Skip to main content
Top
Published in: Virology Journal 1/2013

Open Access 01-12-2013 | Research

Development and use of three monoclonal antibodies for the detection of rice black-streaked dwarf virus in field plants and planthopper vectors

Authors: Jianxiang Wu, Yuequn Ni, Huan Liu, Lixia Rao, Yijun Zhou, Xueping Zhou

Published in: Virology Journal | Issue 1/2013

Login to get access

Abstract

Background

Rice black-streaked dwarf virus (RBSDV) causes great losses in rice, maize and wheat production in Asian countries. The use of serological methods for RBSDV detection depends on the availability of antibodies. In this study, three highly sensitive and specific murine monoclonal antibodies (MAbs) against RBSDV antigens were produced using crude extracts from tumors of RBSDV-infected maize as the immunogen, and two serological assays, antigen-coated-plate enzyme-linked immunosorbent assay (ACP-ELISA) and dot enzyme-linked immunosorbent assay (dot-ELISA) were developed for RBSDV detection.

Results

All three MAbs reacted strongly and specifically with the crude extracts from RBSDV-infected plant and planthopper tissues. The detection endpoints of three MAbs (12E10, 18F10 and 5G5) in ACP-ELISA were respectively 1:40,960, 1:40,960, 1:81,920 (w/v, g mL-1) with the crude extract of infected maize, 1:10,240, 1:20,480, 1:20,480 (w/v, g mL-1) with the crude extract of infected rice, 1:5,120, 1:10,240, 1:10,240 (w/v, g mL-1) with the crude extract of infected wheat, 1:9,600, 1:9,600, 19,200 (individual planthopper/μL) with the crude extract of infected planthopper. The newly developed ACP-ELISA could detect the virus in the infected maize, wheat, rice tissue crude extracts diluted at 1:81,920, 1:20,480, 1:10,240 (w/v, g mL-1), respectively, and in individual viruliferous planthopper extract diluted at 1:19200 (individual planthopper/μL). The dot-ELISA was proved to detect the virus in the infected maize, wheat and rice tissue crude extracts diluted at 1:320 (w/v, g mL-1), and in individual viruliferous planthopper extract diluted at 1:1,600 (individual planthopper/μL), respectively. Field plants (915) and planthopper samples (594) from five provinces of China were screened for the presence of RBSDV using the two developed serological assays. The results indicated that 338 of the 915 plant samples and 19 of the 594 planthopper samples were infected by RBSDV.

