Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2012

Open Access 01-12-2012 | Research article

Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases

Authors: Cheng Fang, Dennis Bourdette, Gary Banker

Published in: Molecular Neurodegeneration | Issue 1/2012

Login to get access

Abstract

Background

Reactive oxygen species (ROS) released by microglia and other inflammatory cells can cause axonal degeneration. A reduction in axonal transport has also been implicated as a cause of axonal dystrophies and neurodegeneration, but there is a paucity of experimental data concerning the effects of ROS on axonal transport. We used live cell imaging to examine the effects of hydrogen peroxide on the axonal transport of mitochondria and Golgi-derived vesicles in cultured rat hippocampal neurons.

Results

Hydrogen peroxide rapidly inhibited axonal transport, hours before any detectable changes in mitochondrial morphology or signs of axonal degeneration. Mitochondrial transport was affected earlier and was more severely inhibited than the transport of Golgi-derived vesicles. Anterograde vesicle transport was more susceptible to peroxide inhibition than retrograde transport. Axonal transport partially recovered following removal of hydrogen peroxide and local application of hydrogen peroxide inhibited transport, suggesting that the effects were not simply a result of nerve cell death. Sodium azide, an ATP synthesis blocker, had similar effects on axonal transport, suggesting that ATP depletion may contribute to the transport inhibition due to hydrogen peroxide.

