Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Effect of climatic variability on malaria trends in Baringo County, Kenya

Authors: Edwin K. Kipruto, Alfred O. Ochieng, Douglas N. Anyona, Macrae Mbalanya, Edna N. Mutua, Daniel Onguru, Isaac K. Nyamongo, Benson B. A. Estambale

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Malaria transmission in arid and semi-arid regions of Kenya such as Baringo County, is seasonal and often influenced by climatic factors. Unravelling the relationship between climate variables and malaria transmission dynamics is therefore instrumental in developing effective malaria control strategies. The main aim of this study was to describe the effects of variability of rainfall, maximum temperature and vegetation indices on seasonal trends of malaria in selected health facilities within Baringo County, Kenya.

Methods

Climate variables sourced from the International Research Institute (IRI)/Lamont-Doherty Earth Observatory (LDEO) climate database and malaria cases reported in 10 health facilities spread across four ecological zones (riverine, lowland, mid-altitude and highland) between 2004 and 2014 were subjected to a time series analysis. A negative binomial regression model with lagged climate variables was used to model long-term monthly malaria cases. The seasonal Mann–Kendall trend test was then used to detect overall monotonic trends in malaria cases.

Results

Malaria cases increased significantly in the highland and midland zones over the study period. Changes in malaria prevalence corresponded to variations in rainfall and maximum temperature. Rainfall at a time lag of 2 months resulted in an increase in malaria transmission across the four zones while an increase in temperature at time lags of 0 and 1 month resulted in an increase in malaria cases in the riverine and highland zones, respectively.

Conclusion

Given the existence of a time lag between climatic variables more so rainfall and peak malaria transmission, appropriate control measures can be initiated at the onset of short and after long rains seasons.
Literature
1.
go back to reference WHO. World malaria report 2013. Geneva: World health Organization; 2013. WHO. World malaria report 2013. Geneva: World health Organization; 2013.
2.
go back to reference Brooker S, Akhwale W, Pullan R, Estambale B, Clarke SE, Snow RW, et al. Epidemiology of plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg. 2007;77:88–98.PubMedPubMedCentral Brooker S, Akhwale W, Pullan R, Estambale B, Clarke SE, Snow RW, et al. Epidemiology of plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg. 2007;77:88–98.PubMedPubMedCentral
4.
go back to reference Ministry of Health. Towards a malaria free Kenya: Kenya revised malaria strategy 2009–2018. National Malaria Control Programme; 2014. Ministry of Health. Towards a malaria free Kenya: Kenya revised malaria strategy 2009–2018. National Malaria Control Programme; 2014.
5.
go back to reference Ministry of Health. National guidelines for the diagnosis, treatment and prevention of malaria for health workers in Kenya. Kenya: Div Malar Control, MoH; 2006. Ministry of Health. National guidelines for the diagnosis, treatment and prevention of malaria for health workers in Kenya. Kenya: Div Malar Control, MoH; 2006.
6.
go back to reference Ministry of Health. National malaria strategy 2041–2010. Kenya: Div Malar Control, MoH; 2001. Ministry of Health. National malaria strategy 2041–2010. Kenya: Div Malar Control, MoH; 2001.
7.
go back to reference Tonui WK, Otor SCJ, Kabiru EW, Kiplagat WK. Patterns and trends of malaria morbidity in western highlands of Kenya. Int J Educ Res. 2013;1:8.CrossRef Tonui WK, Otor SCJ, Kabiru EW, Kiplagat WK. Patterns and trends of malaria morbidity in western highlands of Kenya. Int J Educ Res. 2013;1:8.CrossRef
8.
go back to reference Guthmann JP, Llanos-Cuentas A, Palacios A, Hall AJ. Environmental factors as determinants of malaria risk. A descriptive study on the northern coast of Peru. Trop Med Int Health. 2002;7:518–25.CrossRefPubMed Guthmann JP, Llanos-Cuentas A, Palacios A, Hall AJ. Environmental factors as determinants of malaria risk. A descriptive study on the northern coast of Peru. Trop Med Int Health. 2002;7:518–25.CrossRefPubMed
9.
go back to reference Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78:1136–47.PubMedPubMedCentral Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78:1136–47.PubMedPubMedCentral
10.
go back to reference Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA. 2004;101:2375–80.CrossRefPubMedPubMedCentral Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA. 2004;101:2375–80.CrossRefPubMedPubMedCentral
11.
go back to reference Bayoh MN, Lindsay SW. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res. 2003;93:375–81.CrossRefPubMed Bayoh MN, Lindsay SW. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res. 2003;93:375–81.CrossRefPubMed
12.
go back to reference Mellor PS, Leake CJ. Climatic and geographic influences on arboviral infections and vectors. Rev Sci Tech. 2000;19:41–54.CrossRefPubMed Mellor PS, Leake CJ. Climatic and geographic influences on arboviral infections and vectors. Rev Sci Tech. 2000;19:41–54.CrossRefPubMed
13.
go back to reference Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor v, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett. 2013;16:22–30.CrossRefPubMed Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor v, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett. 2013;16:22–30.CrossRefPubMed
14.
go back to reference Craig MH, Snow RW, le Sueur D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.CrossRefPubMed Craig MH, Snow RW, le Sueur D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999;15:105–11.CrossRefPubMed
15.
go back to reference Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2010;118:620–6.CrossRefPubMed Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2010;118:620–6.CrossRefPubMed
16.
go back to reference Patz JA, Strzepek K, Lele S, Hedden M, Greene S, Noden B, et al. Predicting key malaria transmission factors, biting and entomological inoculation rates, using modelled soil moisture in Kenya. Trop Med Int Health. 1998;3:818–27.CrossRefPubMed Patz JA, Strzepek K, Lele S, Hedden M, Greene S, Noden B, et al. Predicting key malaria transmission factors, biting and entomological inoculation rates, using modelled soil moisture in Kenya. Trop Med Int Health. 1998;3:818–27.CrossRefPubMed
17.
go back to reference Huang F, Zhou S, Zhang S, Wang H, Tang L. Temporal correlation analysis between malaria and meteorological factors in Motuo County. Tibet Malar J. 2011;10:54.CrossRefPubMed Huang F, Zhou S, Zhang S, Wang H, Tang L. Temporal correlation analysis between malaria and meteorological factors in Motuo County. Tibet Malar J. 2011;10:54.CrossRefPubMed
18.
go back to reference Briet OJ, Vounatsou P, Amerasinghe PH. Malaria seasonality and rainfall seasonality in Sri Lanka are correlated in space. Geospat Health. 2008;2:183–90.CrossRefPubMed Briet OJ, Vounatsou P, Amerasinghe PH. Malaria seasonality and rainfall seasonality in Sri Lanka are correlated in space. Geospat Health. 2008;2:183–90.CrossRefPubMed
19.
go back to reference Evrendilek F, Gulbeyaz O. Deriving vegetation dynamics of natural terrestrial ecosystems from MODIS NDVI/EVI data over Turkey. Sensors. 2008;8:5270–302.CrossRefPubMedPubMedCentral Evrendilek F, Gulbeyaz O. Deriving vegetation dynamics of natural terrestrial ecosystems from MODIS NDVI/EVI data over Turkey. Sensors. 2008;8:5270–302.CrossRefPubMedPubMedCentral
20.
go back to reference Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol. 2005;20:503–10.CrossRefPubMed Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol. 2005;20:503–10.CrossRefPubMed
21.
go back to reference Schultz P, Halpert M. Global correlation of temperature, NDVI and precipitation. Adv Space Res. 1993;13:277–80.CrossRef Schultz P, Halpert M. Global correlation of temperature, NDVI and precipitation. Adv Space Res. 1993;13:277–80.CrossRef
22.
go back to reference Wayant NM, Maldonado D, Rojas de Arias A, Cousino B, Goodin DG. Correlation between normalized difference vegetation index and malaria in a subtropical rain forest undergoing rapid anthropogenic alteration. Geospat Health. 2010;4:179–90.CrossRefPubMed Wayant NM, Maldonado D, Rojas de Arias A, Cousino B, Goodin DG. Correlation between normalized difference vegetation index and malaria in a subtropical rain forest undergoing rapid anthropogenic alteration. Geospat Health. 2010;4:179–90.CrossRefPubMed
23.
go back to reference Woube M. Geographical distribution and dramatic increases in incidences of malaria: consequences of the resettlement scheme in Gambela, SW Ethiopia. Indian J Malariol. 1997;34:140–63.PubMed Woube M. Geographical distribution and dramatic increases in incidences of malaria: consequences of the resettlement scheme in Gambela, SW Ethiopia. Indian J Malariol. 1997;34:140–63.PubMed
24.
go back to reference Division of malaria control. 2010 Kenya malaria indicator survey. Nairobi: Ministry of Public Health and Sanitation; 2011. Division of malaria control. 2010 Kenya malaria indicator survey. Nairobi: Ministry of Public Health and Sanitation; 2011.
25.
go back to reference Mohajan HK. Improvement of health sector in Kenya. Am J Public Health Res. 2014;2:159–69.CrossRef Mohajan HK. Improvement of health sector in Kenya. Am J Public Health Res. 2014;2:159–69.CrossRef
26.
go back to reference KNBS. The 2009 Kenya population and housing census, vol. IC. In: Population distribution by age, sex and administrative units. 2010. KNBS. The 2009 Kenya population and housing census, vol. IC. In: Population distribution by age, sex and administrative units. 2010.
27.
go back to reference Odada EO, Onyando JO, Obudho PA. Lake Baringo: addressing threatened biodiversity and livelihoods. Lakes Reserv Res Manag. 2006;11:287–99.CrossRef Odada EO, Onyando JO, Obudho PA. Lake Baringo: addressing threatened biodiversity and livelihoods. Lakes Reserv Res Manag. 2006;11:287–99.CrossRef
28.
go back to reference Ochieng AO, Nanyingi M, Kipruto E, Ondiba IM, Amimo FA, Oludhe C, et al. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya. Infect Ecol Epidemiol. 2016;6:32322.CrossRefPubMed Ochieng AO, Nanyingi M, Kipruto E, Ondiba IM, Amimo FA, Oludhe C, et al. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya. Infect Ecol Epidemiol. 2016;6:32322.CrossRefPubMed
29.
go back to reference Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1–67.CrossRef Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1–67.CrossRef
30.
go back to reference Vink G, Frank LE, Pannekoek J, Buuren S. Predictive mean matching imputation of semicontinuous variables. Stat Neerl. 2014;68:61–90.CrossRef Vink G, Frank LE, Pannekoek J, Buuren S. Predictive mean matching imputation of semicontinuous variables. Stat Neerl. 2014;68:61–90.CrossRef
31.
go back to reference Molenberghs G, Fitzmaurice G, Kenward MG, Tsiatis A, Verbeke G. Handbook of missing data methodology. Boca Raton: CRC Press; 2014. Molenberghs G, Fitzmaurice G, Kenward MG, Tsiatis A, Verbeke G. Handbook of missing data methodology. Boca Raton: CRC Press; 2014.
33.
go back to reference Funk CC, Peterson PJ, Landsfeld MF, Pedreros DH, Verdin JP, Rowland JD, Romero BE, Husak GJ, Michaelsen JC, Verdin AP. A quasi-global precipitation time series for drought monitoring: US Geological Survey Data Series 832, p. 4. 2014. http://dx.doi.org/10.3133/ds832. Accessed 1 May 2016. Funk CC, Peterson PJ, Landsfeld MF, Pedreros DH, Verdin JP, Rowland JD, Romero BE, Husak GJ, Michaelsen JC, Verdin AP. A quasi-global precipitation time series for drought monitoring: US Geological Survey Data Series 832, p. 4. 2014. http://​dx.​doi.​org/​10.​3133/​ds832. Accessed 1 May 2016.
34.