Conclusions

The newly developed ACP-ELISA and dot-ELISA were highly sensitive and specific to detect RBSDV in field plant and planthopper samples. The field survey demonstrated that RBSDV is widespread in rice, maize and wheat crops in Jiangsu, Zhejiang, Shandong provinces of China.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ishii M, Yoshimura S: Epidemiological studies on rice black-streaked dwarf virus in Kanto-Tosan district in Japan. J Cent Agric Exp Sta 1973, 17: 61-121. Ishii M, Yoshimura S: Epidemiological studies on rice black-streaked dwarf virus in Kanto-Tosan district in Japan. J Cent Agric Exp Sta 1973, 17: 61-121.
2.
go back to reference Shikata E, Kitagawa Y: Rice black-streaked dwarf virus: its properties, morphology and intracellular localization. Virology 1977, 77: 826-842. 10.1016/0042-6822(77)90502-5PubMedCrossRef Shikata E, Kitagawa Y: Rice black-streaked dwarf virus: its properties, morphology and intracellular localization. Virology 1977, 77: 826-842. 10.1016/0042-6822(77)90502-5PubMedCrossRef
3.
go back to reference Hibino H: Biology and epidemiology of rice viruses. Annu Rev Phytopathol 1996, 34: 249-274. 10.1146/annurev.phyto.34.1.249PubMedCrossRef Hibino H: Biology and epidemiology of rice viruses. Annu Rev Phytopathol 1996, 34: 249-274. 10.1146/annurev.phyto.34.1.249PubMedCrossRef
4.
go back to reference Fang S, Yu J, Feng J, Han C, Li D, Liu Y: Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Arch Virol 2001, 146: 167-170. 10.1007/s007050170200PubMedCrossRef Fang S, Yu J, Feng J, Han C, Li D, Liu Y: Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Arch Virol 2001, 146: 167-170. 10.1007/s007050170200PubMedCrossRef
5.
go back to reference Zhou T, Wu LJ, Wang Y, Cheng ZB, Ji YH, Fan YJ, Zhou YJ: Transmission of rice black-streaked dwarf virus from frozen infected leaves to healthy rice plants by small brown planthopper ( laodelphax striatellus ). Rice Science 2011, 18: 152-156. 10.1016/S1672-6308(11)60022-XCrossRef Zhou T, Wu LJ, Wang Y, Cheng ZB, Ji YH, Fan YJ, Zhou YJ: Transmission of rice black-streaked dwarf virus from frozen infected leaves to healthy rice plants by small brown planthopper ( laodelphax striatellus ). Rice Science 2011, 18: 152-156. 10.1016/S1672-6308(11)60022-XCrossRef
6.
go back to reference Wang Q, Tao T, Zhang YJ, Wu WQ, Li DW, Yu JL, Han CG: Rice black-streaked dwarf virus P6 self-interacts to form punctuated, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1. Virol J 2011, 8: 24. 10.1186/1743-422X-8-24PubMedPubMedCentralCrossRef Wang Q, Tao T, Zhang YJ, Wu WQ, Li DW, Yu JL, Han CG: Rice black-streaked dwarf virus P6 self-interacts to form punctuated, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1. Virol J 2011, 8: 24. 10.1186/1743-422X-8-24PubMedPubMedCentralCrossRef
7.
go back to reference Luan JW, Wang F, Li YJ, Zhang B, Zhang JR: Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize ( Zea mays L. ). Theor Appl Genet 2012, 125: 781-791. 10.1007/s00122-012-1871-1PubMedCrossRef Luan JW, Wang F, Li YJ, Zhang B, Zhang JR: Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize ( Zea mays L. ). Theor Appl Genet 2012, 125: 781-791. 10.1007/s00122-012-1871-1PubMedCrossRef
8.
go back to reference Bai F, Yan J, Qu Z, Zhang H, Xu J, Ye M, Shen D: Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV). Virus Genes 2002, 25: 201-206. 10.1023/A:1020170020581PubMedCrossRef Bai F, Yan J, Qu Z, Zhang H, Xu J, Ye M, Shen D: Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV). Virus Genes 2002, 25: 201-206. 10.1023/A:1020170020581PubMedCrossRef
9.
