Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Hypertension | Research article

Relationship between circulating microparticles and hypertension and other cardiac disease biomarkers in the elderly

Authors: Hanife Usta Atmaca, Feray Akbas, Hale Aral

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

Microparticles are procoagulant membrane vesicles that play role in endothelium dysfunction pathogenesis and are increased in hypertension, acute/chronic vascular pathological events. Here; we aimed to compare MPs levels of hypertensive geriatric patients with healthy age-match-patients, discuss its availability as a cardiovascular biomarker and investigate its relationship with other inflammatory markers.

Methods

Forty seven hypertensive geriatric patients (M/F;15/32) and 47 healthy controls (M/F;19/28) were included in the study. MPs levels were examined functionally through thrombin generation test (TGT) parameters (MPS Lag time, MPS ETP, MPs Peak, MPS start Tail) and compared with CRP, N/L ratio, ALT, GGT, thrombocyte parameters. Decrease in MPS Lag time, increase in MPS ETS and MPs Peak elevation were accepted as tendency to coagulation which meant an increase in number and function of MPs.

Results

No significant difference was found between 2 groups for MPS tests (MPS Lag time, MPS ETP, MPs Peak, MPS start Tail). Platelet count was significantly higher in hypertensive patient group. There was a negative correlation between age and MPs Peak, MPS Lag time. There was a positive correlation between CRP and MPS ETP, MPs Peak values.

Conclusions

Our present findings might help to understand the hemostasis via TGT parameters, in the elderly. Contribution of MPs to thrombosis tendency seen with aging and increased number of circulating MPs caused by hypertensive endothelial dysfunction must be taken into consideration. MPs might be accepted as vascular inflammation and damage markers and used as follow up tools of medical treatment of vascular inflammation-related diseases.
Literature
1.
go back to reference Jy W, Horstman LL, Jimenez JJ, et al. Measurement circulating cell-derived microparticles. J Thromb Haemost. 2004;2:1842–51.PubMedCrossRef Jy W, Horstman LL, Jimenez JJ, et al. Measurement circulating cell-derived microparticles. J Thromb Haemost. 2004;2:1842–51.PubMedCrossRef
2.
go back to reference Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings. Thromb Res. 2008;123:8–23.PubMedCrossRef Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings. Thromb Res. 2008;123:8–23.PubMedCrossRef
3.
go back to reference Lacroix R, Robert S, Poncelet P, et al. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the international society on thrombosis and Haemostasis SSC collaborative workshop. J Thromb Haemost. 2010;8:2571–4.PubMedCrossRef Lacroix R, Robert S, Poncelet P, et al. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the international society on thrombosis and Haemostasis SSC collaborative workshop. J Thromb Haemost. 2010;8:2571–4.PubMedCrossRef
4.
go back to reference Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31–9.PubMedCrossRef Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31–9.PubMedCrossRef
5.
6.
go back to reference Ogata N, Imaizumi M, Nomura S, et al. Increased levels of platelet-derived microparticles in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2005;68:193–201.PubMedCrossRef Ogata N, Imaizumi M, Nomura S, et al. Increased levels of platelet-derived microparticles in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2005;68:193–201.PubMedCrossRef
11.
go back to reference Celermajer DS, Sorensen KE, Spiegelhalter DJ, et al. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994;24(2):471–6.PubMedCrossRef Celermajer DS, Sorensen KE, Spiegelhalter DJ, et al. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994;24(2):471–6.PubMedCrossRef
12.
go back to reference Atkinson J, Tatchum-Talom R, Corman B. Effect of chronic ANGI-converting enzyme inhibition on aging processes. III. Endothelial function of mesenteric arterial bed of rat. Am J Phys. 1994;267:136–43. Atkinson J, Tatchum-Talom R, Corman B. Effect of chronic ANGI-converting enzyme inhibition on aging processes. III. Endothelial function of mesenteric arterial bed of rat. Am J Phys. 1994;267:136–43.
13.
go back to reference Forest A, Pautas E, Ray P, et al. Circulating microparticles and Procoagulant activity in elderly patients. J Gerontol Ser A Biol Med Sci. 2010;65(4):414–20.CrossRef Forest A, Pautas E, Ray P, et al. Circulating microparticles and Procoagulant activity in elderly patients. J Gerontol Ser A Biol Med Sci. 2010;65(4):414–20.CrossRef
14.
go back to reference Virdis A, Ghiadoni L, Taddei S. Effects of antihypertensive treatment on endothelial function. Curr Hypertens Rep. 2011;13(4):276–81.PubMedCrossRef Virdis A, Ghiadoni L, Taddei S. Effects of antihypertensive treatment on endothelial function. Curr Hypertens Rep. 2011;13(4):276–81.PubMedCrossRef
15.
go back to reference Lüscher TF, Vanhoutte PM, Raij L. Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension. 1987;9(6 Pt 2):III193–7.PubMed Lüscher TF, Vanhoutte PM, Raij L. Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension. 1987;9(6 Pt 2):III193–7.PubMed
16.
go back to reference Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost. 2010;8:2358–68.PubMedCrossRef Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost. 2010;8:2358–68.PubMedCrossRef
17.
go back to reference Bakouboula B, Morel O, Faure A, et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177:536–43.PubMedCrossRef Bakouboula B, Morel O, Faure A, et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177:536–43.PubMedCrossRef
18.
go back to reference Favaloro EJ, Franchini M, Lippi G. Aging hemostasis: changes to laboratory. Markers of hemostasis as we age-a narrative review. Semin Thromb Hemost. 2014;40:621–33.PubMedCrossRef Favaloro EJ, Franchini M, Lippi G. Aging hemostasis: changes to laboratory. Markers of hemostasis as we age-a narrative review. Semin Thromb Hemost. 2014;40:621–33.PubMedCrossRef
19.
go back to reference Duarte RCF, Ferreira CN, Rios DRA, et al. Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations. Rev Bras Hematol Hemoter. 2017;39(3):259–65.PubMedPubMedCentralCrossRef Duarte RCF, Ferreira CN, Rios DRA, et al. Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations. Rev Bras Hematol Hemoter. 2017;39(3):259–65.PubMedPubMedCentralCrossRef
20.
go back to reference Adams M. Assessment of thrombin generation: useful or hype? Semin Thromb Hemost. 2009;35(1):104–10.PubMedCrossRef Adams M. Assessment of thrombin generation: useful or hype? Semin Thromb Hemost. 2009;35(1):104–10.PubMedCrossRef
21.
go back to reference Berntorp E, Salvagno GL. Standardization and clinical utility of thrombin-generation assays. Semin Thromb Hemost. 2008;34(7):670–82.PubMedCrossRef Berntorp E, Salvagno GL. Standardization and clinical utility of thrombin-generation assays. Semin Thromb Hemost. 2008;34(7):670–82.PubMedCrossRef
22.
go back to reference Castoldi E, Rosing J. Thrombin generation tests. Thrombosis Res. 2011;127(Suppl. 3):S21–5 09;35(1):104–10.CrossRef Castoldi E, Rosing J. Thrombin generation tests. Thrombosis Res. 2011;127(Suppl. 3):S21–5 09;35(1):104–10.CrossRef
23.
go back to reference Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003;145(6):962–70.PubMedCrossRef Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003;145(6):962–70.PubMedCrossRef
24.
go back to reference Edelberg JM, Reed MJ. Aging and angiogenesis. Front Biosci. 2003;8:1199–209.CrossRef Edelberg JM, Reed MJ. Aging and angiogenesis. Front Biosci. 2003;8:1199–209.CrossRef
25.
go back to reference Mateos-Cáceres PJ, Zamorano-León JJ, Rodríguez-Sierra P, et al. New and old mechanisms associated with hypertension in the elderly. Int J Hypertens. 2011;2012:1–10.CrossRef Mateos-Cáceres PJ, Zamorano-León JJ, Rodríguez-Sierra P, et al. New and old mechanisms associated with hypertension in the elderly. Int J Hypertens. 2011;2012:1–10.CrossRef
26.
go back to reference Heiss C, Keymel S, Niesler U, et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol. 2005;45(9):1441–8.PubMedCrossRef Heiss C, Keymel S, Niesler U, et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol. 2005;45(9):1441–8.PubMedCrossRef
27.
go back to reference Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600.PubMedCrossRef Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600.PubMedCrossRef
28.
go back to reference Brodsky SV, Zhang F, Nasjletti A, et al. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol. 2004;286(5):H1910–5.PubMedCrossRef Brodsky SV, Zhang F, Nasjletti A, et al. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol. 2004;286(5):H1910–5.PubMedCrossRef
29.
go back to reference Koga H, Sugiyama S, Kugiyama K, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol. 2005;45(10):1622–30.PubMedCrossRef Koga H, Sugiyama S, Kugiyama K, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol. 2005;45(10):1622–30.PubMedCrossRef
30.
go back to reference Burger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol. 2011;31:1898–907.PubMedCrossRef Burger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol. 2011;31:1898–907.PubMedCrossRef
31.
go back to reference Boulanger CM, Scoazec A, Ebrahimian T, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001;104:2649–52.PubMedCrossRef Boulanger CM, Scoazec A, Ebrahimian T, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001;104:2649–52.PubMedCrossRef
32.
go back to reference Martin S, Tesse A, Hugel B, et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation. 2004;109:1653–9.PubMedCrossRef Martin S, Tesse A, Hugel B, et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation. 2004;109:1653–9.PubMedCrossRef
33.
go back to reference Jung KH, Chu K, Lee ST, et al. Circulating endothelial microparticles as a marker of cerebrovascular disease. Ann Neurol. 2009;66(2):191–9.PubMedCrossRef Jung KH, Chu K, Lee ST, et al. Circulating endothelial microparticles as a marker of cerebrovascular disease. Ann Neurol. 2009;66(2):191–9.PubMedCrossRef
34.
go back to reference Preston RA, Jy W, Jimenez JJ, et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003;41:211–7.PubMedCrossRef Preston RA, Jy W, Jimenez JJ, et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003;41:211–7.PubMedCrossRef
35.
go back to reference Cordazzo C, Neri T, Petrini S, et al. Angiotensin II induces the generation of procoagulant microparticles by human mononuclear cells via an angiotensin type 2 receptor-mediated pathway. Thromb Res. 2013;131:168–74.CrossRef Cordazzo C, Neri T, Petrini S, et al. Angiotensin II induces the generation of procoagulant microparticles by human mononuclear cells via an angiotensin type 2 receptor-mediated pathway. Thromb Res. 2013;131:168–74.CrossRef
36.
38.
go back to reference Wang Y, Chen L-m, Liu M-l. Microvesicles and diabetic complications — novel mediators, potential biomarkers and therapeutic targets. Acta Pharmacol Sin. 2014;35:433–43.PubMedPubMedCentralCrossRef Wang Y, Chen L-m, Liu M-l. Microvesicles and diabetic complications — novel mediators, potential biomarkers and therapeutic targets. Acta Pharmacol Sin. 2014;35:433–43.PubMedPubMedCentralCrossRef
39.
go back to reference Nomura S, Shouzu A, Omoto S, et al. Losartan and simvastatin inhibit platelet activation in hypertensive patients. J Thromb Thrombolysis. 2004;18:177–85.PubMedCrossRef Nomura S, Shouzu A, Omoto S, et al. Losartan and simvastatin inhibit platelet activation in hypertensive patients. J Thromb Thrombolysis. 2004;18:177–85.PubMedCrossRef
40.
go back to reference Nomura S, Shouzu A, Omoto S, et al. Effect of valsartan on monocyte/endothelial cell activation markers and adiponectin in hypertensive patients with type 2 diabetes mellitus. Thromb Res. 2006;117:385–92.PubMedCrossRef Nomura S, Shouzu A, Omoto S, et al. Effect of valsartan on monocyte/endothelial cell activation markers and adiponectin in hypertensive patients with type 2 diabetes mellitus. Thromb Res. 2006;117:385–92.PubMedCrossRef
41.
go back to reference Labios M, Martinez M, Gabriel F, et al. Effect of eprosartan on cytoplasmic free calcium mobilization, platelet activation, and microparticle formation in hypertension. Am J Hypertens. 2004;17:757–63.PubMedCrossRef Labios M, Martinez M, Gabriel F, et al. Effect of eprosartan on cytoplasmic free calcium mobilization, platelet activation, and microparticle formation in hypertension. Am J Hypertens. 2004;17:757–63.PubMedCrossRef
42.
go back to reference Starr JM, Deary IJ. Sex differences in blood cell counts in the Lothian birth cohort 1921 between 79 and 87 years. Maturitas. 2011;69:373–6.PubMedCrossRef Starr JM, Deary IJ. Sex differences in blood cell counts in the Lothian birth cohort 1921 between 79 and 87 years. Maturitas. 2011;69:373–6.PubMedCrossRef
43.
go back to reference Crawford VL, McNerlan SE, Stout RW. Seasonal changes in platelets, fibrinogen and factor VII in elderly people. Age Ageing. 2003;32:661–5.PubMedCrossRef Crawford VL, McNerlan SE, Stout RW. Seasonal changes in platelets, fibrinogen and factor VII in elderly people. Age Ageing. 2003;32:661–5.PubMedCrossRef
44.
go back to reference Hong H, Xiao W, Maitta RW. Steady increment of immature platelet fraction is suppressed by irradiation in single-donor platelet components during storage. PLoS One. 2014;9(1):e85465.PubMedPubMedCentralCrossRef Hong H, Xiao W, Maitta RW. Steady increment of immature platelet fraction is suppressed by irradiation in single-donor platelet components during storage. PLoS One. 2014;9(1):e85465.PubMedPubMedCentralCrossRef
45.
go back to reference Chen Y, Xiao Y, Lin Z, et al. The role of circulating platelets microparticles and platelet parameters in acute ischemic stroke patients. J Stroke Cerebrovasc Dis. 2015;24(10):2313–20.PubMedPubMedCentralCrossRef Chen Y, Xiao Y, Lin Z, et al. The role of circulating platelets microparticles and platelet parameters in acute ischemic stroke patients. J Stroke Cerebrovasc Dis. 2015;24(10):2313–20.PubMedPubMedCentralCrossRef
Metadata
Title
Relationship between circulating microparticles and hypertension and other cardiac disease biomarkers in the elderly
Authors
Hanife Usta Atmaca
Feray Akbas
Hale Aral
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1148-6

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue