Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2012

Open Access 01-12-2012 | Research article

Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia

Authors: Jiankun Cui, Shanyan Chen, Chunyang Zhang, Fanjun Meng, Wei Wu, Rong Hu, Or Hadass, Tareq Lehmidi, Gregory J Blair, Mijoon Lee, Mayland Chang, Shahriar Mobashery, Grace Y Sun, Zezong Gu

Published in: Molecular Neurodegeneration | Issue 1/2012

Login to get access

Abstract

Background

Cerebral ischemia has been shown to induce activation of matrix metalloproteinases (MMPs), particularly MMP-9, which is associated with impairment of the neurovasculature, resulting in blood–brain barrier breakdown, hemorrhage and neurodegeneration. We previously reported that the thiirane inhibitor SB-3CT, which is selective for gelatinases (MMP-2 and −9), could antagonize neuronal apoptosis after transient focal cerebral ischemia.

Results

Here, we used a fibrin-rich clot to occlude the middle cerebral artery (MCA) and assessed the effects of SB-3CT on the neurovasculature. Results show that neurobehavioral deficits and infarct volumes induced by embolic ischemia are comparable to those induced by the filament-occluded transient MCA model. Confocal microscopy indicated embolus-blocked brain microvasculature and neuronal cell death. Post-ischemic SB-3CT treatment attenuated infarct volume, ameliorated neurobehavioral outcomes, and antagonized the increases in levels of proform and activated MMP-9. Embolic ischemia caused degradation of the neurovascular matrix component laminin and tight-junction protein ZO-1, contraction of pericytes, and loss of lectin-positive brain microvessels. Despite the presence of the embolus, SB-3CT mitigated these outcomes and reduced hemorrhagic volumes. Interestingly, SB-3CT treatment for seven days protected against neuronal laminin degradation and protected neurons from ischemic cell death.