go back to reference Zhang HM, Chen JP, Adams MJ: Molecular characterisation of segments 1 to 6 of Rice black-streaked dwarf virus from China provides the complete genome. Arch Virol 2001, 146: 2331-2339. 10.1007/s007050170006PubMedCrossRef Zhang HM, Chen JP, Adams MJ: Molecular characterisation of segments 1 to 6 of Rice black-streaked dwarf virus from China provides the complete genome. Arch Virol 2001, 146: 2331-2339. 10.1007/s007050170006PubMedCrossRef
10.
go back to reference Shimizu T, Nakazono-Nagaoka E, Akita F, Uehara-Ichiki T, Omura T, Sasaya T: Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res 2011, 160: 400-403. 10.1016/j.virusres.2011.05.011PubMedCrossRef Shimizu T, Nakazono-Nagaoka E, Akita F, Uehara-Ichiki T, Omura T, Sasaya T: Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res 2011, 160: 400-403. 10.1016/j.virusres.2011.05.011PubMedCrossRef
11.
go back to reference Xie LH: Research on rice virus diseases in China. Proc Symp Trop Agric Res Trop Agric Res Ser 1986, 19: 45-58. Xie LH: Research on rice virus diseases in China. Proc Symp Trop Agric Res Trop Agric Res Ser 1986, 19: 45-58.
12.
go back to reference Conti M, Lovisolo O: Tubular structures associated with maize rough dwarf virus particles in crude extracts: electron microscopy study. J Gen Virol 1971, 13: 173-176. 10.1099/0022-1317-13-1-173PubMedCrossRef Conti M, Lovisolo O: Tubular structures associated with maize rough dwarf virus particles in crude extracts: electron microscopy study. J Gen Virol 1971, 13: 173-176. 10.1099/0022-1317-13-1-173PubMedCrossRef
13.
go back to reference Isogai M, Uyeda I, Lee B: Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10. J Gen Virol 1998, 79: 1487-1494.PubMedCrossRef Isogai M, Uyeda I, Lee B: Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10. J Gen Virol 1998, 79: 1487-1494.PubMedCrossRef
14.
go back to reference Wang ZH, Fang SG, Xu JL, Sun LY, Li DW, Yu JL: Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes 2003, 27: 163-168. 10.1023/A:1025776527286PubMedCrossRef Wang ZH, Fang SG, Xu JL, Sun LY, Li DW, Yu JL: Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes 2003, 27: 163-168. 10.1023/A:1025776527286PubMedCrossRef
15.
go back to reference Azuhata F, Uyeda I, Kimura I, Shikata E: Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. J Gen Virol 1993, 74: 1227-1232. 10.1099/0022-1317-74-7-1227PubMedCrossRef Azuhata F, Uyeda I, Kimura I, Shikata E: Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. J Gen Virol 1993, 74: 1227-1232. 10.1099/0022-1317-74-7-1227PubMedCrossRef
16.
go back to reference Firth AE, Atkins JF: Analysis of the coding potential of the partially overlapping 3′ ORF in segment 5 of the plant fijiviruses. Virol J 2009, 6: 32. 10.1186/1743-422X-6-32PubMedPubMedCentralCrossRef Firth AE, Atkins JF: Analysis of the coding potential of the partially overlapping 3′ ORF in segment 5 of the plant fijiviruses. Virol J 2009, 6: 32. 10.1186/1743-422X-6-32PubMedPubMedCentralCrossRef
17.
go back to reference Milne RG, del Vas M, Harding RM, Marzachì R, Mertens PPC: Genus Fijirirus. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. San Diego: Elsevier Academic Press; 2005:534-542. Milne RG, del Vas M, Harding RM, Marzachì R, Mertens PPC: Genus Fijirirus. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. San Diego: Elsevier Academic Press; 2005:534-542.
18.
go back to reference Liu HJ, Wei CH, Zhong YW, Li Y: Rice black-streaked dwarf virus minor core protein P8 is a nuclear dimeric protein and represses transcription in tobacco protoplasts. FEBS Lett 2007, 581: 2534-2540. 10.1016/j.febslet.2007.04.071PubMedCrossRef Liu HJ, Wei CH, Zhong YW, Li Y: Rice black-streaked dwarf virus minor core protein P8 is a nuclear dimeric protein and represses transcription in tobacco protoplasts. FEBS Lett 2007, 581: 2534-2540. 10.1016/j.febslet.2007.04.071PubMedCrossRef
19.
go back to reference Liu HJ, Wei CH, Zhong YW, Li Y: Rice black-streaked dwarf virus outer capsid protein P10 has self-interactions and forms oligomeric complexes in solution. Virus Res 2007, 127: 34-42. 10.1016/j.virusres.2007.03.017PubMedCrossRef Liu HJ, Wei CH, Zhong YW, Li Y: Rice black-streaked dwarf virus outer capsid protein P10 has self-interactions and forms oligomeric complexes in solution. Virus Res 2007, 127: 34-42. 10.1016/j.virusres.2007.03.017PubMedCrossRef
20.
go back to reference Zhang LD, Wang ZH, Wang XB, Zhang WH, Li DW, Han CG, Zhai YF, Yu JL: Two virus-encoded RNA silencing suppressors, P14 of Beet necrotic yellow vein virus and S6 of Rice black streak dwarf virus. Chin Sci Bull 2005, 50: 305-310. Zhang LD, Wang ZH, Wang XB, Zhang WH, Li DW, Han CG, Zhai YF, Yu JL: Two virus-encoded RNA silencing suppressors, P14 of Beet necrotic yellow vein virus and S6 of Rice black streak dwarf virus. Chin Sci Bull 2005, 50: 305-310.
21.
go back to reference Zhang CZ, Liu YY, Liu LY, Lou ZY, Zhang HY, Miao HQ, Hu XB, Pang YP, Qiu BS: Rice black streaked dwarf virus P9-1, an a-helical protein, self-interacts and forms viroplasms in vivo . J Gen Virol 2008, 89: 1770-1776. 10.1099/vir.0.2008/000109-0PubMedCrossRef Zhang CZ, Liu YY, Liu LY, Lou ZY, Zhang HY, Miao HQ, Hu XB, Pang YP, Qiu BS: Rice black streaked dwarf virus P9-1, an a-helical protein, self-interacts and forms viroplasms in vivo . J Gen Virol 2008, 89: 1770-1776. 10.1099/vir.0.2008/000109-0PubMedCrossRef
22.
go back to reference Zhou T, Du LL, Fan YJ, Zhou YJ: Reverse transcription loop-mediated isothermal amplification of RNA for sensitive and rapid detection of southern rice black-streaked dwarf virus. J Virol Methods 2012, 180: 91-95. 10.1016/j.jviromet.2011.12.014PubMedCrossRef Zhou T, Du LL, Fan YJ, Zhou YJ: Reverse transcription loop-mediated isothermal amplification of RNA for sensitive and rapid detection of southern rice black-streaked dwarf virus. J Virol Methods 2012, 180: 91-95. 10.1016/j.jviromet.2011.12.014PubMedCrossRef
23.
go back to reference Le DT, Netsu O, Uehara-Ichiki T, Shimizu T, Choi IR, Omura T, Sasaya T: Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J Virol Methods 2010, 170: 90-93. 10.1016/j.jviromet.2010.09.004PubMedCrossRef Le DT, Netsu O, Uehara-Ichiki T, Shimizu T, Choi IR, Omura T, Sasaya T: Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J Virol Methods 2010, 170: 90-93. 10.1016/j.jviromet.2010.09.004PubMedCrossRef
24.
go back to reference Wang ZH, Fang SG, Zhang ZY, Han CG, Li DW, Yu JL: Development of an ID-ELISA for the detection of Rice black-streaked dwarf virus in plants. J Virol Methods 2006, 134: 61-65. 10.1016/j.jviromet.2005.11.019PubMedCrossRef Wang ZH, Fang SG, Zhang ZY, Han CG, Li DW, Yu JL: Development of an ID-ELISA for the detection of Rice black-streaked dwarf virus in plants. J Virol Methods 2006, 134: 61-65. 10.1016/j.jviromet.2005.11.019PubMedCrossRef
25.
go back to reference Takahashi Y, Omura T, Shohara K, Tsuchizaki T: Comparison of four serological methods for practical detection of ten viruses of rice in plants and insects. Plant Dis 1991, 75: 458-461. 10.1094/PD-75-0458CrossRef Takahashi Y, Omura T, Shohara K, Tsuchizaki T: Comparison of four serological methods for practical detection of ten viruses of rice in plants and insects. Plant Dis 1991, 75: 458-461. 10.1094/PD-75-0458CrossRef
26.
go back to reference Boccardo G, Milne RG: Enhancement of the immunogenicity of the maize rough dwarf virus outer shell with the cross-linking reagent dithiobis (succinimidyl) propionate. J Virol Methods 1981, 3: 109-113. 10.1016/0166-0934(81)90007-0PubMedCrossRef Boccardo G, Milne RG: Enhancement of the immunogenicity of the maize rough dwarf virus outer shell with the cross-linking reagent dithiobis (succinimidyl) propionate. J Virol Methods 1981, 3: 109-113. 10.1016/0166-0934(81)90007-0PubMedCrossRef
27.
go back to reference Zhang HM, Yang J, Chen JP, Adams MJ: A black-streaked dwarf disease on rice in China is caused by a novel fijivirus. Arch Virol 2008, 153: 1893-1898. 10.1007/s00705-008-0209-4PubMedCrossRef Zhang HM, Yang J, Chen JP, Adams MJ: A black-streaked dwarf disease on rice in China is caused by a novel fijivirus. Arch Virol 2008, 153: 1893-1898. 10.1007/s00705-008-0209-4PubMedCrossRef
28.
go back to reference Zhou GH, Wen JJ, Cai DJ, Li P, Xu DL, Zhang SG: Southern rice black-streaked dwarf virus: A new proposed fijivirus species in the family Reoviridae . Chin Sci Bull 2008, 53: 3677-3685. 10.1007/s11434-008-0467-2CrossRef Zhou GH, Wen JJ, Cai DJ, Li P, Xu DL, Zhang SG: Southern rice black-streaked dwarf virus: A new proposed fijivirus species in the family Reoviridae . Chin Sci Bull 2008, 53: 3677-3685. 10.1007/s11434-008-0467-2CrossRef
29.
go back to reference Wang Q, Yang J, Zhou G, Zhang H, Chen J, Adams M: The complete genome sequence of two isolates of southern rice black-streaked dwarf virus, a new member of the genus Fijivirus. J Phytopathol 2010, 158: 733-737. 10.1111/j.1439-0434.2010.01679.xCrossRef Wang Q, Yang J, Zhou G, Zhang H, Chen J, Adams M: The complete genome sequence of two isolates of southern rice black-streaked dwarf virus, a new member of the genus Fijivirus. J Phytopathol 2010, 158: 733-737. 10.1111/j.1439-0434.2010.01679.xCrossRef
30.
go back to reference Shang HL, Xie Y, Zhou XP, Qian YJ, Wu JX: Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virol J 2011, 8: 228. 10.1186/1743-422X-8-228PubMedPubMedCentralCrossRef Shang HL, Xie Y, Zhou XP, Qian YJ, Wu JX: Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virol J 2011, 8: 228. 10.1186/1743-422X-8-228PubMedPubMedCentralCrossRef
31.
go back to reference Wu JX, Yu C, Yang CY, Deng FL, Zhou XP: Monoclonal antibodies against the recombinant nucleocapsid protein of tomato spotted wilt virus and its application in the virus detection. J Phytopathol 2009, 157: 344-349. 10.1111/j.1439-0434.2008.01498.xCrossRef Wu JX, Yu C, Yang CY, Deng FL, Zhou XP: Monoclonal antibodies against the recombinant nucleocapsid protein of tomato spotted wilt virus and its application in the virus detection. J Phytopathol 2009, 157: 344-349. 10.1111/j.1439-0434.2008.01498.xCrossRef
32.
go back to reference Wu JX, Yu L, Li L, Hu JQ, Zhou JY, Zhou XP: Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 2007, 5: 570-578. 10.1111/j.1467-7652.2007.00270.xPubMedCrossRef Wu JX, Yu L, Li L, Hu JQ, Zhou JY, Zhou XP: Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 2007, 5: 570-578. 10.1111/j.1467-7652.2007.00270.xPubMedCrossRef
Metadata
Title
Development and use of three monoclonal antibodies for the detection of rice black-streaked dwarf virus in field plants and planthopper vectors
Authors
Jianxiang Wu
Yuequn Ni
Huan Liu
Lixia Rao
Yijun Zhou
Xueping Zhou
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2013
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-10-114

Other articles of this Issue 1/2013

Virology Journal 1/2013 Go to the issue