Skip to main content
Top
Published in: Journal of Translational Medicine 1/2023

Open Access 01-12-2023 | Hepatocellular Carcinoma | Review

Recent advances of exosomal circRNAs in cancer and their potential clinical applications

Authors: Qian Yi, Jiaji Yue, Yang Liu, Houyin Shi, Wei Sun, Jianguo Feng, Weichao Sun

Published in: Journal of Translational Medicine | Issue 1/2023

Login to get access

Abstract

Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed, uninterrupted loop. The expression of circRNA differs among cell types and tissues, and various circRNAs are aberrantly expressed in a variety of diseases, including cancer. Aberrantly expressed circRNAs contribute to disease progression by acting as microRNA sponges, functional protein sponges, or novel templates for protein translation. Recent studies have shown that circRNAs are enriched in exosomes. Exosomes are spherical bilayer vesicles released by cells into extracellular spaces that mediate intercellular communication by delivering cargoes. These cargoes include metabolites, proteins, lipids, and RNA molecules. Exosome-mediated cell-cell or cell-microenvironment communications influence the progression of carcinogenesis by regulating cell proliferation, angiogenesis, metastasis as well as immune escape. In this review, we summarize the current knowledge about exosomal circRNAs in cancers and discuss their specific functions in tumorigenesis. Additionally, we discuss the potential value of exosomal circRNAs as diagnostic biomarkers and the potential applications of exosomal circRNA-based cancer therapy.
Literature
1.
go back to reference Collaborators GBDRF. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1659–724.CrossRef Collaborators GBDRF. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1659–724.CrossRef
4.
go back to reference Reimers N, Pantel K. Liquid biopsy: novel technologies and clinical applications. Clin Chem Lab Med. 2019;57(3):312–6.PubMedCrossRef Reimers N, Pantel K. Liquid biopsy: novel technologies and clinical applications. Clin Chem Lab Med. 2019;57(3):312–6.PubMedCrossRef
5.
go back to reference Alix-Panabieres C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858–73.PubMedCrossRef Alix-Panabieres C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858–73.PubMedCrossRef
6.
go back to reference Mathai RA, et al. Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: implications in the precision oncology. J Clin Med. 2019;8(3):373.PubMedPubMedCentralCrossRef Mathai RA, et al. Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: implications in the precision oncology. J Clin Med. 2019;8(3):373.PubMedPubMedCentralCrossRef
7.
go back to reference Heitzer E, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.PubMedCrossRef Heitzer E, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.PubMedCrossRef
8.
9.
go back to reference Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomed. 2020;15:8019–36.CrossRef Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomed. 2020;15:8019–36.CrossRef
11.
go back to reference Yu W, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32(4):466–77.PubMedCrossRef Yu W, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32(4):466–77.PubMedCrossRef
12.
go back to reference Yi Q, et al. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life. 2023;75(3):225–37.PubMedCrossRef Yi Q, et al. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life. 2023;75(3):225–37.PubMedCrossRef
15.
17.
go back to reference Huang T, et al. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer. 2019;18(1):62.PubMedPubMedCentralCrossRef Huang T, et al. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer. 2019;18(1):62.PubMedPubMedCentralCrossRef
18.
go back to reference Baietti MF, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85.PubMedCrossRef Baietti MF, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85.PubMedCrossRef
20.
go back to reference van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef
21.
go back to reference Wu P, et al. Exosomes derived from hypoxic glioma cells reduce the sensitivity of glioma cells to temozolomide through carrying miR-106a-5p. Drug Des Devel Ther. 2022;16:3589–98.PubMedPubMedCentralCrossRef Wu P, et al. Exosomes derived from hypoxic glioma cells reduce the sensitivity of glioma cells to temozolomide through carrying miR-106a-5p. Drug Des Devel Ther. 2022;16:3589–98.PubMedPubMedCentralCrossRef
22.
go back to reference Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential. J Cancer Res Clin Oncol. 2021;147(3):637–48.PubMedCrossRef Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential. J Cancer Res Clin Oncol. 2021;147(3):637–48.PubMedCrossRef
23.
24.
go back to reference Hu JL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18(1):91.PubMedPubMedCentralCrossRef Hu JL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18(1):91.PubMedPubMedCentralCrossRef
25.
go back to reference Ren J, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932–48.PubMedPubMedCentralCrossRef Ren J, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932–48.PubMedPubMedCentralCrossRef
26.
go back to reference Cao Y, et al. Exosomes and cancer immunotherapy: a review of recent cancer research. Front Oncol. 2022;12:1118101.PubMedCrossRef Cao Y, et al. Exosomes and cancer immunotherapy: a review of recent cancer research. Front Oncol. 2022;12:1118101.PubMedCrossRef
27.
go back to reference Zhou Y, et al. The role of exosomes and their applications in Cancer. Int J Mol Sci. 2021;22(22):12204.CrossRef Zhou Y, et al. The role of exosomes and their applications in Cancer. Int J Mol Sci. 2021;22(22):12204.CrossRef
28.
go back to reference Giannopoulou L, et al. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res. 2019;205:77–91.PubMedCrossRef Giannopoulou L, et al. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res. 2019;205:77–91.PubMedCrossRef
29.
go back to reference Xiao Q, et al. Circulating plasma exosomal long non-coding RNAs LINC00265, LINC00467, UCA1, and SNHG1 as biomarkers for diagnosis and treatment monitoring of acute myeloid leukemia. Front Oncol. 2022;12: 1033143.PubMedPubMedCentralCrossRef Xiao Q, et al. Circulating plasma exosomal long non-coding RNAs LINC00265, LINC00467, UCA1, and SNHG1 as biomarkers for diagnosis and treatment monitoring of acute myeloid leukemia. Front Oncol. 2022;12: 1033143.PubMedPubMedCentralCrossRef
30.
go back to reference Li P, et al. Characterization of circSCL38A1 as a novel oncogene in bladder cancer via targeting ILF3/TGF-beta2 signaling axis. Cell Death Dis. 2023;14(1):59.PubMedPubMedCentralCrossRef Li P, et al. Characterization of circSCL38A1 as a novel oncogene in bladder cancer via targeting ILF3/TGF-beta2 signaling axis. Cell Death Dis. 2023;14(1):59.PubMedPubMedCentralCrossRef
31.
go back to reference Meng X, et al. Circular RNA: an emerging key player in RNA world. Brief Bioinform. 2017;18(4):547–57.PubMed Meng X, et al. Circular RNA: an emerging key player in RNA world. Brief Bioinform. 2017;18(4):547–57.PubMed
33.
go back to reference Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280(5720):339–40.PubMedCrossRef Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280(5720):339–40.PubMedCrossRef
34.
go back to reference Dong R, et al. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteom Bioinf. 2018;16(4):226–33.CrossRef Dong R, et al. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteom Bioinf. 2018;16(4):226–33.CrossRef
35.
go back to reference Arnaiz E, et al. CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol. 2019;58:90–9.PubMedCrossRef Arnaiz E, et al. CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol. 2019;58:90–9.PubMedCrossRef
36.
go back to reference Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11.PubMedCrossRef Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11.PubMedCrossRef
38.
go back to reference Kristensen LS, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.PubMedCrossRef Kristensen LS, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.PubMedCrossRef
39.
go back to reference Wang C, et al. CircRNAs in lung cancer - biogenesis, function and clinical implication. Cancer Lett. 2020;492:106–15.PubMedCrossRef Wang C, et al. CircRNAs in lung cancer - biogenesis, function and clinical implication. Cancer Lett. 2020;492:106–15.PubMedCrossRef
41.
42.
go back to reference Ding L, et al. Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clin Transl Med. 2023;13(1):e1156.PubMedPubMedCentralCrossRef Ding L, et al. Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clin Transl Med. 2023;13(1):e1156.PubMedPubMedCentralCrossRef
43.
go back to reference Zhao K, et al. Exosome-mediated transfer of circ_0000338 enhances 5-fluorouracil resistance in colorectal cancer through regulating microRNA 217 (miR-217) and miR-485-3p. Mol Cell Biol. 2021;41(5):e00517–20.PubMedPubMedCentralCrossRef Zhao K, et al. Exosome-mediated transfer of circ_0000338 enhances 5-fluorouracil resistance in colorectal cancer through regulating microRNA 217 (miR-217) and miR-485-3p. Mol Cell Biol. 2021;41(5):e00517–20.PubMedPubMedCentralCrossRef
44.
go back to reference Huang M, Huang X, Huang N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells. Cancer Sci. 2022;113(6):1968–83.PubMedPubMedCentralCrossRef Huang M, Huang X, Huang N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells. Cancer Sci. 2022;113(6):1968–83.PubMedPubMedCentralCrossRef
45.
46.
go back to reference Lin J, et al. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15(1):128.PubMedPubMedCentralCrossRef Lin J, et al. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15(1):128.PubMedPubMedCentralCrossRef
47.
go back to reference He Y, et al. Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-kappaB activating protein. Anticancer Drugs. 2022;33(10):1114–25.PubMedCrossRef He Y, et al. Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-kappaB activating protein. Anticancer Drugs. 2022;33(10):1114–25.PubMedCrossRef
48.
go back to reference Zhou B, et al. Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF. J Exp Clin Cancer Res. 2023;42(1):48.PubMedPubMedCentralCrossRef Zhou B, et al. Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF. J Exp Clin Cancer Res. 2023;42(1):48.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Qian Y et al. Tumor cell-derived exosomal circ-PRKCI promotes proliferation of renal cell carcinoma via regulating miR-545-3p/CCND1. Axis Cancers (Basel). 2022; 15(1). Qian Y et al. Tumor cell-derived exosomal circ-PRKCI promotes proliferation of renal cell carcinoma via regulating miR-545-3p/CCND1. Axis Cancers (Basel). 2022; 15(1).
51.
go back to reference Zhang H, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38(15):2844–59.PubMedCrossRef Zhang H, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38(15):2844–59.PubMedCrossRef
52.
go back to reference Liu L, et al. Hepatic stellate cell exosome-derived circWDR25 promotes the progression of hepatocellular carcinoma via the miRNA-4474-3P-ALOX-15 and EMT axes. Biosci Trends. 2022;16(4):267–81.PubMedCrossRef Liu L, et al. Hepatic stellate cell exosome-derived circWDR25 promotes the progression of hepatocellular carcinoma via the miRNA-4474-3P-ALOX-15 and EMT axes. Biosci Trends. 2022;16(4):267–81.PubMedCrossRef
53.
go back to reference Xiong H, et al. circ_rac GTPase-activating protein 1 facilitates stemness and metastasis of non-small cell lung cancer via polypyrimidine tract-binding protein 1 recruitment to promote Sirtuin-3-mediated replication timing regulatory factor 1 deacetylation. Lab Invest. 2023;103(1): 100010.PubMedCrossRef Xiong H, et al. circ_rac GTPase-activating protein 1 facilitates stemness and metastasis of non-small cell lung cancer via polypyrimidine tract-binding protein 1 recruitment to promote Sirtuin-3-mediated replication timing regulatory factor 1 deacetylation. Lab Invest. 2023;103(1): 100010.PubMedCrossRef
54.
go back to reference Tang X, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85.PubMedPubMedCentralCrossRef Tang X, et al. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. J Exp Clin Cancer Res. 2022;41(1):85.PubMedPubMedCentralCrossRef
55.
go back to reference Zheng R, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer. 2022;21(1):49.PubMedPubMedCentralCrossRef Zheng R, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer. 2022;21(1):49.PubMedPubMedCentralCrossRef
56.
go back to reference Yang Y, Yang N, Jiang J. Exosomal circ_PTPRA inhibits tumorigenesis and promotes radiosensitivity in colorectal cancer by enriching the level of SMAD4 via competitively binding to miR-671-5. Cytotechnology. 2022;74(1):51–64.PubMedPubMedCentralCrossRef Yang Y, Yang N, Jiang J. Exosomal circ_PTPRA inhibits tumorigenesis and promotes radiosensitivity in colorectal cancer by enriching the level of SMAD4 via competitively binding to miR-671-5. Cytotechnology. 2022;74(1):51–64.PubMedPubMedCentralCrossRef
57.
go back to reference Chen W, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett. 2020;475:119–28.PubMedCrossRef Chen W, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett. 2020;475:119–28.PubMedCrossRef
58.
go back to reference Zhang Y, et al. Exosomal CircGDI2 suppresses oral squamous cell carcinoma progression through the regulation of MiR-424-5p/SCAI Axis. Cancer Manag Res. 2020;12:7501–14.PubMedPubMedCentralCrossRef Zhang Y, et al. Exosomal CircGDI2 suppresses oral squamous cell carcinoma progression through the regulation of MiR-424-5p/SCAI Axis. Cancer Manag Res. 2020;12:7501–14.PubMedPubMedCentralCrossRef
59.
go back to reference Chen C, et al. Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol Cancer. 2022;21(1):46.PubMedPubMedCentralCrossRef Chen C, et al. Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol Cancer. 2022;21(1):46.PubMedPubMedCentralCrossRef
60.
go back to reference Shi L, et al. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN. Cell Death Dis. 2022;13(5):506.PubMedPubMedCentralCrossRef Shi L, et al. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN. Cell Death Dis. 2022;13(5):506.PubMedPubMedCentralCrossRef
61.
go back to reference Zhang L, et al. Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3. Cell Death Dis. 2022;13(1):32.PubMedPubMedCentralCrossRef Zhang L, et al. Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3. Cell Death Dis. 2022;13(1):32.PubMedPubMedCentralCrossRef
62.
go back to reference Shang A, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miRi>-506-3p- TGF-beta1 axis. Mol Cancer. 2020;19(1):117.PubMedPubMedCentralCrossRef Shang A, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miRi>-506-3p- TGF-beta1 axis. Mol Cancer. 2020;19(1):117.PubMedPubMedCentralCrossRef
63.
64.
go back to reference Zhou H, et al. CircRAPGEF5 promotes the proliferation and metastasis of lung adenocarcinoma through the miR-1236-3p/ZEB1 Axis and serves as a potential biomarker. Int J Biol Sci. 2022;18(5):2116–31.PubMedPubMedCentralCrossRef Zhou H, et al. CircRAPGEF5 promotes the proliferation and metastasis of lung adenocarcinoma through the miR-1236-3p/ZEB1 Axis and serves as a potential biomarker. Int J Biol Sci. 2022;18(5):2116–31.PubMedPubMedCentralCrossRef
65.
go back to reference Yang SJ, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/beta-catenin (cyclin D1) axis. Cell Death Dis. 2021;12(5):420.PubMedPubMedCentralCrossRef Yang SJ, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/beta-catenin (cyclin D1) axis. Cell Death Dis. 2021;12(5):420.PubMedPubMedCentralCrossRef
66.
go back to reference Zhang G, et al. Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR-1/MAP 3 K1 axis. J Gene Med. 2022;24(8):e3376.PubMedCrossRef Zhang G, et al. Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR-1/MAP 3 K1 axis. J Gene Med. 2022;24(8):e3376.PubMedCrossRef
67.
go back to reference Zhang T, et al. Circular RNA circ_0003028 regulates cell development through modulating miR-498/ornithine decarboxylase 1 axis in hepatocellular carcinoma. Anticancer Drugs. 2023;34(4):507–18.PubMedCrossRef Zhang T, et al. Circular RNA circ_0003028 regulates cell development through modulating miR-498/ornithine decarboxylase 1 axis in hepatocellular carcinoma. Anticancer Drugs. 2023;34(4):507–18.PubMedCrossRef
68.
go back to reference Lin Q, et al. Exosomal circular RNA hsa_circ_007293 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through regulation of the microRNA-653-5p/paired box 6 axis. Bioengineered. 2021;12(2):10136–49.PubMedPubMedCentralCrossRef Lin Q, et al. Exosomal circular RNA hsa_circ_007293 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through regulation of the microRNA-653-5p/paired box 6 axis. Bioengineered. 2021;12(2):10136–49.PubMedPubMedCentralCrossRef
69.
go back to reference Huang XY, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020;39(1):20.PubMedPubMedCentralCrossRef Huang XY, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020;39(1):20.PubMedPubMedCentralCrossRef
70.
go back to reference Li S, et al. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys Res Commun. 2021;560:37–44.PubMedCrossRef Li S, et al. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys Res Commun. 2021;560:37–44.PubMedCrossRef
71.