Conclusions

These results indicate that inhibition of axonal transport is an early consequence of exposure to ROS and may contribute to subsequent axonal degeneration.
Appendix
Available only for authorised users
Literature
1.
go back to reference von Bartheld CS, Wang X, Butowt R: Anterograde axonal transport, transcytosis, and recycling of neurotrophic factors: the concept of trophic currencies in neural networks. Mol Neurobiol. 2001, 24 (1–3): 1-28.CrossRefPubMed von Bartheld CS, Wang X, Butowt R: Anterograde axonal transport, transcytosis, and recycling of neurotrophic factors: the concept of trophic currencies in neural networks. Mol Neurobiol. 2001, 24 (1–3): 1-28.CrossRefPubMed
2.
go back to reference Coleman MP, Freeman MR: Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci. 2010, 33: 245-267. 10.1146/annurev-neuro-060909-153248.CrossRefPubMed Coleman MP, Freeman MR: Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci. 2010, 33: 245-267. 10.1146/annurev-neuro-060909-153248.CrossRefPubMed
3.
go back to reference Verhey KJ, Kaul N, Soppina V: Kinesin assembly and movement in cells. Annu Rev Biophys. 2011, 40: 267-288. 10.1146/annurev-biophys-042910-155310.CrossRefPubMed Verhey KJ, Kaul N, Soppina V: Kinesin assembly and movement in cells. Annu Rev Biophys. 2011, 40: 267-288. 10.1146/annurev-biophys-042910-155310.CrossRefPubMed
4.
go back to reference Hirokawa N, et al: Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009, 10 (10): 682-696. 10.1038/nrm2774.CrossRefPubMed Hirokawa N, et al: Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009, 10 (10): 682-696. 10.1038/nrm2774.CrossRefPubMed
5.
go back to reference Perlson E, et al: Retrograde axonal transport: pathways to cell death?. Trends Neurosci. , 33 (7): 335-344. Perlson E, et al: Retrograde axonal transport: pathways to cell death?. Trends Neurosci. , 33 (7): 335-344.
6.
go back to reference Zhao C, et al: Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001, 105 (5): 587-597. 10.1016/S0092-8674(01)00363-4.CrossRefPubMed Zhao C, et al: Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001, 105 (5): 587-597. 10.1016/S0092-8674(01)00363-4.CrossRefPubMed
7.
go back to reference Fichera M, et al: Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology. 2004, 63 (6): 1108-1110. 10.1212/01.WNL.0000138731.60693.D2.CrossRefPubMed Fichera M, et al: Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology. 2004, 63 (6): 1108-1110. 10.1212/01.WNL.0000138731.60693.D2.CrossRefPubMed
8.
go back to reference Decker H, et al: Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J Neurosci. 2010, 30 (27): 9166-9171.CrossRefPubMed Decker H, et al: Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J Neurosci. 2010, 30 (27): 9166-9171.CrossRefPubMed
9.
go back to reference Bilsland LG, et al: Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A. 2010, 107 (47): 20523-20528. 10.1073/pnas.1006869107.PubMedCentralCrossRefPubMed Bilsland LG, et al: Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A. 2010, 107 (47): 20523-20528. 10.1073/pnas.1006869107.PubMedCentralCrossRefPubMed
10.
go back to reference Sasaki S, et al: Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. 2005, 110 (1): 48-56. 10.1007/s00401-005-1021-9.CrossRefPubMed Sasaki S, et al: Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. 2005, 110 (1): 48-56. 10.1007/s00401-005-1021-9.CrossRefPubMed
11.
go back to reference Her LS, Goldstein LS: Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J Neurosci. 2008, 28 (50): 13662-13672. 10.1523/JNEUROSCI.4144-08.2008.CrossRefPubMed Her LS, Goldstein LS: Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J Neurosci. 2008, 28 (50): 13662-13672. 10.1523/JNEUROSCI.4144-08.2008.CrossRefPubMed
12.
go back to reference Brown GC, Bal-Price A: Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol. 2003, 27 (3): 325-355. 10.1385/MN:27:3:325.CrossRefPubMed Brown GC, Bal-Price A: Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol. 2003, 27 (3): 325-355. 10.1385/MN:27:3:325.CrossRefPubMed
13.
go back to reference Lucas SM, Rothwell NJ, Gibson RM: The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006, 147 (Suppl 1): S232-S240.PubMedCentralPubMed Lucas SM, Rothwell NJ, Gibson RM: The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006, 147 (Suppl 1): S232-S240.PubMedCentralPubMed
14.
go back to reference Zipp F, Aktas O: The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 2006, 29 (9): 518-527. 10.1016/j.tins.2006.07.006.CrossRefPubMed Zipp F, Aktas O: The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 2006, 29 (9): 518-527. 10.1016/j.tins.2006.07.006.CrossRefPubMed
15.
go back to reference Klegeris A, et al: Increase in core body temperature of Alzheimer's disease patients as a possible indicator of chronic neuroinflammation: a meta-analysis. Gerontology. 2007, 53 (1): 7-11. 10.1159/000095386.CrossRefPubMed Klegeris A, et al: Increase in core body temperature of Alzheimer's disease patients as a possible indicator of chronic neuroinflammation: a meta-analysis. Gerontology. 2007, 53 (1): 7-11. 10.1159/000095386.CrossRefPubMed
16.
go back to reference Moss DW, Bates TE: Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci. 2001, 13 (3): 529-538. 10.1046/j.1460-9568.2001.01418.x.CrossRefPubMed Moss DW, Bates TE: Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci. 2001, 13 (3): 529-538. 10.1046/j.1460-9568.2001.01418.x.CrossRefPubMed
17.
go back to reference Brown GC, Neher JJ: Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol. 2010, 41 (2–3): 242-247.CrossRefPubMed Brown GC, Neher JJ: Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol. 2010, 41 (2–3): 242-247.CrossRefPubMed
19.
go back to reference Weissmann C, Brandt R: Mechanisms of neurodegenerative diseases: insights from live cell imaging. J Neurosci Res. 2008, 86 (3): 504-511. 10.1002/jnr.21448.CrossRefPubMed Weissmann C, Brandt R: Mechanisms of neurodegenerative diseases: insights from live cell imaging. J Neurosci Res. 2008, 86 (3): 504-511. 10.1002/jnr.21448.CrossRefPubMed
20.
21.
go back to reference Press C, Milbrandt J: Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J Neurosci. 2008, 28 (19): 4861-4871. 10.1523/JNEUROSCI.0525-08.2008.PubMedCentralCrossRefPubMed Press C, Milbrandt J: Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J Neurosci. 2008, 28 (19): 4861-4871. 10.1523/JNEUROSCI.0525-08.2008.PubMedCentralCrossRefPubMed
22.
go back to reference Taylor P, et al: Analysis of mitochondrial DNA in microfluidic systems. J Chromatogr B Analyt Technol Biomed Life Sci. 2005, 822 (1–2): 78-84.CrossRefPubMed Taylor P, et al: Analysis of mitochondrial DNA in microfluidic systems. J Chromatogr B Analyt Technol Biomed Life Sci. 2005, 822 (1–2): 78-84.CrossRefPubMed
23.
go back to reference Testa CM, Sherer TB, Greenamyre JT: Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res. 2005, 134 (1): 109-118.CrossRefPubMed Testa CM, Sherer TB, Greenamyre JT: Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res. 2005, 134 (1): 109-118.CrossRefPubMed
24.
go back to reference Fukui K, et al: Hydrogen peroxide induces neurite degeneration: Prevention by tocotrienols. Free Radic Res. 2011, 45 (6): 681-691. 10.3109/10715762.2011.567984.CrossRefPubMed Fukui K, et al: Hydrogen peroxide induces neurite degeneration: Prevention by tocotrienols. Free Radic Res. 2011, 45 (6): 681-691. 10.3109/10715762.2011.567984.CrossRefPubMed
25.
go back to reference Nikic I, et al: A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011, 17 (4): 495-499. 10.1038/nm.2324.CrossRefPubMed Nikic I, et al: A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011, 17 (4): 495-499. 10.1038/nm.2324.CrossRefPubMed
26.
go back to reference Hua W, et al: Coupling of kinesin steps to ATP hydrolysis. Nature. 1997, 388 (6640): 390-393. 10.1038/41118.CrossRefPubMed Hua W, et al: Coupling of kinesin steps to ATP hydrolysis. Nature. 1997, 388 (6640): 390-393. 10.1038/41118.CrossRefPubMed
27.
go back to reference Schnitzer MJ, Block SM: Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997, 388 (6640): 386-390. 10.1038/41111.CrossRefPubMed Schnitzer MJ, Block SM: Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997, 388 (6640): 386-390. 10.1038/41111.CrossRefPubMed
28.
go back to reference Hoyt KR, et al: Characterization of hydrogen peroxide toxicity in cultured rat forebrain neurons. Neurochem Res. 1997, 22 (3): 333-340. 10.1023/A:1022403224901.CrossRefPubMed Hoyt KR, et al: Characterization of hydrogen peroxide toxicity in cultured rat forebrain neurons. Neurochem Res. 1997, 22 (3): 333-340. 10.1023/A:1022403224901.CrossRefPubMed
29.
go back to reference Marino S, et al: Mechanisms of sodium azide-induced changes in intracellular calcium concentration in rat primary cortical neurons. Neurotoxicology. 2007, 28 (3): 622-629. 10.1016/j.neuro.2007.01.005.CrossRefPubMed Marino S, et al: Mechanisms of sodium azide-induced changes in intracellular calcium concentration in rat primary cortical neurons. Neurotoxicology. 2007, 28 (3): 622-629. 10.1016/j.neuro.2007.01.005.CrossRefPubMed
30.
go back to reference Forte M, et al: Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci U S A. 2007, 104 (18): 7558-7563. 10.1073/pnas.0702228104.PubMedCentralCrossRefPubMed Forte M, et al: Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci U S A. 2007, 104 (18): 7558-7563. 10.1073/pnas.0702228104.PubMedCentralCrossRefPubMed
31.
go back to reference Denu JM, Tanner KG: Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry. 1998, 37 (16): 5633-5642. 10.1021/bi973035t.CrossRefPubMed Denu JM, Tanner KG: Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry. 1998, 37 (16): 5633-5642. 10.1021/bi973035t.CrossRefPubMed