Conclusion

These results demonstrate considerable promise for the thiirane class of selective gelatinase inhibitors as potential therapeutic agents in stroke therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, et al: Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011, 123 (4): e18-e209. 10.1161/CIR.0b013e3182009701.PubMedCentralCrossRefPubMed Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, et al: Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011, 123 (4): e18-e209. 10.1161/CIR.0b013e3182009701.PubMedCentralCrossRefPubMed
2.
go back to reference Lo EH: A new penumbra: transitioning from injury into repair after stroke. Nature Medicine. 2008, 14 (5): 497-500. 10.1038/nm1735.CrossRefPubMed Lo EH: A new penumbra: transitioning from injury into repair after stroke. Nature Medicine. 2008, 14 (5): 497-500. 10.1038/nm1735.CrossRefPubMed
3.
go back to reference Moskowitz MA, Lo EH, Iadecola C: The science of stroke: mechanisms in search of treatments. Neuron. 2010, 67 (2): 181-198. 10.1016/j.neuron.2010.07.002.PubMedCentralCrossRefPubMed Moskowitz MA, Lo EH, Iadecola C: The science of stroke: mechanisms in search of treatments. Neuron. 2010, 67 (2): 181-198. 10.1016/j.neuron.2010.07.002.PubMedCentralCrossRefPubMed
4.
go back to reference Gu Z, Cui J, Lipton SA: Matrix Metalloproteinases in Cerebral Hypoxia-Ischemia. Matrix metalloproteinases in cerebral hypoxia-ischemia. Edited by: Haddad Gabriel G, Shan Ping Yu. 2009, San Diego: Humana Press, 225-238. Gu Z, Cui J, Lipton SA: Matrix Metalloproteinases in Cerebral Hypoxia-Ischemia. Matrix metalloproteinases in cerebral hypoxia-ischemia. Edited by: Haddad Gabriel G, Shan Ping Yu. 2009, San Diego: Humana Press, 225-238.
5.
go back to reference Rosenberg GA: Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009, 8 (2): 205-216. 10.1016/S1474-4422(09)70016-X.CrossRefPubMed Rosenberg GA: Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009, 8 (2): 205-216. 10.1016/S1474-4422(09)70016-X.CrossRefPubMed
6.
go back to reference del Zoppo GJ: Acute stroke–on the threshold of a therapy?. N Engl J Med. 1995, 333 (24): 1632-1633. 10.1056/NEJM199512143332410.CrossRefPubMed del Zoppo GJ: Acute stroke–on the threshold of a therapy?. N Engl J Med. 1995, 333 (24): 1632-1633. 10.1056/NEJM199512143332410.CrossRefPubMed
7.
go back to reference Yong VW: Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005, 6 (12): 931-944. 10.1038/nrn1807.CrossRefPubMed Yong VW: Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005, 6 (12): 931-944. 10.1038/nrn1807.CrossRefPubMed
8.
go back to reference Lam CK, Yoo T, Hiner B, Liu Z, Grutzendler J: Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature. 2010, 465 (7297): 478-482. 10.1038/nature09001.PubMedCentralCrossRefPubMed Lam CK, Yoo T, Hiner B, Liu Z, Grutzendler J: Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature. 2010, 465 (7297): 478-482. 10.1038/nature09001.PubMedCentralCrossRefPubMed
9.
go back to reference Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S: Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke. 2003, 34 (9): 2165-2170. 10.1161/01.STR.0000088062.86084.F2.CrossRefPubMed Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S: Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke. 2003, 34 (9): 2165-2170. 10.1161/01.STR.0000088062.86084.F2.CrossRefPubMed
10.
go back to reference Montaner J, Alvarez-Sabin J, Molina CA, Angles A, Abilleira S, Arenillas J, Monasterio J: Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke. 2001, 32 (12): 2762-2767. 10.1161/hs1201.99512.CrossRefPubMed Montaner J, Alvarez-Sabin J, Molina CA, Angles A, Abilleira S, Arenillas J, Monasterio J: Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke. 2001, 32 (12): 2762-2767. 10.1161/hs1201.99512.CrossRefPubMed
11.
go back to reference Switzer JA, Hess DC, Ergul A, Waller JL, Machado LS, Portik-Dobos V, Pettigrew LC, Clark WM, Fagan SC: Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke. 2011, 42 (9): 2633-2635. 10.1161/STROKEAHA.111.618215.PubMedCentralCrossRefPubMed Switzer JA, Hess DC, Ergul A, Waller JL, Machado LS, Portik-Dobos V, Pettigrew LC, Clark WM, Fagan SC: Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke. 2011, 42 (9): 2633-2635. 10.1161/STROKEAHA.111.618215.PubMedCentralCrossRefPubMed
12.
go back to reference Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, Davalos A: Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke. 2003, 34 (1): 40-46. 10.1161/01.STR.0000046764.57344.31.CrossRefPubMed Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, Davalos A: Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke. 2003, 34 (1): 40-46. 10.1161/01.STR.0000046764.57344.31.CrossRefPubMed
13.
go back to reference Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, Massengale J, Chan PH: Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood–brain barrier dysfunction. J Cereb Blood Flow Metab. 1999, 19 (9): 1020-1028.CrossRefPubMed Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, Massengale J, Chan PH: Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood–brain barrier dysfunction. J Cereb Blood Flow Metab. 1999, 19 (9): 1020-1028.CrossRefPubMed
14.
go back to reference Lapchak PA, Chapman DF, Zivin JA: Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke. 2000, 31 (12): 3034-3040. 10.1161/01.STR.31.12.3034.CrossRefPubMed Lapchak PA, Chapman DF, Zivin JA: Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke. 2000, 31 (12): 3034-3040. 10.1161/01.STR.31.12.3034.CrossRefPubMed
15.
go back to reference Wang J, Tsirka SE: Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005, 128 (Pt 7): 1622-1633.CrossRefPubMed Wang J, Tsirka SE: Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005, 128 (Pt 7): 1622-1633.CrossRefPubMed
16.
go back to reference Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA: S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002, 297 (5584): 1186-1190. 10.1126/science.1073634.CrossRefPubMed Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA: S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002, 297 (5584): 1186-1190. 10.1126/science.1073634.CrossRefPubMed
17.
go back to reference Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH: Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001, 21 (19): 7724-7732.PubMed Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH: Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001, 21 (19): 7724-7732.PubMed
18.
go back to reference Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al: Pericytes regulate the blood–brain barrier. Nature. 2010, 468 (7323): 557-561. 10.1038/nature09522.CrossRefPubMed Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al: Pericytes regulate the blood–brain barrier. Nature. 2010, 468 (7323): 557-561. 10.1038/nature09522.CrossRefPubMed
19.
go back to reference Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010, 68 (3): 409-427. 10.1016/j.neuron.2010.09.043.PubMedCentralCrossRefPubMed Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010, 68 (3): 409-427. 10.1016/j.neuron.2010.09.043.PubMedCentralCrossRefPubMed
20.
go back to reference Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T: Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009, 15 (9): 1031-1037. 10.1038/nm.2022.CrossRefPubMed Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T: Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009, 15 (9): 1031-1037. 10.1038/nm.2022.CrossRefPubMed
21.
go back to reference Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH: Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006, 12 (4): 441-445. 10.1038/nm1387.CrossRefPubMed Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH: Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006, 12 (4): 441-445. 10.1038/nm1387.CrossRefPubMed
22.
go back to reference Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW: Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci. 2006, 26 (7): 1923-1934. 10.1523/JNEUROSCI.4359-05.2006.PubMedCentralCrossRefPubMed Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW: Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci. 2006, 26 (7): 1923-1934. 10.1523/JNEUROSCI.4359-05.2006.PubMedCentralCrossRefPubMed
23.
go back to reference Yong VW, Agrawal SM, Stirling DP: Targeting MMPs in acute and chronic neurological conditions. Neurotherapeutics. 2007, 4 (4): 580-589. 10.1016/j.nurt.2007.07.005.CrossRefPubMed Yong VW, Agrawal SM, Stirling DP: Targeting MMPs in acute and chronic neurological conditions. Neurotherapeutics. 2007, 4 (4): 580-589. 10.1016/j.nurt.2007.07.005.CrossRefPubMed
24.
go back to reference Jin DK, Shido K, Kopp H-G, Petit I, Shmelkov SV, Young LM, Hooper AT, Amano H, Avecilla ST, Heissig B, et al: Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006, 12 (5): 557-567. 10.1038/nm1400.PubMedCentralCrossRefPubMed Jin DK, Shido K, Kopp H-G, Petit I, Shmelkov SV, Young LM, Hooper AT, Amano H, Avecilla ST, Heissig B, et al: Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006, 12 (5): 557-567. 10.1038/nm1400.PubMedCentralCrossRefPubMed
25.
go back to reference Zhang H, Trivedi A, Lee J-U, Lohela M, Lee SM, Fandel TM, Werb Z, Noble-Haeusslein LJ: Matrix metalloproteinase-9 and stromal cell-derived factor-1 act synergistically to support migration of blood-borne monocytes into the injured spinal cord. J Neurosci. 2011, 31 (44): 15894-15903. 10.1523/JNEUROSCI.3943-11.2011.PubMedCentralCrossRefPubMed Zhang H, Trivedi A, Lee J-U, Lohela M, Lee SM, Fandel TM, Werb Z, Noble-Haeusslein LJ: Matrix metalloproteinase-9 and stromal cell-derived factor-1 act synergistically to support migration of blood-borne monocytes into the injured spinal cord. J Neurosci. 2011, 31 (44): 15894-15903. 10.1523/JNEUROSCI.3943-11.2011.PubMedCentralCrossRefPubMed
26.
go back to reference Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW: Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem. 2006, 96 (5): 1227-1241. 10.1111/j.1471-4159.2005.03565.x.CrossRefPubMed Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW: Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem. 2006, 96 (5): 1227-1241. 10.1111/j.1471-4159.2005.03565.x.CrossRefPubMed
27.
go back to reference Lipton SA: Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci. 2007, 8 (10): 803-808.CrossRefPubMed Lipton SA: Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci. 2007, 8 (10): 803-808.CrossRefPubMed
28.
go back to reference Brown S, Bernardo MM, Li ZH, Kotra LP, Tanaka Y, Fridman R, Mobashery S: Potent and selective mechanism-based inhibition of gelatinases. J Am Chem Soc. 2000, 122: 6799-6800. 10.1021/ja001461n.CrossRef Brown S, Bernardo MM, Li ZH, Kotra LP, Tanaka Y, Fridman R, Mobashery S: Potent and selective mechanism-based inhibition of gelatinases. J Am Chem Soc. 2000, 122: 6799-6800. 10.1021/ja001461n.CrossRef
29.
go back to reference Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA: A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci. 2005, 25 (27): 6401-6408. 10.1523/JNEUROSCI.1563-05.2005.CrossRefPubMed Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA: A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci. 2005, 25 (27): 6401-6408. 10.1523/JNEUROSCI.1563-05.2005.CrossRefPubMed
30.
go back to reference Yu F, Kamada H, Niizuma K, Endo H, Chan PH: Induction of mmp-9 expression and endothelial injury by oxidative stress after spinal cord injury. J Neurotrauma. 2008, 25 (3): 184-195. 10.1089/neu.2007.0438.PubMedCentralCrossRefPubMed Yu F, Kamada H, Niizuma K, Endo H, Chan PH: Induction of mmp-9 expression and endothelial injury by oxidative stress after spinal cord injury. J Neurotrauma. 2008, 25 (3): 184-195. 10.1089/neu.2007.0438.PubMedCentralCrossRefPubMed
31.
go back to reference Guo Z, Sun X, He Z, Jiang Y, Zhang X, Zhang JH: Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurol Res. 2010, 32 (7): 715-720. 10.1179/016164109X12478302362491.CrossRefPubMed Guo Z, Sun X, He Z, Jiang Y, Zhang X, Zhang JH: Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurol Res. 2010, 32 (7): 715-720. 10.1179/016164109X12478302362491.CrossRefPubMed
32.
go back to reference Liu J, Jin X, Liu KJ, Liu W: Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci. 2012, 32 (9): 3044-3057. 10.1523/JNEUROSCI.6409-11.2012.PubMedCentralCrossRefPubMed Liu J, Jin X, Liu KJ, Liu W: Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci. 2012, 32 (9): 3044-3057. 10.1523/JNEUROSCI.6409-11.2012.PubMedCentralCrossRefPubMed
33.
go back to reference He ZJ, Huang ZT, Chen XT, Zou ZJ: Effects of matrix metalloproteinase 9 inhibition on the blood brain barrier and inflammation in rats following cardiopulmonary resuscitation. Chin Med J (Engl). 2009, 122 (19): 2346-2351. He ZJ, Huang ZT, Chen XT, Zou ZJ: Effects of matrix metalloproteinase 9 inhibition on the blood brain barrier and inflammation in rats following cardiopulmonary resuscitation. Chin Med J (Engl). 2009, 122 (19): 2346-2351.
34.
go back to reference Zhang Z, Chopp M, Zhang RL, Goussev A: A mouse model of embolic focal cerebral ischemia. J Cereb Blood Flow Metab. 1997, 17 (10): 1081-1088.CrossRefPubMed Zhang Z, Chopp M, Zhang RL, Goussev A: A mouse model of embolic focal cerebral ischemia. J Cereb Blood Flow Metab. 1997, 17 (10): 1081-1088.CrossRefPubMed
35.
go back to reference Cui JK, Hsu CY, Liu PK: Suppression of postischemic hippocampal nerve growth factor expression by a c-fos antisense oligodeoxynucleotide. J Neurosci. 1999, 19 (4): 1335-1344.PubMed Cui JK, Hsu CY, Liu PK: Suppression of postischemic hippocampal nerve growth factor expression by a c-fos antisense oligodeoxynucleotide. J Neurosci. 1999, 19 (4): 1335-1344.PubMed
36.
go back to reference Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C, Blouw B, Ouyang L, Dragatsis I, Zeitlin S, et al: Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage. J Neurosci. 2005, 25 (16): 4099-4107. 10.1523/JNEUROSCI.4555-04.2005.CrossRefPubMed Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C, Blouw B, Ouyang L, Dragatsis I, Zeitlin S, et al: Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage. J Neurosci. 2005, 25 (16): 4099-4107. 10.1523/JNEUROSCI.4555-04.2005.CrossRefPubMed
37.
go back to reference Chen J, Zacharek A, Zhang C, Jiang H, Li Y, Roberts C, Lu M, Kapke A, Chopp M: Endothelial Nitric Oxide Synthase Regulates Brain-Derived Neurotrophic Factor Expression and Neurogenesis after Stroke in Mice. J Neurosci. 2005, 25 (9): 2366-2375. 10.1523/JNEUROSCI.5071-04.2005.PubMedCentralCrossRefPubMed Chen J, Zacharek A, Zhang C, Jiang H, Li Y, Roberts C, Lu M, Kapke A, Chopp M: Endothelial Nitric Oxide Synthase Regulates Brain-Derived Neurotrophic Factor Expression and Neurogenesis after Stroke in Mice. J Neurosci. 2005, 25 (9): 2366-2375. 10.1523/JNEUROSCI.5071-04.2005.PubMedCentralCrossRefPubMed
38.
go back to reference Wang X, Tsuji K, Lee S-R, Ning M, Furie KL, Buchan AM, Lo EH: Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke. 2004, 35 (11 Suppl 1): 2726-2730.CrossRefPubMed Wang X, Tsuji K, Lee S-R, Ning M, Furie KL, Buchan AM, Lo EH: Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke. 2004, 35 (11 Suppl 1): 2726-2730.CrossRefPubMed
39.
go back to reference Garden GA, Budd SL, Tsai E, Hanson L, Kaul M, D'Emilia DM, Friedlander RM, Yuan J, Masliah E, Lipton SA: Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci. 2002, 22 (10): 4015-4024.PubMed Garden GA, Budd SL, Tsai E, Hanson L, Kaul M, D'Emilia DM, Friedlander RM, Yuan J, Masliah E, Lipton SA: Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci. 2002, 22 (10): 4015-4024.PubMed
40.
go back to reference Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH: Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009, 40 (6): 2244-2250. 10.1161/STROKEAHA.108.541128.PubMedCentralCrossRefPubMed Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH: Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009, 40 (6): 2244-2250. 10.1161/STROKEAHA.108.541128.PubMedCentralCrossRefPubMed
41.
go back to reference Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH: Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 2008, 39 (12): 3372-3377. 10.1161/STROKEAHA.108.514026.PubMedCentralCrossRefPubMed Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH: Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 2008, 39 (12): 3372-3377. 10.1161/STROKEAHA.108.514026.PubMedCentralCrossRefPubMed
42.
go back to reference Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z: MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998, 93 (3): 411-422. 10.1016/S0092-8674(00)81169-1.PubMedCentralCrossRefPubMed Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z: MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998, 93 (3): 411-422. 10.1016/S0092-8674(00)81169-1.PubMedCentralCrossRefPubMed
43.
go back to reference Leker RR, Soldner F, Velasco I, Gavin DK, Androutsellis-Theotokis A, McKay RD: Long-lasting regeneration after ischemia in the cerebral cortex. Stroke. 2007, 38 (1): 153-161. 10.1161/STROKEAHA.107.496919.CrossRefPubMed Leker RR, Soldner F, Velasco I, Gavin DK, Androutsellis-Theotokis A, McKay RD: Long-lasting regeneration after ischemia in the cerebral cortex. Stroke. 2007, 38 (1): 153-161. 10.1161/STROKEAHA.107.496919.CrossRefPubMed
44.
go back to reference van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, Viergever MA, van der Sprenkel JW Berkelbach, Dijkhuizen RM: Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci. 2010, 30 (11): 3964-3972. 10.1523/JNEUROSCI.5709-09.2010.CrossRefPubMed van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, Viergever MA, van der Sprenkel JW Berkelbach, Dijkhuizen RM: Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci. 2010, 30 (11): 3964-3972. 10.1523/JNEUROSCI.5709-09.2010.CrossRefPubMed
45.
go back to reference Forbes C, Shi Q, Fisher JF, Lee M, Hesek D, Llarrull LI, Toth M, Gossing M, Fridman R, Mobashery S: Active Site Ring-Opening of a Thiirane Moiety and Picomolar Inhibition of Gelatinases. Chem Biol Drug Des. 2009, 74 (6): 527-534. 10.1111/j.1747-0285.2009.00881.x.PubMedCentralCrossRefPubMed Forbes C, Shi Q, Fisher JF, Lee M, Hesek D, Llarrull LI, Toth M, Gossing M, Fridman R, Mobashery S: Active Site Ring-Opening of a Thiirane Moiety and Picomolar Inhibition of Gelatinases. Chem Biol Drug Des. 2009, 74 (6): 527-534. 10.1111/j.1747-0285.2009.00881.x.PubMedCentralCrossRefPubMed
46.
go back to reference Liu H, Shubayev V: Matrix metalloproteinase-9 controls proliferation of NG2+ progenitor cells immediately after spinal cord injury. Exp Neurol. 2011, 231 (2): 236-246. 10.1016/j.expneurol.2011.06.015.PubMedCentralCrossRefPubMed Liu H, Shubayev V: Matrix metalloproteinase-9 controls proliferation of NG2+ progenitor cells immediately after spinal cord injury. Exp Neurol. 2011, 231 (2): 236-246. 10.1016/j.expneurol.2011.06.015.PubMedCentralCrossRefPubMed
47.
go back to reference Lee M, Bernardo MM, Meroueh SO, Brown S, Fridman R, Mobashery S: Synthesis of chiral 2-(4-phenoxyphenylsulfonylmethyl)thiiranes as selective gelatinase inhibitors. Org Lett. 2005, 7 (20): 4463-4465. 10.1021/ol0517269.CrossRefPubMed Lee M, Bernardo MM, Meroueh SO, Brown S, Fridman R, Mobashery S: Synthesis of chiral 2-(4-phenoxyphenylsulfonylmethyl)thiiranes as selective gelatinase inhibitors. Org Lett. 2005, 7 (20): 4463-4465. 10.1021/ol0517269.CrossRefPubMed
Metadata
Title
Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia
Authors
Jiankun Cui
Shanyan Chen
Chunyang Zhang
Fanjun Meng
Wei Wu
Rong Hu
Or Hadass
Tareq Lehmidi
Gregory J Blair
Mijoon Lee
Mayland Chang
Shahriar Mobashery
Grace Y Sun
Zezong Gu
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2012
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-7-21

Other articles of this Issue 1/2012

Molecular Neurodegeneration 1/2012 Go to the issue