Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

01-12-2020 | Malaria | Research article

Malaria patterns across altitudinal zones of Mount Elgon following intensified control and prevention programs in Uganda

Authors: Aggrey Siya, Bosco John Kalule, Benard Ssentongo, Akim Tafadzwa Lukwa, Anthony Egeru

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Malaria remains a major tropical vector-borne disease of immense public health concern owing to its debilitating effects in sub-Saharan Africa. Over the past 30 years, the high altitude areas in Eastern Africa have been reported to experience increased cases of malaria. Governments including that of the Republic of Uganda have responded through intensifying programs that can potentially minimize malaria transmission while reducing associated fatalities. However, malaria patterns following these intensified control and prevention interventions in the changing climate remains widely unexplored in East African highland regions. This study thus analyzed malaria patterns across altitudinal zones of Mount Elgon, Uganda.

Methods

Times-series data on malaria cases (2011–2017) from five level III local health centers occurring across three altitudinal zones; low, mid and high altitude was utilized. Inverse Distance Weighted (IDW) interpolation regression and Mann Kendall trend test were used to analyze malaria patterns. Vegetation attributes from the three altitudinal zones were analyzed using Normalized Difference Vegetation Index (NDVI) was used to determine the Autoregressive Integrated Moving Average (ARIMA) model was used to project malaria patterns for a 7 year period.

Results

Malaria across the three zones declined over the study period. The hotspots for malaria were highly variable over time in all the three zones. Rainfall played a significant role in influencing malaria burdens across the three zones. Vegetation had a significant influence on malaria in the higher altitudes. Meanwhile, in the lower altitude, human population had a significant positive correlation with malaria cases.

Conclusions

Despite observed decline in malaria cases across the three altitudinal zones, the high altitude zone became a malaria hotspot as cases variably occurred in the zone. Rainfall played the biggest role in malaria trends. Human population appeared to influence malaria incidences in the low altitude areas partly due to population concentration in this zone. Malaria control interventions ought to be strengthened and strategically designed to achieve no malaria cases across all the altitudinal zones. Integration of climate information within malaria interventions can also strengthen eradication strategies of malaria in such differentiated altitudinal zones.
Literature
3.
4.
go back to reference Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E, et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N Engl J Med. 2016;375:2435–45.PubMedPubMedCentralCrossRef Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E, et al. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N Engl J Med. 2016;375:2435–45.PubMedPubMedCentralCrossRef
5.
go back to reference Lukwa AT, Mawoyo R, Zablon KN, Siya A, Alaba O. Effect of malaria on productivity in a workplace: the case of a banana plantation in Zimbabwe. Malar J. 2019;18:390.PubMedPubMedCentralCrossRef Lukwa AT, Mawoyo R, Zablon KN, Siya A, Alaba O. Effect of malaria on productivity in a workplace: the case of a banana plantation in Zimbabwe. Malar J. 2019;18:390.PubMedPubMedCentralCrossRef
6.
go back to reference Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6:3.CrossRef Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6:3.CrossRef
7.
go back to reference Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasites Vectors. 2012;5:69.PubMedPubMedCentralCrossRef Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasites Vectors. 2012;5:69.PubMedPubMedCentralCrossRef
8.
go back to reference Arevalo-Herrera M, Quiñones ML, Guerra C, Céspedes N, Giron S, Ahumada M, et al. Malaria in selected non-Amazonian countries of Latin America. Acta Trop. 2012;121:303–14.PubMedCrossRef Arevalo-Herrera M, Quiñones ML, Guerra C, Céspedes N, Giron S, Ahumada M, et al. Malaria in selected non-Amazonian countries of Latin America. Acta Trop. 2012;121:303–14.PubMedCrossRef
9.
go back to reference Bhatia R, Rastogi RM, Ortega L. Malaria successes and challenges in Asia. J Vector Borne Dis. 2013;50:239–47.PubMed Bhatia R, Rastogi RM, Ortega L. Malaria successes and challenges in Asia. J Vector Borne Dis. 2013;50:239–47.PubMed
10.
go back to reference Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis. 2008;2:9. Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis. 2008;2:9.
11.
go back to reference Koenraadt CJM, Paaijmans KP, Schneider P, Githeko AK, Takken W. Low larval vector survival explains unstable malaria in the western Kenya highlands. Trop Med Int Health. 2006;11:1195–205.PubMedCrossRef Koenraadt CJM, Paaijmans KP, Schneider P, Githeko AK, Takken W. Low larval vector survival explains unstable malaria in the western Kenya highlands. Trop Med Int Health. 2006;11:1195–205.PubMedCrossRef
12.
go back to reference Zhou G, Minakawa N, Githeko AK, Yan G. Climate variability and malaria epidemics in the highlands of East Africa. Trends Parasitol. 2005;21:54–6.PubMedCrossRef Zhou G, Minakawa N, Githeko AK, Yan G. Climate variability and malaria epidemics in the highlands of East Africa. Trends Parasitol. 2005;21:54–6.PubMedCrossRef
13.
go back to reference Kark S. Effects of Ecotones on biodiversity. In: Encyclopedia of Biodiversity. 2nd ed; 2013. Kark S. Effects of Ecotones on biodiversity. In: Encyclopedia of Biodiversity. 2nd ed; 2013.
14.
go back to reference Stevenson JC, Stresman GH, Baidjoe A, Okoth A, Oriango R, Owaga C, et al. Use of different transmission metrics to describe malaria epidemiology in the highlands of western Kenya. Malar J. 2015;14:418.PubMedPubMedCentralCrossRef Stevenson JC, Stresman GH, Baidjoe A, Okoth A, Oriango R, Owaga C, et al. Use of different transmission metrics to describe malaria epidemiology in the highlands of western Kenya. Malar J. 2015;14:418.PubMedPubMedCentralCrossRef
15.
go back to reference Gahutu J-B, Steininger C, Shyirambere C, Zeile I, Cwinya-Ay N, Danquah I, et al. Prevalence and risk factors of malaria among children in southern highland Rwanda. Malar J. 2011;10:134.PubMedPubMedCentralCrossRef Gahutu J-B, Steininger C, Shyirambere C, Zeile I, Cwinya-Ay N, Danquah I, et al. Prevalence and risk factors of malaria among children in southern highland Rwanda. Malar J. 2011;10:134.PubMedPubMedCentralCrossRef
16.
go back to reference Sicuri E, Vieta A, Lindner L, Constenla D, Sauboin C. The economic costs of malaria in children in three sub-Saharan countries: Ghana, Tanzania and Kenya. Malar J. 2013;12:307.PubMedPubMedCentralCrossRef Sicuri E, Vieta A, Lindner L, Constenla D, Sauboin C. The economic costs of malaria in children in three sub-Saharan countries: Ghana, Tanzania and Kenya. Malar J. 2013;12:307.PubMedPubMedCentralCrossRef
17.
go back to reference Yeka A, Gasasira A, Mpimbaza A, Achan J, Nankabirwa J, Nsobya S, et al. Malaria in Uganda: challenges to control on the long road to elimination. I. Epidemiology and current control efforts. Acta Trop. 2012;121:184–95.PubMedCrossRef Yeka A, Gasasira A, Mpimbaza A, Achan J, Nankabirwa J, Nsobya S, et al. Malaria in Uganda: challenges to control on the long road to elimination. I. Epidemiology and current control efforts. Acta Trop. 2012;121:184–95.PubMedCrossRef
18.
go back to reference Afrane YA, Githeko AK, Yan G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in east African highlands. Ann N Y Acad Sci. 2012;1249:204–10.PubMedPubMedCentralCrossRef Afrane YA, Githeko AK, Yan G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in east African highlands. Ann N Y Acad Sci. 2012;1249:204–10.PubMedPubMedCentralCrossRef
19.
go back to reference Tonnang HEZ, Kangalawe RYM, Yanda PZ. Review predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa. Malar J. 2010;9:111.PubMedPubMedCentralCrossRef Tonnang HEZ, Kangalawe RYM, Yanda PZ. Review predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa. Malar J. 2010;9:111.PubMedPubMedCentralCrossRef
20.
go back to reference Himeidan YE, Kweka EJ. Malaria in East African highlands during the past 30 years: Impact of environmental changes. Frontiers Physiology. 2012;3:315.CrossRef Himeidan YE, Kweka EJ. Malaria in East African highlands during the past 30 years: Impact of environmental changes. Frontiers Physiology. 2012;3:315.CrossRef
21.
go back to reference Ministry of Health (MoH). National Malaria Control Program in Uganda. 2011. Ministry of Health (MoH). National Malaria Control Program in Uganda. 2011.
22.
go back to reference Uganda Bureau of Statistics. Uganda Demographic and Health Survey 2016: Foreign Aff; 2017. Uganda Bureau of Statistics. Uganda Demographic and Health Survey 2016: Foreign Aff; 2017.
23.
go back to reference Asua V, Tukwasibwe S, Conrad M, Walakira A, Nankabirwa JI, Mugenyi L, et al. Plasmodium species infecting children presenting with malaria in Uganda. Am J Trop Med Hyg. 2017;97:753–7.PubMedPubMedCentralCrossRef Asua V, Tukwasibwe S, Conrad M, Walakira A, Nankabirwa JI, Mugenyi L, et al. Plasmodium species infecting children presenting with malaria in Uganda. Am J Trop Med Hyg. 2017;97:753–7.PubMedPubMedCentralCrossRef
24.
go back to reference Uganda Bureau of Statistics. Demographic and Health Survey 2016. Stud Fam Plan. 2018.. Uganda Bureau of Statistics. Demographic and Health Survey 2016. Stud Fam Plan. 2018..
26.
go back to reference Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci. 2014;111:3286–91.PubMedCrossRef Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci. 2014;111:3286–91.PubMedCrossRef
27.
go back to reference Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS One. 2013;8:11.CrossRef Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS One. 2013;8:11.CrossRef
29.
go back to reference Reinikka R, Svensson J. The power of information in public services: evidence from education in Uganda. J Public Econ. 2011;95:956–66.CrossRef Reinikka R, Svensson J. The power of information in public services: evidence from education in Uganda. J Public Econ. 2011;95:956–66.CrossRef
30.
go back to reference Bamutaze Y, Tenywa MM, Majaliwa MJG, Vanacker V, Bagoora F, Magunda M, et al. Infiltration characteristics of volcanic sloping soils on Mt. Elgon, eastern Uganda. Catena. 2010;80:122–30.CrossRef Bamutaze Y, Tenywa MM, Majaliwa MJG, Vanacker V, Bagoora F, Magunda M, et al. Infiltration characteristics of volcanic sloping soils on Mt. Elgon, eastern Uganda. Catena. 2010;80:122–30.CrossRef
31.
go back to reference UBOS. National Population and housing Census. Uganda Bur Stat. 2014;73.. UBOS. National Population and housing Census. Uganda Bur Stat. 2014;73..
32.
go back to reference Government Of Uganda (a). Second National Development Plan - Uganda. Natl Plan Auth Uganda. 2015. Government Of Uganda (a). Second National Development Plan - Uganda. Natl Plan Auth Uganda. 2015.
33.
go back to reference Uganda. Health Sector Development Plan 2015/16–2019/20: RoU; 2015. Uganda. Health Sector Development Plan 2015/16–2019/20: RoU; 2015.
34.
go back to reference Sajjad A, Sajjad S, Husain N, Al-Enezi A. A retrospective cross-sectional study on the prevalence of hypodontia in a target population of Al-Jouf Province, Saudi Arabia. Contemp Clin Dent. 2016;7:500.PubMedPubMedCentralCrossRef Sajjad A, Sajjad S, Husain N, Al-Enezi A. A retrospective cross-sectional study on the prevalence of hypodontia in a target population of Al-Jouf Province, Saudi Arabia. Contemp Clin Dent. 2016;7:500.PubMedPubMedCentralCrossRef
35.
go back to reference Nazareth T, Seixas G, Sousa CA. Climate change and mosquito-borne diseases. In: Climate Change Management; 2016. Nazareth T, Seixas G, Sousa CA. Climate change and mosquito-borne diseases. In: Climate Change Management; 2016.
36.
go back to reference Zhang PG. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing. 2003;50:159–75.CrossRef Zhang PG. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing. 2003;50:159–75.CrossRef
37.
go back to reference Babak O, Deutsch CV. Statistical approach to inverse distance interpolation. Stoch Environ Res Risk Assess. 2009;23:543–53.CrossRef Babak O, Deutsch CV. Statistical approach to inverse distance interpolation. Stoch Environ Res Risk Assess. 2009;23:543–53.CrossRef
38.
go back to reference Lu GY, Wong DW. An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci. 2008;34:1044–55.CrossRef Lu GY, Wong DW. An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci. 2008;34:1044–55.CrossRef
39.
go back to reference Gong G, Mattevada S, O’Bryant SE. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res. 2014;130:59–69.PubMedCrossRef Gong G, Mattevada S, O’Bryant SE. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res. 2014;130:59–69.PubMedCrossRef
40.
go back to reference Wangdi K, Canavati SE, Ngo TD, Tran LK, Nguyen TM, Tran DT, et al. Analysis of clinical malaria disease patterns and trends in Vietnam 2009–2015. Malar J. 2018;17:332.PubMedPubMedCentralCrossRef Wangdi K, Canavati SE, Ngo TD, Tran LK, Nguyen TM, Tran DT, et al. Analysis of clinical malaria disease patterns and trends in Vietnam 2009–2015. Malar J. 2018;17:332.PubMedPubMedCentralCrossRef
41.
go back to reference Pohlert T. Package ‘ trend ’: non-parametric trend tests and change-point detection. R Package; 2016. Pohlert T. Package ‘ trend ’: non-parametric trend tests and change-point detection. R Package; 2016.
42.
43.
go back to reference Zaitunah A, Samsuri S, Ahmad AG, Safitri RA. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. In: IOP Conference Series: Earth and Environmental Science; 2018. Zaitunah A, Samsuri S, Ahmad AG, Safitri RA. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. In: IOP Conference Series: Earth and Environmental Science; 2018.
44.
go back to reference Sruthi S, Aslam MAM. Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur District. Aquat Procedia. 2015;4:1258–64.CrossRef Sruthi S, Aslam MAM. Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur District. Aquat Procedia. 2015;4:1258–64.CrossRef
45.
go back to reference Ssempiira J, Nambuusi B, Kissa J, Agaba B, Makumbi F, Kasasa S, et al. The contribution of malaria control interventions on spatio-temporal changes of parasitaemia risk in Uganda during 2009-2014. Parasites Vectors. 2017;10:450.PubMedPubMedCentralCrossRef Ssempiira J, Nambuusi B, Kissa J, Agaba B, Makumbi F, Kasasa S, et al. The contribution of malaria control interventions on spatio-temporal changes of parasitaemia risk in Uganda during 2009-2014. Parasites Vectors. 2017;10:450.PubMedPubMedCentralCrossRef
46.
go back to reference Kipruto EK, Ochieng AO, Anyona DN, Mbalanya M, Mutua EN, Onguru D, et al. Effect of climatic variability on malaria trends in Baringo County, Kenya. Malar J. 2017;16:220.PubMedPubMedCentralCrossRef Kipruto EK, Ochieng AO, Anyona DN, Mbalanya M, Mutua EN, Onguru D, et al. Effect of climatic variability on malaria trends in Baringo County, Kenya. Malar J. 2017;16:220.PubMedPubMedCentralCrossRef
47.
go back to reference Staedke SG, Kamya MR, Dorsey G, Maiteki-Sebuguzi C, Gonahasa S, Yeka A, et al. LLIN evaluation in Uganda project (LLINEUP) - impact of long-lasting insecticidal nets with, and without, piperonyl butoxide on malaria indicators in Uganda: study protocol for a cluster-randomised trial. Trials. 2019;20:321. Staedke SG, Kamya MR, Dorsey G, Maiteki-Sebuguzi C, Gonahasa S, Yeka A, et al. LLIN evaluation in Uganda project (LLINEUP) - impact of long-lasting insecticidal nets with, and without, piperonyl butoxide on malaria indicators in Uganda: study protocol for a cluster-randomised trial. Trials. 2019;20:321.
48.
go back to reference Omondi CJ, Onguru D, Kamau L, Nanyingi M, Ong’Amo G, Estambale B. Perennial transmission of malaria in the low altitude areas of Baringo County, Kenya. Malar J. 2017;16:1–8.CrossRef Omondi CJ, Onguru D, Kamau L, Nanyingi M, Ong’Amo G, Estambale B. Perennial transmission of malaria in the low altitude areas of Baringo County, Kenya. Malar J. 2017;16:1–8.CrossRef
49.
go back to reference Paaijmans KP, Imbahale SS, Thomas MB, Takken W. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J. 2010;9:196.PubMedPubMedCentralCrossRef Paaijmans KP, Imbahale SS, Thomas MB, Takken W. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J. 2010;9:196.PubMedPubMedCentralCrossRef
50.
go back to reference Murdock CC, Sternberg ED, Thomas MB. Malaria transmission potential could be reduced with current and future climate change. Sci Rep. 2016;6:1–7.CrossRef Murdock CC, Sternberg ED, Thomas MB. Malaria transmission potential could be reduced with current and future climate change. Sci Rep. 2016;6:1–7.CrossRef
51.
go back to reference Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, et al. Implications of temperature variation for malaria parasite development across Africa. Sci Rep. 2013;3:1.CrossRef Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, et al. Implications of temperature variation for malaria parasite development across Africa. Sci Rep. 2013;3:1.CrossRef
52.
go back to reference Pathak AK, Shiau JC, Thomas MB, Murdock C. Field relevant variation in ambient temperature modifies the density-dependent establishment of Plasmodium falciparum in mosquitoes: implications for the infectious reservoir and beyond? bioRxiv. 2019;10:2651. Pathak AK, Shiau JC, Thomas MB, Murdock C. Field relevant variation in ambient temperature modifies the density-dependent establishment of Plasmodium falciparum in mosquitoes: implications for the infectious reservoir and beyond? bioRxiv. 2019;10:2651.
53.
go back to reference Cator LJ, Thomas S, Paaijmans KP, Ravishankaran S, Justin JA, Mathai MT, et al. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India. Malar J. 2013;12:84.PubMedPubMedCentralCrossRef Cator LJ, Thomas S, Paaijmans KP, Ravishankaran S, Justin JA, Mathai MT, et al. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India. Malar J. 2013;12:84.PubMedPubMedCentralCrossRef
54.
go back to reference Ishtiaq F, Bowden CGR, Jhala YV. Seasonal dynamics in mosquito abundance and temperature do not influence avian malaria prevalence in the Himalayan foothills. Ecol Evol. 2017;7:8040–57.PubMedPubMedCentralCrossRef Ishtiaq F, Bowden CGR, Jhala YV. Seasonal dynamics in mosquito abundance and temperature do not influence avian malaria prevalence in the Himalayan foothills. Ecol Evol. 2017;7:8040–57.PubMedPubMedCentralCrossRef
55.
go back to reference Moukam Kakmeni FM, Guimapi RYA, Ndjomatchoua FT, Pedro SA, Mutunga J, Tonnang HEZ. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int J Health Geograph. 2018;17:2.CrossRef Moukam Kakmeni FM, Guimapi RYA, Ndjomatchoua FT, Pedro SA, Mutunga J, Tonnang HEZ. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int J Health Geograph. 2018;17:2.CrossRef
56.
go back to reference Dufourd C, Dumont Y. Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. In: Computers and Mathematics with Applications; 2013. Dufourd C, Dumont Y. Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. In: Computers and Mathematics with Applications; 2013.
57.
go back to reference Paaijmans KP, Cator LJ, Thomas MB. Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. PLoS One. 2013;8:1.CrossRef Paaijmans KP, Cator LJ, Thomas MB. Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. PLoS One. 2013;8:1.CrossRef
58.
go back to reference Hien DF, Dabiré KR, Roche B, Diabaté A, Yerbanga RS, Cohuet A, et al. Plant-mediated effects on mosquito capacity to transmit human malaria. PLoS Pathog. 2016;12:8.CrossRef Hien DF, Dabiré KR, Roche B, Diabaté A, Yerbanga RS, Cohuet A, et al. Plant-mediated effects on mosquito capacity to transmit human malaria. PLoS Pathog. 2016;12:8.CrossRef
Metadata
Title
Malaria patterns across altitudinal zones of Mount Elgon following intensified control and prevention programs in Uganda
Authors
Aggrey Siya
Bosco John Kalule
Benard Ssentongo
Akim Tafadzwa Lukwa
Anthony Egeru
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05158-5

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue