Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

01-12-2020 | Tuberculosis | Research article

Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence

Authors: Jacques L. Tamuzi, Birhanu T. Ayele, Constance S. Shumba, Olatunji O. Adetokunboh, Jeannine Uwimana-Nicol, Zelalem T. Haile, Joseph Inugu, Peter S. Nyasulu

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

The triple burden of COVID-19, tuberculosis and human immunodeficiency virus is one of the major global health challenges of the twenty-first century. In high burden HIV/TB countries, the spread of COVID-19 among people living with HIV is a well-founded concern. A thorough understanding of HIV/TB and COVID-19 pandemics is important as the three diseases interact. This may clarify HIV/TB/COVID-19 as a newly related field. However, several gaps remain in the knowledge of the burden of COVID-19 on patients with TB and HIV. This study was conducted to review different studies on SARS-CoV, MERS-CoV or COVID-19 associated with HIV/TB co-infection or only TB, to understand the interactions between HIV, TB and COVID-19 and its implications on the burden of the COVID-19 among HIV/TB co-infected or TB patients, screening algorithm and clinical management.

Methods

We conducted an electronic search of potentially eligible studies published in English in the Cochrane Controlled Register of Trials, PubMed, Medrxiv, Google scholar and Clinical Trials Registry databases. We included case studies, case series and observational studies published between January, 2002 and July, 2020 in which SARS-CoV, MERS-CoV and COVID-19 co-infected to HIV/TB or TB in adults. We screened titles, abstracts and full articles for eligibility. Descriptive and meta-analysis were done and results have been presented in graphs and tables.

Results

After removing 95 duplicates, 58 out of 437 articles were assessed for eligibility, of which 14 studies were included for descriptive analysis and seven studies were included in the meta-analysis. Compared to the descriptive analysis, the meta-analysis showed strong evidence that current TB exposure was high-risk COVID-19 group (OR 1.67, 95% CI 1.06–2.65, P = 0.03). The pooled of COVID-19/TB severity rate increased from OR 4.50 (95% CI 1.12–18.10, P = 0.03), the recovery rate was high among COVID-19 compared to COVID-19/TB irrespective of HIV status (OR 2.23, 95% CI 1.83–2.74, P < 0.001) and the mortality was reduced among non-TB group (P < 0.001).

Conclusion

In summary, TB was a risk factor for COVID-19 both in terms of severity and mortality irrespective of HIV status. Structured diagnostic algorithms and clinical management are suggested to improve COVID-19/HIV/TB or COVID-19/TB co-infections outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Soriano V, Barreiro P. Impact of new coronavirus epidemics on HIV-infected patients. AIDS Rev. 2020;22(1):57–8.PubMedCrossRef Soriano V, Barreiro P. Impact of new coronavirus epidemics on HIV-infected patients. AIDS Rev. 2020;22(1):57–8.PubMedCrossRef
3.
go back to reference Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92.CrossRefPubMed Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92.CrossRefPubMed
4.
go back to reference Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science (New York, NY). 2003;300(5627):1966–70.CrossRef Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science (New York, NY). 2003;300(5627):1966–70.CrossRef
5.
go back to reference Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509–16.PubMedCrossRef Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509–16.PubMedCrossRef
6.
go back to reference Lin Q, Chiu AP, Zhao S, He D. Modeling the spread of Middle East respiratory syndrome coronavirus in Saudi Arabia. Stat Methods Med Res. 2018;27(7):1968–78.PubMedCrossRef Lin Q, Chiu AP, Zhao S, He D. Modeling the spread of Middle East respiratory syndrome coronavirus in Saudi Arabia. Stat Methods Med Res. 2018;27(7):1968–78.PubMedCrossRef
11.
go back to reference Dirlikov E, Raviglione M, Scano F. Global tuberculosis control: toward the 2015 targets and beyond. Ann Intern Med. 2015;163(1):52–8.PubMedCrossRef Dirlikov E, Raviglione M, Scano F. Global tuberculosis control: toward the 2015 targets and beyond. Ann Intern Med. 2015;163(1):52–8.PubMedCrossRef
13.
go back to reference Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS (London, England). 2015;29(15):1987–2002.CrossRef Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS (London, England). 2015;29(15):1987–2002.CrossRef
15.
go back to reference Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185–95.PubMedCrossRef Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185–95.PubMedCrossRef
16.
go back to reference Ogimi C, Waghmare AA, Kuypers JM, Xie H, Yeung CC, Leisenring WM, et al. Clinical significance of human coronavirus in Bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2017;64(11):1532–9.PubMedCrossRef Ogimi C, Waghmare AA, Kuypers JM, Xie H, Yeung CC, Leisenring WM, et al. Clinical significance of human coronavirus in Bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2017;64(11):1532–9.PubMedCrossRef
17.
go back to reference Ogimi C, Englund JA, Bradford MC, Qin X, Boeckh M, Waghmare A. Characteristics and outcomes of coronavirus infection in children: the role of viral factors and an Immunocompromised state. J Pediatric Infect Dis Soc. 2019;8(1):21–8.PubMedCrossRef Ogimi C, Englund JA, Bradford MC, Qin X, Boeckh M, Waghmare A. Characteristics and outcomes of coronavirus infection in children: the role of viral factors and an Immunocompromised state. J Pediatric Infect Dis Soc. 2019;8(1):21–8.PubMedCrossRef
18.
go back to reference Diedrich CR, Flynn JL. HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun. 2011;79(4):1407–17.PubMedPubMedCentralCrossRef Diedrich CR, Flynn JL. HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun. 2011;79(4):1407–17.PubMedPubMedCentralCrossRef
19.
go back to reference Geldmacher C, Zumla A, Hoelscher M. Interaction between HIV and mycobacterium tuberculosis: HIV-1-induced CD4 T-cell depletion and the development of active tuberculosis. Curr Opin HIV AIDS. 2012;7(3):268–75.PubMed Geldmacher C, Zumla A, Hoelscher M. Interaction between HIV and mycobacterium tuberculosis: HIV-1-induced CD4 T-cell depletion and the development of active tuberculosis. Curr Opin HIV AIDS. 2012;7(3):268–75.PubMed
20.
go back to reference Ahmed A, Rakshit S, Vyakarnam A. HIV-TB co-infection: mechanisms that drive reactivation of mycobacterium tuberculosis in HIV infection. Oral Dis. 2016;22(Suppl 1):53–60.PubMedCrossRef Ahmed A, Rakshit S, Vyakarnam A. HIV-TB co-infection: mechanisms that drive reactivation of mycobacterium tuberculosis in HIV infection. Oral Dis. 2016;22(Suppl 1):53–60.PubMedCrossRef
21.
go back to reference Esmail H, Riou C, Bruyn ED, Lai RP, Harley YXR, Meintjes G, et al. The immune response to mycobacterium tuberculosis in HIV-1-Coinfected persons. Annu Rev Immunol. 2018;36:603–38.PubMedCrossRef Esmail H, Riou C, Bruyn ED, Lai RP, Harley YXR, Meintjes G, et al. The immune response to mycobacterium tuberculosis in HIV-1-Coinfected persons. Annu Rev Immunol. 2018;36:603–38.PubMedCrossRef
23.
go back to reference Nordic Cochrane Centre The Cochrane Collaboration. Review Manager (RevMan) [Computer program] Version Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014. Nordic Cochrane Centre The Cochrane Collaboration. Review Manager (RevMan) [Computer program] Version Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014.
24.
go back to reference Suurmond R, van Rhee, H, Hak T introduction, comparison and validation of meta-essentials: A free and simple tool for meta-analysis [computer program]. Research synthesis methods. Vol. 8, Iss 4, 537–553, 2017. https://doi.org/https://doi.org/10.1002/jrsm.1260. Suurmond R, van Rhee, H, Hak T introduction, comparison and validation of meta-essentials: A free and simple tool for meta-analysis [computer program]. Research synthesis methods. Vol. 8, Iss 4, 537–553, 2017. https://​doi.​org/​https://​doi.​org/​10.​1002/​jrsm.​1260.
26.
go back to reference Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.PubMedPubMedCentralCrossRef Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.PubMedPubMedCentralCrossRef
27.
go back to reference Del AJ, Polo R, Moreno S, Díaz A, Martínez E, Arribas JR, et al. Incidence and Severity of COVID-19 in HIV-Positive Persons Receiving Antiretroviral Therapy: A Cohort Study. Ann Intern Med 2020; https://doi.org/https://doi.org/10.7326/M20-3689. Del AJ, Polo R, Moreno S, Díaz A, Martínez E, Arribas JR, et al. Incidence and Severity of COVID-19 in HIV-Positive Persons Receiving Antiretroviral Therapy: A Cohort Study. Ann Intern Med 2020; https://​doi.​org/​https://​doi.​org/​10.​7326/​M20-3689.
28.
go back to reference Chen TL, Dai Z, Mo P, Li X, Ma Z, Song S, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China (2019): a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci. 2020;20:1–8. Chen TL, Dai Z, Mo P, Li X, Ma Z, Song S, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China (2019): a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci. 2020;20:1–8.
30.
go back to reference Low JG, Lee CC, Leo YS. Severe acute respiratory syndrome and pulmonary tuberculosis. Clin Infect Dis. 2004;38(12):e123–5.PubMedCrossRef Low JG, Lee CC, Leo YS. Severe acute respiratory syndrome and pulmonary tuberculosis. Clin Infect Dis. 2004;38(12):e123–5.PubMedCrossRef
31.
go back to reference Wong ATY, Tsang OTY, Wong KH, Wong MYF, Lim WL, Zheng BJ, et al. Coronavirus infection in an AIDS patient. AIDS. 2004;18(5):829–30.PubMedCrossRef Wong ATY, Tsang OTY, Wong KH, Wong MYF, Lim WL, Zheng BJ, et al. Coronavirus infection in an AIDS patient. AIDS. 2004;18(5):829–30.PubMedCrossRef
32.
go back to reference Alfaraj SH, Al-Tawfiq JA, Altuwaijri TA, Memish ZA. Middle East respiratory syndrome coronavirus and pulmonary tuberculosis coinfection: implications for infection control. Intervirology. 2017;60(1–2):53–5.PubMedCrossRef Alfaraj SH, Al-Tawfiq JA, Altuwaijri TA, Memish ZA. Middle East respiratory syndrome coronavirus and pulmonary tuberculosis coinfection: implications for infection control. Intervirology. 2017;60(1–2):53–5.PubMedCrossRef
35.
go back to reference Cutler T, Scales D, Levine W, Schluger N, O'Donnell M. A Novel Viral Epidemic Collides with an Ancient Scourge: COVID-19 Associated with Tuberculosis. Am J Respir Crit Care Med 2020; https://www.atsjournals.org/doi/pdf/https://doi.org/10.1164/rccm.202003-0828IM. Cutler T, Scales D, Levine W, Schluger N, O'Donnell M. A Novel Viral Epidemic Collides with an Ancient Scourge: COVID-19 Associated with Tuberculosis. Am J Respir Crit Care Med 2020; https://​www.​atsjournals.​org/​doi/​pdf/​https://​doi.​org/​10.​1164/​rccm.​202003-0828IM.
37.
go back to reference Faqihi F, Alharthy A, Noor AlFateh BA, Balahmar A, Karakitsos D. COVID-19 in a patient with active tuberculosis: A rare case-report. Respir Med Case Rep. 2020;31:101146.PubMedPubMedCentral Faqihi F, Alharthy A, Noor AlFateh BA, Balahmar A, Karakitsos D. COVID-19 in a patient with active tuberculosis: A rare case-report. Respir Med Case Rep. 2020;31:101146.PubMedPubMedCentral
41.
go back to reference Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020;55:2000524.PubMedPubMedCentralCrossRef Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020;55:2000524.PubMedPubMedCentralCrossRef
44.
go back to reference Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Eur Acad Allergy Clin Immunol 2020; https://doi.org/https://doi.org/10.1111/all.14238. Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Eur Acad Allergy Clin Immunol 2020; https://​doi.​org/​https://​doi.​org/​10.​1111/​all.​14238.
45.
go back to reference Zhang Y, Deng A, Hu T, Chen X, Zhuang Y, Tan X, Zheng H, Sun L, Li Y, Zhong H, He J, Song T, Kang M. Clinical outcome and influencing factors of new cases of coronavirus pneumonia in Guangdong province. Chin J Epidemiol. 2020;41:E057. Zhang Y, Deng A, Hu T, Chen X, Zhuang Y, Tan X, Zheng H, Sun L, Li Y, Zhong H, He J, Song T, Kang M. Clinical outcome and influencing factors of new cases of coronavirus pneumonia in Guangdong province. Chin J Epidemiol. 2020;41:E057.
48.
go back to reference Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110–8.PubMedPubMedCentralCrossRef Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110–8.PubMedPubMedCentralCrossRef
50.
go back to reference Covid, C.D.C. and Team R. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-march 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343–6.CrossRef Covid, C.D.C. and Team R. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-march 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343–6.CrossRef
51.
go back to reference Shiau S, Krause KD, Valera P, Swaminathan S, Halkitis PN. The burden of COVID-19 in people living with HIV: a syndemic perspective. AIDS Behav. 2020;24:2244–9.PubMedCrossRefPubMedCentral Shiau S, Krause KD, Valera P, Swaminathan S, Halkitis PN. The burden of COVID-19 in people living with HIV: a syndemic perspective. AIDS Behav. 2020;24:2244–9.PubMedCrossRefPubMedCentral
53.
go back to reference Hong KH, Lee SW, Kim TS, Huh HJ, Lee J, Kim SY, et al. Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. Ann Lab Med. 2020;40(5):351–60.PubMedPubMedCentralCrossRef Hong KH, Lee SW, Kim TS, Huh HJ, Lee J, Kim SY, et al. Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. Ann Lab Med. 2020;40(5):351–60.PubMedPubMedCentralCrossRef
54.
go back to reference Piatek AS, Van CM, Alexander H, Coggin WL, Rehr M, Van KS, et al. GeneXpert for TB diagnosis: planned and purposeful implementation. Glob Health Sci Pract. 2013;1(1):18–23.PubMedPubMedCentralCrossRef Piatek AS, Van CM, Alexander H, Coggin WL, Rehr M, Van KS, et al. GeneXpert for TB diagnosis: planned and purposeful implementation. Glob Health Sci Pract. 2013;1(1):18–23.PubMedPubMedCentralCrossRef
56.
go back to reference Cattamanchi A, Ssewenyana I, Nabatanzi R, Miller CR, Den BS, Davis JL, et al. Bronchoalveolar lavage enzyme-linked immunospot for diagnosis of smear-negative tuberculosis in HIV-infected patients. PLoS One. 2012;7(6). Cattamanchi A, Ssewenyana I, Nabatanzi R, Miller CR, Den BS, Davis JL, et al. Bronchoalveolar lavage enzyme-linked immunospot for diagnosis of smear-negative tuberculosis in HIV-infected patients. PLoS One. 2012;7(6).
58.
go back to reference Savarino A. Expanding the frontiers of existing antiviral drugs: possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol. 2005;34(3):170–8.PubMedPubMedCentralCrossRef Savarino A. Expanding the frontiers of existing antiviral drugs: possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol. 2005;34(3):170–8.PubMedPubMedCentralCrossRef
59.
go back to reference Baden LR, Rubin EJ. Covid-19 - the search for effective therapy. N Engl J Med. 2020;382(19):1851–2.PubMedCrossRef Baden LR, Rubin EJ. Covid-19 - the search for effective therapy. N Engl J Med. 2020;382(19):1851–2.PubMedCrossRef
60.
go back to reference Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222.PubMedPubMedCentralCrossRef Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222.PubMedPubMedCentralCrossRef
62.
go back to reference Acosta EP, Kendall MA, Gerber JG, Alston-Smith B, Koletar SL, Zolopa AR, et al. Effect of concomitantly administered rifampin on the pharmacokinetics and safety of atazanavir administered twice daily. Antimicrob Agents Chemother. 2007;51(9):3104–10.PubMedPubMedCentralCrossRef Acosta EP, Kendall MA, Gerber JG, Alston-Smith B, Koletar SL, Zolopa AR, et al. Effect of concomitantly administered rifampin on the pharmacokinetics and safety of atazanavir administered twice daily. Antimicrob Agents Chemother. 2007;51(9):3104–10.PubMedPubMedCentralCrossRef
63.
go back to reference Karanja JK, Kiboi NG, Nebere SN, HO A. Highly active antiretroviral therapy and anti-tuberculosis drug interactions with associated clinical implications: A review. J Drug Metab Toxicol. 2016;7(207):2. Karanja JK, Kiboi NG, Nebere SN, HO A. Highly active antiretroviral therapy and anti-tuberculosis drug interactions with associated clinical implications: A review. J Drug Metab Toxicol. 2016;7(207):2.
65.
go back to reference Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69.PubMedPubMedCentralCrossRef Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69.PubMedPubMedCentralCrossRef
67.
go back to reference Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; https://doi.org/https://doi.org/10.1093/cid/ciaa237. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; https://​doi.​org/​https://​doi.​org/​10.​1093/​cid/​ciaa237.
69.
go back to reference Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. Can Med Assoc J. 2020;192(17):E450–3.CrossRef Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. Can Med Assoc J. 2020;192(17):E450–3.CrossRef
70.
go back to reference Sousa M, Pozniak A, Boffito M. Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs. J Antimicrob Chemother. 2008;62(5):872–8.PubMedCrossRef Sousa M, Pozniak A, Boffito M. Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs. J Antimicrob Chemother. 2008;62(5):872–8.PubMedCrossRef
71.
go back to reference Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. Curr Drug Targets. 2011;12(5):600–20.PubMedCrossRef Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. Curr Drug Targets. 2011;12(5):600–20.PubMedCrossRef
72.
go back to reference Strydom N, Gupta SV, Fox WS, Via LE, Bang H, Lee M, et al. Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Med. 2019;16(4):e1002773.PubMedPubMedCentralCrossRef Strydom N, Gupta SV, Fox WS, Via LE, Bang H, Lee M, et al. Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Med. 2019;16(4):e1002773.PubMedPubMedCentralCrossRef
74.
go back to reference Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9.PubMedCrossRef Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–9.PubMedCrossRef
75.
go back to reference Alhazzani W, Møller Morten H, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020;48:854–87.CrossRef Alhazzani W, Møller Morten H, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020;48:854–87.CrossRef
Metadata
Title
Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence
Authors
Jacques L. Tamuzi
Birhanu T. Ayele
Constance S. Shumba
Olatunji O. Adetokunboh
Jeannine Uwimana-Nicol
Zelalem T. Haile
Joseph Inugu
Peter S. Nyasulu
Publication date
01-12-2020

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.