32.
go back to reference Stagi M, et al: Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. J Neurosci. 2005, 25 (2): 352-362. 10.1523/JNEUROSCI.3887-04.2005.CrossRefPubMed Stagi M, et al: Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. J Neurosci. 2005, 25 (2): 352-362. 10.1523/JNEUROSCI.3887-04.2005.CrossRefPubMed
33.
go back to reference Guo X, et al: The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 2005, 47 (3): 379-393. 10.1016/j.neuron.2005.06.027.CrossRefPubMed Guo X, et al: The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 2005, 47 (3): 379-393. 10.1016/j.neuron.2005.06.027.CrossRefPubMed
34.
go back to reference Glater EE, et al: Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol. 2006, 173 (4): 545-557. 10.1083/jcb.200601067.PubMedCentralCrossRefPubMed Glater EE, et al: Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol. 2006, 173 (4): 545-557. 10.1083/jcb.200601067.PubMedCentralCrossRefPubMed
35.
go back to reference Macaskill AF, et al: Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009, 61 (4): 541-555. 10.1016/j.neuron.2009.01.030.PubMedCentralCrossRefPubMed Macaskill AF, et al: Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009, 61 (4): 541-555. 10.1016/j.neuron.2009.01.030.PubMedCentralCrossRefPubMed
36.
go back to reference Wang X, Schwarz TL: The mechanism of Ca2 + − dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009, 136 (1): 163-174. 10.1016/j.cell.2008.11.046.PubMedCentralCrossRefPubMed Wang X, Schwarz TL: The mechanism of Ca2 + − dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009, 136 (1): 163-174. 10.1016/j.cell.2008.11.046.PubMedCentralCrossRefPubMed
37.
go back to reference Fernandez-Checa JC, et al: Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol Disord Drug Targets. 2010, 9 (4): 439-454.CrossRefPubMed Fernandez-Checa JC, et al: Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol Disord Drug Targets. 2010, 9 (4): 439-454.CrossRefPubMed
38.
go back to reference Martindale JL, Holbrook NJ: Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002, 192 (1): 1-15. 10.1002/jcp.10119.CrossRefPubMed Martindale JL, Holbrook NJ: Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002, 192 (1): 1-15. 10.1002/jcp.10119.CrossRefPubMed
39.
go back to reference Sayre LM, Perry G, Smith MA: Oxidative stress and neurotoxicity. Chem Res Toxicol. 2008, 21 (1): 172-188. 10.1021/tx700210j.CrossRefPubMed Sayre LM, Perry G, Smith MA: Oxidative stress and neurotoxicity. Chem Res Toxicol. 2008, 21 (1): 172-188. 10.1021/tx700210j.CrossRefPubMed
40.
go back to reference Brady S, Morfini G: A perspective on neuronal cell death signaling and neurodegeneration. Mol Neurobiol. 2010, 42 (1): 25-31. 10.1007/s12035-010-8128-2.PubMedCentralCrossRefPubMed Brady S, Morfini G: A perspective on neuronal cell death signaling and neurodegeneration. Mol Neurobiol. 2010, 42 (1): 25-31. 10.1007/s12035-010-8128-2.PubMedCentralCrossRefPubMed
41.
42.
go back to reference Nikolaev A, et al: APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009, 457 (7232): 981-989. 10.1038/nature07767.PubMedCentralCrossRefPubMed Nikolaev A, et al: APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009, 457 (7232): 981-989. 10.1038/nature07767.PubMedCentralCrossRefPubMed
43.
go back to reference Banker G, Goslin K: Developments in neuronal cell culture. Nature. 1988, 336 (6195): 185-186. 10.1038/336185a0.CrossRefPubMed Banker G, Goslin K: Developments in neuronal cell culture. Nature. 1988, 336 (6195): 185-186. 10.1038/336185a0.CrossRefPubMed
44.
go back to reference Kaech S, Banker G: Culturing hippocampal neurons. Nat Protoc. 2006, 1 (5): 2406-2415. 10.1038/nprot.2006.356.CrossRefPubMed Kaech S, Banker G: Culturing hippocampal neurons. Nat Protoc. 2006, 1 (5): 2406-2415. 10.1038/nprot.2006.356.CrossRefPubMed
45.
go back to reference Sirninger J, et al: Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector. Hum Gene Ther. 2004, 15 (9): 832-841.PubMed Sirninger J, et al: Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector. Hum Gene Ther. 2004, 15 (9): 832-841.PubMed
46.
go back to reference El Meskini R, et al: A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules. Endocrinology. 2001, 142 (2): 864-873. 10.1210/en.142.2.864.PubMed El Meskini R, et al: A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules. Endocrinology. 2001, 142 (2): 864-873. 10.1210/en.142.2.864.PubMed
Metadata
Title
Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases
Authors
Cheng Fang
Dennis Bourdette
Gary Banker
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2012
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-7-29

Other articles of this Issue 1/2012

Molecular Neurodegeneration 1/2012 Go to the issue