go back to reference Vancutsem C, Ceccato P, Dinku T, Connor SJ. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ. 2010;114:449–65.CrossRef Vancutsem C, Ceccato P, Dinku T, Connor SJ. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ. 2010;114:449–65.CrossRef
35.
go back to reference Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 2002;83:195–213.CrossRef Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 2002;83:195–213.CrossRef
38.
go back to reference Chaves LF, Satake A, Hashizume M, Minakawa N. Indian ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission. J Infect Dis. 2012;205:1885–91.CrossRefPubMed Chaves LF, Satake A, Hashizume M, Minakawa N. Indian ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission. J Infect Dis. 2012;205:1885–91.CrossRefPubMed
39.
go back to reference Midekisa A, Senay G, Henebry GM, Semuniguse P, Wimberly MC. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malar J. 2012;11:165.CrossRefPubMedPubMedCentral Midekisa A, Senay G, Henebry GM, Semuniguse P, Wimberly MC. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malar J. 2012;11:165.CrossRefPubMedPubMedCentral
40.
go back to reference Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar J. 2004;3:41.CrossRefPubMedPubMedCentral Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar J. 2004;3:41.CrossRefPubMedPubMedCentral
41.
go back to reference Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci. 2008;275:123–32.CrossRefPubMed Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci. 2008;275:123–32.CrossRefPubMed
42.
go back to reference Wyse APP, Bevilacqua L, Rafikov M. Simulating malaria model for different treatment intensities in a variable environment. Ecol Model. 2007;206:322–30.CrossRef Wyse APP, Bevilacqua L, Rafikov M. Simulating malaria model for different treatment intensities in a variable environment. Ecol Model. 2007;206:322–30.CrossRef
43.
go back to reference Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, et al. Human health. Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change; 2007. Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, et al. Human health. Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change; 2007.
44.
45.
go back to reference Paaijmans KP, Imbahale SS, Thomas MB, Takken W. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J. 2010;9:196.CrossRefPubMedPubMedCentral Paaijmans KP, Imbahale SS, Thomas MB, Takken W. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J. 2010;9:196.CrossRefPubMedPubMedCentral
46.
go back to reference Smith M, Macklin M, Thomas C. Hydrological and geomorphological controls of malaria transmission. Earth Sci Rev. 2013;116:109–27.CrossRef Smith M, Macklin M, Thomas C. Hydrological and geomorphological controls of malaria transmission. Earth Sci Rev. 2013;116:109–27.CrossRef
47.
go back to reference Hardy AJ, Gamarra JG, Cross DE, Macklin MG, Smith MW, Kihonda J, et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS ONE. 2013;8:e81931.CrossRefPubMedPubMedCentral Hardy AJ, Gamarra JG, Cross DE, Macklin MG, Smith MW, Kihonda J, et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS ONE. 2013;8:e81931.CrossRefPubMedPubMedCentral
48.
go back to reference Patz JA, Olson SH. Malaria risk and temperature: influences from global climate change and local land use practices. Proc Natl Acad Sci USA. 2006;103:5635–6.CrossRefPubMedPubMedCentral Patz JA, Olson SH. Malaria risk and temperature: influences from global climate change and local land use practices. Proc Natl Acad Sci USA. 2006;103:5635–6.CrossRefPubMedPubMedCentral
49.
go back to reference Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjornstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE. 2013;8:e79276.CrossRefPubMedPubMedCentral Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjornstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE. 2013;8:e79276.CrossRefPubMedPubMedCentral
50.
go back to reference Bi P, Tong S, Donald K, Parton KA, Ni J. Climatic variables and transmission of malaria: a 12-year data analysis in Shuchen County, China. Public Health Rep. 2003;118:65–71.CrossRefPubMedPubMedCentral Bi P, Tong S, Donald K, Parton KA, Ni J. Climatic variables and transmission of malaria: a 12-year data analysis in Shuchen County, China. Public Health Rep. 2003;118:65–71.CrossRefPubMedPubMedCentral
51.
go back to reference Chikodzi D. Spatial modelling of malaria risk zones using environmental, anthropogenic variables and geographical information systems techniques. J Geosci Geomat. 2013;1:8–14. Chikodzi D. Spatial modelling of malaria risk zones using environmental, anthropogenic variables and geographical information systems techniques. J Geosci Geomat. 2013;1:8–14.
Metadata
Title
Effect of climatic variability on malaria trends in Baringo County, Kenya
Authors
Edwin K. Kipruto
Alfred O. Ochieng
Douglas N. Anyona
Macrae Mbalanya
Edna N. Mutua
Daniel Onguru
Isaac K. Nyamongo
Benson B. A. Estambale
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-1848-2

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue