-Riise

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Extra pulmonary manifestation of tuberculosis (TB) accounts for approximately one-half of TB cases in HIV-infected individuals with pleural TB as the second most common location. Even though mycobacteria are cleared, mycobacterial antigens may persist in infected tissues, causing sustained inflammation and chronicity of the disease. The aim of this study was to explore various mycobacterial antigens in pleural effusions, the impact of HIV infection and CD4+ T-cell depletion on the presence of antigens, and the diagnostic potential of antigens for improved and rapid diagnosis of pleural TB.

Methods

Pleural fluid specimens were collected from patients presenting with clinically suspected pleural TB, and processed routinely for culture, cytology, and adenosine deaminase activity analysis. HIV status and CD4+ T-cell counts were recorded. Pleural fluid mononuclear cells (PFMC) were isolated, and cell smears were stained with acid-fast staining and immunocytochemistry for various mycobacterial antigens. Real-time and nested-PCR were performed. Patients were categorized as pleural TB or non-TB cases using a composite reference standard. Performance of the mycobacterial antigens as diagnostic test was assessed.

Results

A total of 41 patients were enrolled, of which 32 were classified as pleural TB and 9 as non-TB. Thirteen patients had culture confirmed pleural TB, 26 (81%) were HIV-TB co-infected, and 64% had < 100 CD4+ T-cells/microL. Both secreted and cell-wall mycobacterial antigens were detected in PFMC. Lipoarabinomannan (LAM) was the most frequently detected antigen. There was no direct correlation between positive culture and antigens. Cases with low CD4+ T-cell counts had higher bacterial and antigen burden. By combining detection of secreted antigen or LAM, the sensitivity and specificity to diagnose pleural TB was 56 and 78%, respectively, as compared to 41 and 100% for culture, 53 and 89% for nested PCR, and 6 and 100% for real-time PCR.

Conclusion

Mycobacterial antigens were detectable in PFMC from tuberculous pleural effusions, even in cases where viable mycobacteria or bacterial DNA were not always detected. Thus, a combination of secreted antigen and LAM detection by immunocytochemistry may be a complement to acid-fast staining and contribute to rapid and accurate diagnosis of pleural TB.
Appendix
Available only for authorised users
Literature
2.
go back to reference Harries AD, Nyangulu DS, Kangombe C, Ndalama D, Wirima JJ, Salaniponi FM, et al. The scourge of HIV-related tuberculosis: a cohort study in a district general hospital in Malawi. Ann Trop Med Parasitol. 1997;91(7):771–6.PubMedCrossRef Harries AD, Nyangulu DS, Kangombe C, Ndalama D, Wirima JJ, Salaniponi FM, et al. The scourge of HIV-related tuberculosis: a cohort study in a district general hospital in Malawi. Ann Trop Med Parasitol. 1997;91(7):771–6.PubMedCrossRef
3.
go back to reference Jones BE, Young SM, Antoniskis D, Davidson PT, Kramer F, Barnes PF. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis. 1993;148(5):1292–7.PubMedCrossRef Jones BE, Young SM, Antoniskis D, Davidson PT, Kramer F, Barnes PF. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis. 1993;148(5):1292–7.PubMedCrossRef
4.
go back to reference Vorster MJ, Allwood BW, Diacon AH, Koegelenberg CF. Tuberculous pleural effusions: advances and controversies. J Thorac Dis. 2015;7(6):981–91.PubMedPubMedCentral Vorster MJ, Allwood BW, Diacon AH, Koegelenberg CF. Tuberculous pleural effusions: advances and controversies. J Thorac Dis. 2015;7(6):981–91.PubMedPubMedCentral
5.
go back to reference Diacon AH, Van de Wal BW, Wyser C, Smedema JP, Bezuidenhout J, Bolliger CT, et al. Diagnostic tools in tuberculous pleurisy: a direct comparative study. Eur Respir J. 2003;22(4):589–91.PubMedCrossRef Diacon AH, Van de Wal BW, Wyser C, Smedema JP, Bezuidenhout J, Bolliger CT, et al. Diagnostic tools in tuberculous pleurisy: a direct comparative study. Eur Respir J. 2003;22(4):589–91.PubMedCrossRef
7.
go back to reference Casalini AG, Cusmano F, Sverzellati N, Mori PA, Majori M. An undiagnosed pleural effusion with surprising consequences. Respir Med Case Rep. 2017;22:53–6.PubMedPubMedCentral Casalini AG, Cusmano F, Sverzellati N, Mori PA, Majori M. An undiagnosed pleural effusion with surprising consequences. Respir Med Case Rep. 2017;22:53–6.PubMedPubMedCentral
8.
go back to reference Roper WH, Waring JJ. Primary serofibrinous pleural effusion in military personnel. Am Rev Tuberc. 1955;71(5):616–34.PubMed Roper WH, Waring JJ. Primary serofibrinous pleural effusion in military personnel. Am Rev Tuberc. 1955;71(5):616–34.PubMed
9.
go back to reference Koh WJ. Progression of Tuberculous pleurisy: from a lymphocyte-predominant free-flowing effusion to a neutrophil-predominant Loculated effusion. Tuberc Respir Dis (Seoul). 2017;80(1):90–2.CrossRef Koh WJ. Progression of Tuberculous pleurisy: from a lymphocyte-predominant free-flowing effusion to a neutrophil-predominant Loculated effusion. Tuberc Respir Dis (Seoul). 2017;80(1):90–2.CrossRef
10.
go back to reference Ruan SY, Chuang YC, Wang JY, Lin JW, Chien JY, Huang CT, et al. Revisiting tuberculous pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area. Thorax. 2012;67(9):822–7.PubMedPubMedCentralCrossRef Ruan SY, Chuang YC, Wang JY, Lin JW, Chien JY, Huang CT, et al. Revisiting tuberculous pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area. Thorax. 2012;67(9):822–7.PubMedPubMedCentralCrossRef
11.
go back to reference Shaw JA, Irusen EM, Diacon AH, Koegelenberg CF. Pleural tuberculosis: A concise clinical review. Clin Respir J. 2018;12(5):1779–86.PubMedCrossRef Shaw JA, Irusen EM, Diacon AH, Koegelenberg CF. Pleural tuberculosis: A concise clinical review. Clin Respir J. 2018;12(5):1779–86.PubMedCrossRef
12.
go back to reference Emile JF, Patey N, Altare F, Lamhamedi S, Jouanguy E, Boman F, et al. Correlation of granuloma structure with clinical outcome defines two types of idiopathic disseminated BCG infection. J Pathol. 1997;181(1):25–30.PubMedCrossRef Emile JF, Patey N, Altare F, Lamhamedi S, Jouanguy E, Boman F, et al. Correlation of granuloma structure with clinical outcome defines two types of idiopathic disseminated BCG infection. J Pathol. 1997;181(1):25–30.PubMedCrossRef
13.
go back to reference Idell S. Evaluation of perplexing pleural effusions. Contemp Intern Med. 1994;6(12):31–9.PubMed Idell S. Evaluation of perplexing pleural effusions. Contemp Intern Med. 1994;6(12):31–9.PubMed
14.
go back to reference Barbolini G, Bisetti A, Colizzi V, Damiani G, Migaldi M, Vismara D. Immunohistologic analysis of mycobacterial antigens by monoclonal antibodies in tuberculosis and mycobacteriosis. Hum Pathol. 1989;20(11):1078–83.PubMedCrossRef Barbolini G, Bisetti A, Colizzi V, Damiani G, Migaldi M, Vismara D. Immunohistologic analysis of mycobacterial antigens by monoclonal antibodies in tuberculosis and mycobacteriosis. Hum Pathol. 1989;20(11):1078–83.PubMedCrossRef
15.
go back to reference Fenhalls G, Stevens L, Moses L, Bezuidenhout J, Betts JC, Helden Pv P, et al. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect Immun. 2002;70(11):6330–8.PubMedPubMedCentralCrossRef Fenhalls G, Stevens L, Moses L, Bezuidenhout J, Betts JC, Helden Pv P, et al. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect Immun. 2002;70(11):6330–8.PubMedPubMedCentralCrossRef
16.
go back to reference Goel MM, Budhwar P. Immunohistochemical localization of mycobacterium tuberculosis complex antigen with antibody to 38 kDa antigen versus Ziehl Neelsen staining in tissue granulomas of extrapulmonary tuberculosis. Indian J Tuberc. 2007;54(1):24–9.PubMed Goel MM, Budhwar P. Immunohistochemical localization of mycobacterium tuberculosis complex antigen with antibody to 38 kDa antigen versus Ziehl Neelsen staining in tissue granulomas of extrapulmonary tuberculosis. Indian J Tuberc. 2007;54(1):24–9.PubMed
17.
go back to reference Mustafa T, Leversen NA, Sviland L, Wiker HG. Differential in vivo expression of mycobacterial antigens in Mycobacterium tuberculosis infected lungs and lymph node tissues. BMC Infect Dis. 2014;14:535.PubMedPubMedCentralCrossRef Mustafa T, Leversen NA, Sviland L, Wiker HG. Differential in vivo expression of mycobacterial antigens in Mycobacterium tuberculosis infected lungs and lymph node tissues. BMC Infect Dis. 2014;14:535.PubMedPubMedCentralCrossRef
18.
go back to reference Lawn SD. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis. 2012;12:103.PubMedPubMedCentralCrossRef Lawn SD. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis. 2012;12:103.PubMedPubMedCentralCrossRef
19.
go back to reference Baba K, Dyrhol-Riise AM, Sviland L, Langeland N, Hoosen AA, Wiker HG, et al. Rapid and specific diagnosis of tuberculous pleuritis with immunohistochemistry by detecting Mycobacterium tuberculosis complex specific antigen MPT64 in patients from a HIV endemic area. Appl Immunohistochem Mol Morphol. 2008;16(6):554–61.PubMedCrossRef Baba K, Dyrhol-Riise AM, Sviland L, Langeland N, Hoosen AA, Wiker HG, et al. Rapid and specific diagnosis of tuberculous pleuritis with immunohistochemistry by detecting Mycobacterium tuberculosis complex specific antigen MPT64 in patients from a HIV endemic area. Appl Immunohistochem Mol Morphol. 2008;16(6):554–61.PubMedCrossRef
20.
go back to reference Jorstad MD, Marijani M, Dyrhol-Riise AM, Sviland L, Mustafa T. MPT64 antigen detection test improves routine diagnosis of extrapulmonary tuberculosis in a low-resource setting: a study from the tertiary care hospital in Zanzibar. PLoS One. 2018;13(5):e0196723.PubMedPubMedCentralCrossRef Jorstad MD, Marijani M, Dyrhol-Riise AM, Sviland L, Mustafa T. MPT64 antigen detection test improves routine diagnosis of extrapulmonary tuberculosis in a low-resource setting: a study from the tertiary care hospital in Zanzibar. PLoS One. 2018;13(5):e0196723.PubMedPubMedCentralCrossRef
21.
go back to reference Mustafa T, Wiker HG, Mfinanga SG, Morkve O, Sviland L. Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Mod Pathol. 2006;19(12):1606–14.PubMedCrossRef Mustafa T, Wiker HG, Mfinanga SG, Morkve O, Sviland L. Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Mod Pathol. 2006;19(12):1606–14.PubMedCrossRef
22.
go back to reference Purohit MR, Mustafa T, Wiker HG, Morkve O, Sviland L. Immunohistochemical diagnosis of abdominal and lymph node tuberculosis by detecting Mycobacterium tuberculosis complex specific antigen MPT64. Diagn Pathol. 2007;2:36.PubMedPubMedCentralCrossRef Purohit MR, Mustafa T, Wiker HG, Morkve O, Sviland L. Immunohistochemical diagnosis of abdominal and lymph node tuberculosis by detecting Mycobacterium tuberculosis complex specific antigen MPT64. Diagn Pathol. 2007;2:36.PubMedPubMedCentralCrossRef
23.
go back to reference Purohit MR, Mustafa T, Wiker HG, Sviland L. Rapid diagnosis of tuberculosis in aspirate, effusions, and cerebrospinal fluid by immunocytochemical detection of Mycobacterium tuberculosis complex specific antigen MPT64. Diagn Cytopathol. 2012;40(9):782–91.PubMedCrossRef Purohit MR, Mustafa T, Wiker HG, Sviland L. Rapid diagnosis of tuberculosis in aspirate, effusions, and cerebrospinal fluid by immunocytochemical detection of Mycobacterium tuberculosis complex specific antigen MPT64. Diagn Cytopathol. 2012;40(9):782–91.PubMedCrossRef
24.
go back to reference Purohit MR, Sviland L, Wiker H, Mustafa T. Rapid and specific diagnosis of Extrapulmonary tuberculosis by Immunostaining of tissues and aspirates with anti-MPT64. Appl Immunohistochem Mol Morphol. 2017;25(4):282–8.PubMedCrossRef Purohit MR, Sviland L, Wiker H, Mustafa T. Rapid and specific diagnosis of Extrapulmonary tuberculosis by Immunostaining of tissues and aspirates with anti-MPT64. Appl Immunohistochem Mol Morphol. 2017;25(4):282–8.PubMedCrossRef
25.
go back to reference Tadele A, Beyene D, Hussein J, Gemechu T, Birhanu A, Mustafa T, et al. Immunocytochemical detection of Mycobacterium tuberculosis complex specific antigen, MPT64, improves diagnosis of tuberculous lymphadenitis and tuberculous pleuritis. BMC Infect Dis. 2014;14:585.PubMedPubMedCentralCrossRef Tadele A, Beyene D, Hussein J, Gemechu T, Birhanu A, Mustafa T, et al. Immunocytochemical detection of Mycobacterium tuberculosis complex specific antigen, MPT64, improves diagnosis of tuberculous lymphadenitis and tuberculous pleuritis. BMC Infect Dis. 2014;14:585.PubMedPubMedCentralCrossRef
26.
go back to reference Baba K, Sornes S, Hoosen AA, Lekabe JM, Mpe MJ, Langeland N, et al. Evaluation of immune responses in HIV infected patients with pleural tuberculosis by the QuantiFERON TB-gold interferon-gamma assay. BMC Infect Dis. 2008;8:35.PubMedPubMedCentralCrossRef Baba K, Sornes S, Hoosen AA, Lekabe JM, Mpe MJ, Langeland N, et al. Evaluation of immune responses in HIV infected patients with pleural tuberculosis by the QuantiFERON TB-gold interferon-gamma assay. BMC Infect Dis. 2008;8:35.PubMedPubMedCentralCrossRef
27.
go back to reference Blake J, Berman P. The use of adenosine deaminase assays in the diagnosis of tuberculosis. S Afr Med J. 1982;62(1):19–21.PubMed Blake J, Berman P. The use of adenosine deaminase assays in the diagnosis of tuberculosis. S Afr Med J. 1982;62(1):19–21.PubMed
28.
go back to reference Baba K, Hoosen AA, Langeland N, Dyrhol-Riise AM. Adenosine deaminase activity is a sensitive marker for the diagnosis of tuberculous pleuritis in patients with very low CD4 counts. PLoS One. 2008;3(7):e2788.PubMedPubMedCentralCrossRef Baba K, Hoosen AA, Langeland N, Dyrhol-Riise AM. Adenosine deaminase activity is a sensitive marker for the diagnosis of tuberculous pleuritis in patients with very low CD4 counts. PLoS One. 2008;3(7):e2788.PubMedPubMedCentralCrossRef
29.
go back to reference Nagai S, Wiker HG, Harboe M, Kinomoto M. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect Immun. 1991;59(1):372–82.PubMedPubMedCentralCrossRef Nagai S, Wiker HG, Harboe M, Kinomoto M. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect Immun. 1991;59(1):372–82.PubMedPubMedCentralCrossRef
30.
go back to reference Baba K, Pathak S, Sviland L, Langeland N, Hoosen AA, Asjo B, et al. Real-time quantitative PCR in the diagnosis of tuberculosis in formalin-fixed paraffin-embedded pleural tissue in patients from a high HIV endemic area. Diagn Mol Pathol. 2008;17(2):112–7.PubMedCrossRef Baba K, Pathak S, Sviland L, Langeland N, Hoosen AA, Asjo B, et al. Real-time quantitative PCR in the diagnosis of tuberculosis in formalin-fixed paraffin-embedded pleural tissue in patients from a high HIV endemic area. Diagn Mol Pathol. 2008;17(2):112–7.PubMedCrossRef
31.
go back to reference Mustafa T, Phyu S, Nilsen R, Jonsson R, Bjune G. A mouse model for slowly progressive primary tuberculosis. Scand J Immunol. 1999;50(2):127–36.PubMedCrossRef Mustafa T, Phyu S, Nilsen R, Jonsson R, Bjune G. A mouse model for slowly progressive primary tuberculosis. Scand J Immunol. 1999;50(2):127–36.PubMedCrossRef
32.
go back to reference Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Policy update. World Health Organization; 2013. Available at: https://www.ncbi.nlm.nih.gov/books/NBK258608/. Accessed June 2020. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Policy update. World Health Organization; 2013. Available at: https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK258608/​. Accessed June 2020.
33.
go back to reference Pathak S, Awuh JA, Leversen NA, Flo TH, Asjo B. Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU. PLoS One. 2012;7(4):e34931.PubMedPubMedCentralCrossRef Pathak S, Awuh JA, Leversen NA, Flo TH, Asjo B. Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU. PLoS One. 2012;7(4):e34931.PubMedPubMedCentralCrossRef
Metadata
Title
Mycobacterial antigens in pleural fluid mononuclear cells to diagnose pleural tuberculosis in HIV co-infected patients
Authors
Tehmina Mustafa
Ida Wergeland
Kamaldeen Baba
Sharad Pathak
Anwar A. Hoosen
Anne Margarita Dyrhol-Riise
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05165-6

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.