go back to reference Ye H, et al. Exosomal circNFIX promotes angiogenesis in ovarian cancer via miR-518a-3p/TRIM44 axis. Kaohsiung J Med Sci. 2023;39(1):26–39.PubMedCrossRef Ye H, et al. Exosomal circNFIX promotes angiogenesis in ovarian cancer via miR-518a-3p/TRIM44 axis. Kaohsiung J Med Sci. 2023;39(1):26–39.PubMedCrossRef
72.
go back to reference Yao W, et al. Exosomal circ_0026611 contributes to lymphangiogenesis by reducing PROX1 acetylation and ubiquitination in human lymphatic endothelial cells (HLECs). Cell Mol Biol Lett. 2023;28(1):13.PubMedPubMedCentralCrossRef Yao W, et al. Exosomal circ_0026611 contributes to lymphangiogenesis by reducing PROX1 acetylation and ubiquitination in human lymphatic endothelial cells (HLECs). Cell Mol Biol Lett. 2023;28(1):13.PubMedPubMedCentralCrossRef
73.
go back to reference Chen X, et al. Exosome-transmitted circIFNGR2 modulates ovarian cancer metastasis via miR-378/ST5 Axis. Mol Cell Biol. 2023;43(1):22–42.PubMedCrossRef Chen X, et al. Exosome-transmitted circIFNGR2 modulates ovarian cancer metastasis via miR-378/ST5 Axis. Mol Cell Biol. 2023;43(1):22–42.PubMedCrossRef
74.
go back to reference Gao G, Wang L, Li C. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am J Cancer Res. 2022;12(5):1934–59.PubMedPubMedCentral Gao G, Wang L, Li C. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am J Cancer Res. 2022;12(5):1934–59.PubMedPubMedCentral
75.
go back to reference Lin Y, et al. Tumor cell-derived exosomal Circ-0072088 suppresses migration and invasion of hepatic carcinoma cells through regulating MMP-16. Front Cell Dev Biol. 2021;9: 726323.PubMedPubMedCentralCrossRef Lin Y, et al. Tumor cell-derived exosomal Circ-0072088 suppresses migration and invasion of hepatic carcinoma cells through regulating MMP-16. Front Cell Dev Biol. 2021;9: 726323.PubMedPubMedCentralCrossRef
76.
77.
go back to reference Zhang C, et al. Exosome-delivered circSTAU2 inhibits the progression of gastric cancer by targeting the miR-589/CAPZA1 Axis. Int J Nanomed. 2023;18:127–42.CrossRef Zhang C, et al. Exosome-delivered circSTAU2 inhibits the progression of gastric cancer by targeting the miR-589/CAPZA1 Axis. Int J Nanomed. 2023;18:127–42.CrossRef
78.
go back to reference Wang X, et al. Circular RNAcirc_0076305 promotes cisplatin (DDP) resistance of non-small cell lung cancer cells by regulating ABCC1 through miR-186-5p. Cancer Biother Radiopharm. 2021;38(5):293–304.PubMed Wang X, et al. Circular RNAcirc_0076305 promotes cisplatin (DDP) resistance of non-small cell lung cancer cells by regulating ABCC1 through miR-186-5p. Cancer Biother Radiopharm. 2021;38(5):293–304.PubMed
79.
go back to reference Xie H, et al. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022;29(1):1257–71.PubMedPubMedCentralCrossRef Xie H, et al. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022;29(1):1257–71.PubMedPubMedCentralCrossRef
80.
go back to reference Pan Y, Lin Y, Mi C. Cisplatin-resistant osteosarcoma cell-derived exosomes confer cisplatin resistance to recipient cells in an exosomal circ_103801-dependent manner. Cell Biol Int. 2021;45(4):858–68.PubMedCrossRef Pan Y, Lin Y, Mi C. Cisplatin-resistant osteosarcoma cell-derived exosomes confer cisplatin resistance to recipient cells in an exosomal circ_103801-dependent manner. Cell Biol Int. 2021;45(4):858–68.PubMedCrossRef
81.
go back to reference Ding C, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40(1):164.PubMedPubMedCentralCrossRef Ding C, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40(1):164.PubMedPubMedCentralCrossRef
82.
go back to reference Zeng Z, et al. Hypoxic exosomal HIF-1alpha-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 2021;40(36):5505–17.PubMedCrossRef Zeng Z, et al. Hypoxic exosomal HIF-1alpha-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 2021;40(36):5505–17.PubMedCrossRef
83.
go back to reference Tan WQ, et al. Exosome-delivered circular RNA DLGAP4 induces chemoresistance via mir-143-HK2 axis in neuroblastoma. Cancer Biomark. 2022;34(3):375–84.PubMedCrossRef Tan WQ, et al. Exosome-delivered circular RNA DLGAP4 induces chemoresistance via mir-143-HK2 axis in neuroblastoma. Cancer Biomark. 2022;34(3):375–84.PubMedCrossRef
84.
go back to reference Wang X, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the mir-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14(3):539–55.PubMedPubMedCentralCrossRef Wang X, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the mir-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14(3):539–55.PubMedPubMedCentralCrossRef
85.
go back to reference Chen Y, et al. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3pi>/TRIM14/Dvl2/Wnt/beta-catenin axis. Hum Cell. 2023;36(1):258–75.PubMedCrossRef Chen Y, et al. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3pi>/TRIM14/Dvl2/Wnt/beta-catenin axis. Hum Cell. 2023;36(1):258–75.PubMedCrossRef
86.
go back to reference Tan X, et al. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anticancer Drugs. 2022;33(9):871–82.PubMedCrossRef Tan X, et al. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anticancer Drugs. 2022;33(9):871–82.PubMedCrossRef
87.
go back to reference Zhang H, et al. Exosomal Circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 Axis. Drug Des Dev Ther. 2021;15:1835–49.CrossRef Zhang H, et al. Exosomal Circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 Axis. Drug Des Dev Ther. 2021;15:1835–49.CrossRef
88.
go back to reference Pan Z, et al. A Novel protein encoded by Exosomal CircATG4B induces Oxaliplatin Resistance in Colorectal Cancer by promoting Autophagy. Adv Sci (Weinh). 2022;9(35):e2204513.PubMedCrossRef Pan Z, et al. A Novel protein encoded by Exosomal CircATG4B induces Oxaliplatin Resistance in Colorectal Cancer by promoting Autophagy. Adv Sci (Weinh). 2022;9(35):e2204513.PubMedCrossRef
89.
go back to reference Xu Y, et al. Exosomal transfer of circular RNA FBXW7 ameliorates the chemoresistance to oxaliplatin in colorectal cancer by sponging miR-18b-5p. Neoplasma. 2021;68(1):108–18.PubMedCrossRef Xu Y, et al. Exosomal transfer of circular RNA FBXW7 ameliorates the chemoresistance to oxaliplatin in colorectal cancer by sponging miR-18b-5p. Neoplasma. 2021;68(1):108–18.PubMedCrossRef
90.
go back to reference Wang X, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J Hematol Oncol. 2022;15(1):122.PubMedPubMedCentralCrossRef Wang X, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J Hematol Oncol. 2022;15(1):122.PubMedPubMedCentralCrossRef
91.
go back to reference Qin L, et al. Hsa–circRNA–G004213 promotes cisplatin sensitivity by regulating miR–513b–5p/PRPF39 in liver cancer. Mol Med Rep. 2021;23(6):421.PubMedPubMedCentralCrossRef Qin L, et al. Hsa–circRNA–G004213 promotes cisplatin sensitivity by regulating miR–513b–5p/PRPF39 in liver cancer. Mol Med Rep. 2021;23(6):421.PubMedPubMedCentralCrossRef
93.
go back to reference Zhu J, et al. Exosome-delivered circSATB2 targets the miR-330-5p/PEAK1 axis to regulate proliferation, migration and invasion of lung cancer cells. Thorac Cancer. 2022;13(21):3007–17.PubMedPubMedCentralCrossRef Zhu J, et al. Exosome-delivered circSATB2 targets the miR-330-5p/PEAK1 axis to regulate proliferation, migration and invasion of lung cancer cells. Thorac Cancer. 2022;13(21):3007–17.PubMedPubMedCentralCrossRef
94.
go back to reference Ning Z, et al. Exosomal circ_0007385 enhances non-small cell lung cancer cell proliferation and stemness via regulating miR-1253/FAM83A axis. Anticancer Drugs. 2022;33(1):61–74.PubMedCrossRef Ning Z, et al. Exosomal circ_0007385 enhances non-small cell lung cancer cell proliferation and stemness via regulating miR-1253/FAM83A axis. Anticancer Drugs. 2022;33(1):61–74.PubMedCrossRef
95.
go back to reference Wang H, et al. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell lung cancer. Bioengineered. 2022;13(4):8937–49.PubMedPubMedCentralCrossRef Wang H, et al. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell lung cancer. Bioengineered. 2022;13(4):8937–49.PubMedPubMedCentralCrossRef
96.
go back to reference Fang K, et al. Serum-derived exosomes-mediated circular RNA ARHGAP10 modulates the progression of Non-Small Cell Lung Cancer through the miR-638/FAM83F Axis. Cancer Biother Radiopharm. 2022;37(2):96–110.PubMed Fang K, et al. Serum-derived exosomes-mediated circular RNA ARHGAP10 modulates the progression of Non-Small Cell Lung Cancer through the miR-638/FAM83F Axis. Cancer Biother Radiopharm. 2022;37(2):96–110.PubMed
97.
go back to reference Yang B, et al. Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer. Aging. 2021;13(9):13264–86.PubMedPubMedCentralCrossRef Yang B, et al. Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer. Aging. 2021;13(9):13264–86.PubMedPubMedCentralCrossRef
98.
go back to reference Li C, et al. Upregulation of exosomal circPLK1 promotes the development of non-small cell lung cancer through the miR-1294/ high mobility group protein A1 axis. Bioengineered. 2022;13(2):4185–200.PubMedPubMedCentralCrossRef Li C, et al. Upregulation of exosomal circPLK1 promotes the development of non-small cell lung cancer through the miR-1294/ high mobility group protein A1 axis. Bioengineered. 2022;13(2):4185–200.PubMedPubMedCentralCrossRef
99.
go back to reference Xu X, et al. Exosome-transferred hsa_circ_0014235 promotes DDP chemoresistance and deteriorates the development of non-small cell lung cancer by mediating the miR-520a-5p/CDK4 pathway. Cancer Cell Int. 2020;20(1):552.PubMedPubMedCentralCrossRef Xu X, et al. Exosome-transferred hsa_circ_0014235 promotes DDP chemoresistance and deteriorates the development of non-small cell lung cancer by mediating the miR-520a-5p/CDK4 pathway. Cancer Cell Int. 2020;20(1):552.PubMedPubMedCentralCrossRef
100.
go back to reference Ma J, Qi G, Li L. A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 2020;13:5293–307.PubMedPubMedCentralCrossRef Ma J, Qi G, Li L. A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 2020;13:5293–307.PubMedPubMedCentralCrossRef
101.
go back to reference Tong Z, et al. A novel molecular mechanism mediated by circCCDC134 regulates non-small cell lung cancer progression. Thorac Cancer. 2023;14(20):1958–68.PubMedPubMedCentralCrossRef Tong Z, et al. A novel molecular mechanism mediated by circCCDC134 regulates non-small cell lung cancer progression. Thorac Cancer. 2023;14(20):1958–68.PubMedPubMedCentralCrossRef
102.
go back to reference Li J, et al. Exosomal circDNER enhances paclitaxel resistance and tumorigenicity of lung cancer via targeting miR-139-5p/ITGB8 Thorac. Cancer. 2022;13(9):1381–90. Li J, et al. Exosomal circDNER enhances paclitaxel resistance and tumorigenicity of lung cancer via targeting miR-139-5p/ITGB8 Thorac. Cancer. 2022;13(9):1381–90.
103.
go back to reference Bai L, et al. Circular noncoding RNA circ_0007334 sequestrates miR-577 to derepress KLF12 and accelerate colorectal cancer progression. Anticancer Drugs. 2022;33(1):e409-22.PubMedCrossRef Bai L, et al. Circular noncoding RNA circ_0007334 sequestrates miR-577 to derepress KLF12 and accelerate colorectal cancer progression. Anticancer Drugs. 2022;33(1):e409-22.PubMedCrossRef
104.
go back to reference Gao L, et al. Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-beta2/SMAD3 pathway. Cell Death Discov. 2021;7(1):281.PubMedPubMedCentralCrossRef Gao L, et al. Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-beta2/SMAD3 pathway. Cell Death Discov. 2021;7(1):281.PubMedPubMedCentralCrossRef
106.
go back to reference Miao Z, Zhao X, Liu X. Exosomal circCOL1A2 from cancer cells accelerates colorectal cancer progression via regulating miR-665/LASP1 signal axis. Eur J Pharmacol. 2023;950: 175722.PubMedCrossRef Miao Z, Zhao X, Liu X. Exosomal circCOL1A2 from cancer cells accelerates colorectal cancer progression via regulating miR-665/LASP1 signal axis. Eur J Pharmacol. 2023;950: 175722.PubMedCrossRef
108.
go back to reference Fan L, Li W, Jiang H. Circ_0000395 promoted CRC progression via elevating MYH9 expression by sequestering miR-432-5p. Biochem Genet. 2023;61(1):116–37.PubMedCrossRef Fan L, Li W, Jiang H. Circ_0000395 promoted CRC progression via elevating MYH9 expression by sequestering miR-432-5p. Biochem Genet. 2023;61(1):116–37.PubMedCrossRef
109.
go back to reference Chen C, et al. Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating akt signaling pathway. J Exp Clin Cancer Res. 2023;42(1):46.PubMedPubMedCentralCrossRef Chen C, et al. Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating akt signaling pathway. J Exp Clin Cancer Res. 2023;42(1):46.PubMedPubMedCentralCrossRef
110.
go back to reference Li Y, et al. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov. 2022;8(1):335.PubMedPubMedCentralCrossRef Li Y, et al. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov. 2022;8(1):335.PubMedPubMedCentralCrossRef
111.
go back to reference Yang H, et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics. 2020;10(18):8211–26.PubMedPubMedCentralCrossRef Yang H, et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics. 2020;10(18):8211–26.PubMedPubMedCentralCrossRef
112.
go back to reference Su Y, et al. CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging. 2019;11(19):8183–203.PubMedCrossRef Su Y, et al. CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging. 2019;11(19):8183–203.PubMedCrossRef
113.
go back to reference Liu C, et al. Exosome-mediated circTTLL5 transfer promotes hepatocellular carcinoma malignant progression through miR-136-5p/KIAA1522 axis. Pathol Res Pract. 2023;241: 154276.PubMedCrossRef Liu C, et al. Exosome-mediated circTTLL5 transfer promotes hepatocellular carcinoma malignant progression through miR-136-5p/KIAA1522 axis. Pathol Res Pract. 2023;241: 154276.PubMedCrossRef
114.
115.
go back to reference Hao X, et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3zeta. J Exp Clin Cancer Res. 2022;41(1):281.PubMedPubMedCentralCrossRef Hao X, et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3zeta. J Exp Clin Cancer Res. 2022;41(1):281.PubMedPubMedCentralCrossRef
116.
go back to reference Zhou Y, et al. Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/ nuclear factor -kappa B (NF-kappaB) pathway. Bioengineered. 2022;13(3):4786–97.PubMedPubMedCentralCrossRef Zhou Y, et al. Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/ nuclear factor -kappa B (NF-kappaB) pathway. Bioengineered. 2022;13(3):4786–97.PubMedPubMedCentralCrossRef
117.
go back to reference Wu X, et al. Circular RNA circ-MMP11 contributes to lapatinib resistance of breast cancer cells by regulating the miR-153-3p/ANLN Axis. Front Oncol. 2021;11: 639961.PubMedPubMedCentralCrossRef Wu X, et al. Circular RNA circ-MMP11 contributes to lapatinib resistance of breast cancer cells by regulating the miR-153-3p/ANLN Axis. Front Oncol. 2021;11: 639961.PubMedPubMedCentralCrossRef
118.
go back to reference Hu K, et al. Exosomes mediated transfer of Circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p. Med Sci Monit. 2020;26: e922253.PubMedPubMedCentralCrossRef Hu K, et al. Exosomes mediated transfer of Circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p. Med Sci Monit. 2020;26: e922253.PubMedPubMedCentralCrossRef
119.
go back to reference Liu Y, et al. Correction: exosomal circCARM1 from spheroids reprograms cell metabolism by regulating PFKFB2 in breast cancer. Oncogene. 2022;41(14):2137.PubMedCrossRef Liu Y, et al. Correction: exosomal circCARM1 from spheroids reprograms cell metabolism by regulating PFKFB2 in breast cancer. Oncogene. 2022;41(14):2137.PubMedCrossRef
120.
go back to reference Ma J, et al. CircEGFR reduces the sensitivity of pirarubicin and regulates the malignant progression of triple-negative breast cancer via the miR-1299/EGFR axis. Int J Biol Macromol. 2023;244: 125295.PubMedCrossRef Ma J, et al. CircEGFR reduces the sensitivity of pirarubicin and regulates the malignant progression of triple-negative breast cancer via the miR-1299/EGFR axis. Int J Biol Macromol. 2023;244: 125295.PubMedCrossRef
121.
go back to reference Zhang X, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.PubMedPubMedCentralCrossRef Zhang X, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.PubMedPubMedCentralCrossRef
122.
123.
go back to reference Yang G, et al. Exosome-mediated transfer of circ_0063526 enhances cisplatin resistance in gastric cancer cells via regulating miR-449a/SHMT2 axis. Anticancer Drugs. 2022;33(10):1047–57.PubMedCrossRef Yang G, et al. Exosome-mediated transfer of circ_0063526 enhances cisplatin resistance in gastric cancer cells via regulating miR-449a/SHMT2 axis. Anticancer Drugs. 2022;33(10):1047–57.PubMedCrossRef
124.
go back to reference Yao W, et al. Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother Radiopharm. 2021;36(4):347–59.PubMed Yao W, et al. Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother Radiopharm. 2021;36(4):347–59.PubMed
125.
go back to reference Liang Q, et al. circ-LDLRAD3 knockdown reduces cisplatin chemoresistance and inhibits the development of gastric cancer with cisplatin resistance through miR-588 enrichment-mediated SOX5 inhibition. Gut Liver. 2022;17:389–403.PubMedPubMedCentralCrossRef Liang Q, et al. circ-LDLRAD3 knockdown reduces cisplatin chemoresistance and inhibits the development of gastric cancer with cisplatin resistance through miR-588 enrichment-mediated SOX5 inhibition. Gut Liver. 2022;17:389–403.PubMedPubMedCentralCrossRef
126.
go back to reference Zhong Y, et al. Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5. Biotechnol Lett. 2021;43(2):339–51.PubMedCrossRef Zhong Y, et al. Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5. Biotechnol Lett. 2021;43(2):339–51.PubMedCrossRef
127.
go back to reference Geng X, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis. 2022;13(7):596.PubMedPubMedCentralCrossRef Geng X, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis. 2022;13(7):596.PubMedPubMedCentralCrossRef
128.
go back to reference Li G, Lan Q. Exosome-mediated transfer of circ-GLIS3 enhances Temozolomide resistance in glioma cells through the miR-548m/MED31 Axis. Cancer Biother Radiopharm. 2023;38(1):62–73.PubMed Li G, Lan Q. Exosome-mediated transfer of circ-GLIS3 enhances Temozolomide resistance in glioma cells through the miR-548m/MED31 Axis. Cancer Biother Radiopharm. 2023;38(1):62–73.PubMed
129.
go back to reference Li X, et al. Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis. 2022;37(8):2979–93.PubMedCrossRef Li X, et al. Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis. 2022;37(8):2979–93.PubMedCrossRef
130.
131.
go back to reference Zhang C, et al. Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med. 2022;20(1):388.PubMedPubMedCentralCrossRef Zhang C, et al. Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med. 2022;20(1):388.PubMedPubMedCentralCrossRef
132.
go back to reference Jiang Y, et al. Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene. 2022;41(26):3461–73.PubMedCrossRef Jiang Y, et al. Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene. 2022;41(26):3461–73.PubMedCrossRef
133.
go back to reference Huang G, et al. Exosomal circKDM4A induces CUL4B to promote prostate cancer cell malignancy in a mir-338-3p-Dependent manner. Biochem Genet. 2023;61(1):390–409.PubMedCrossRef Huang G, et al. Exosomal circKDM4A induces CUL4B to promote prostate cancer cell malignancy in a mir-338-3p-Dependent manner. Biochem Genet. 2023;61(1):390–409.PubMedCrossRef
134.
go back to reference Sheng H, Wang X. Knockdown of circ-PIP5K1A overcomes resistance to cisplatin in ovarian cancer by miR-942-5p/NFIB axis. Anticancer Drugs. 2023;34(2):214–26.PubMedCrossRef Sheng H, Wang X. Knockdown of circ-PIP5K1A overcomes resistance to cisplatin in ovarian cancer by miR-942-5p/NFIB axis. Anticancer Drugs. 2023;34(2):214–26.PubMedCrossRef
135.
136.
go back to reference Gao Y, Huang Y. Circ_0007841 knockdown confers cisplatin sensitivity to ovarian cancer cells by down-regulation of NFIB expression in a mir-532-5p-dependent manner. J Chemother. 2023;35(2):117–30.PubMedCrossRef Gao Y, Huang Y. Circ_0007841 knockdown confers cisplatin sensitivity to ovarian cancer cells by down-regulation of NFIB expression in a mir-532-5p-dependent manner. J Chemother. 2023;35(2):117–30.PubMedCrossRef
137.
go back to reference Li J, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 2018;37(1):177.PubMedPubMedCentralCrossRef Li J, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 2018;37(1):177.PubMedPubMedCentralCrossRef
138.
go back to reference Zang R, et al. Exosomes mediated transfer of Circ_0000337 contributes to cisplatin (CDDP) resistance of esophageal cancer by regulating JAK2 via miR-377-3p front cell. Dev Biol. 2021;9: 673237. Zang R, et al. Exosomes mediated transfer of Circ_0000337 contributes to cisplatin (CDDP) resistance of esophageal cancer by regulating JAK2 via miR-377-3p front cell. Dev Biol. 2021;9: 673237.
139.
go back to reference Chen J, et al. Hsa_circ_0074269-mediated upregulation of TUFT1 through mir-485-5p increases cisplatin resistance in cervical cancer. Reprod Sci. 2022;29(8):2236–50.PubMedCrossRef Chen J, et al. Hsa_circ_0074269-mediated upregulation of TUFT1 through mir-485-5p increases cisplatin resistance in cervical cancer. Reprod Sci. 2022;29(8):2236–50.PubMedCrossRef
140.
go back to reference Wang X, Cheng Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J Cancer Res Clin Oncol. 2023;149(9):5921–36.PubMedCrossRef Wang X, Cheng Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J Cancer Res Clin Oncol. 2023;149(9):5921–36.PubMedCrossRef
141.
go back to reference Ai J, et al. Exosomes loaded with circPARD3 promotes EBV-miR-BART4-induced stemness and cisplatin resistance in nasopharyngeal carcinoma side population cells through the miR-579-3p/SIRT1/SSRP1 axis. Cell Biol Toxicol. 2023;39(2):537–56.PubMedCrossRef Ai J, et al. Exosomes loaded with circPARD3 promotes EBV-miR-BART4-induced stemness and cisplatin resistance in nasopharyngeal carcinoma side population cells through the miR-579-3p/SIRT1/SSRP1 axis. Cell Biol Toxicol. 2023;39(2):537–56.PubMedCrossRef
142.
go back to reference Xu Y, et al. A circular RNA, cholangiocarcinoma-associated circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. 2021;73(4):1419–35.PubMedCrossRef Xu Y, et al. A circular RNA, cholangiocarcinoma-associated circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. 2021;73(4):1419–35.PubMedCrossRef
143.
go back to reference Yang C, et al. Exosome-derived circTRPS1 promotes malignant phenotype and CD8 + T cell exhaustion in bladder cancer microenvironments. Mol Ther. 2022;30(3):1054–70.PubMedPubMedCentralCrossRef Yang C, et al. Exosome-derived circTRPS1 promotes malignant phenotype and CD8 + T cell exhaustion in bladder cancer microenvironments. Mol Ther. 2022;30(3):1054–70.PubMedPubMedCentralCrossRef
144.
go back to reference Chen SW, et al. Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 2021;20(1):144.PubMedPubMedCentralCrossRef Chen SW, et al. Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 2021;20(1):144.PubMedPubMedCentralCrossRef
146.
147.
go back to reference Hu Z, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023;22(1):55.PubMedPubMedCentralCrossRef Hu Z, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023;22(1):55.PubMedPubMedCentralCrossRef
148.
go back to reference Chen Y, et al. CircRNA has_circ_0069313 induced OSCC immunity escape by mir-325-3p-Foxp3 axes in both OSCC cells and Treg cells. Aging. 2022;14(10):4376–89.PubMedPubMedCentralCrossRef Chen Y, et al. CircRNA has_circ_0069313 induced OSCC immunity escape by mir-325-3p-Foxp3 axes in both OSCC cells and Treg cells. Aging. 2022;14(10):4376–89.PubMedPubMedCentralCrossRef
149.
go back to reference Yang K, Zhang J, Bao C. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer. 2021;21(1):933.PubMedPubMedCentralCrossRef Yang K, Zhang J, Bao C. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer. 2021;21(1):933.PubMedPubMedCentralCrossRef
150.
go back to reference Chen W, et al. Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis. Mol Ther Oncolytics. 2022;24:470–85.PubMedPubMedCentralCrossRef Chen W, et al. Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis. Mol Ther Oncolytics. 2022;24:470–85.PubMedPubMedCentralCrossRef
151.
go back to reference Chen T, et al. Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat Res Commun. 2021;28:100412.PubMedCrossRef Chen T, et al. Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat Res Commun. 2021;28:100412.PubMedCrossRef
152.
go back to reference Pan Z, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21(1):16.PubMedPubMedCentralCrossRef Pan Z, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21(1):16.PubMedPubMedCentralCrossRef
153.
go back to reference Gao J, et al. Exosomal circZNF451 restrains anti-PD1 treatment in lung adenocarcinoma via polarizing macrophages by complexing with TRIM56 and FXR1. J Exp Clin Cancer Res. 2022;41(1):295.PubMedPubMedCentralCrossRef Gao J, et al. Exosomal circZNF451 restrains anti-PD1 treatment in lung adenocarcinoma via polarizing macrophages by complexing with TRIM56 and FXR1. J Exp Clin Cancer Res. 2022;41(1):295.PubMedPubMedCentralCrossRef
154.
go back to reference Lu C, et al. Endoplasmic reticulum stress promotes breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate tumor progression. Pharmacol Res. 2022;177: 106098.PubMedCrossRef Lu C, et al. Endoplasmic reticulum stress promotes breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate tumor progression. Pharmacol Res. 2022;177: 106098.PubMedCrossRef
155.
go back to reference Huang X, et al. Exosomal Circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization. Front Oncol. 2022;12: 808888.PubMedPubMedCentralCrossRef Huang X, et al. Exosomal Circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization. Front Oncol. 2022;12: 808888.PubMedPubMedCentralCrossRef
156.
go back to reference Lu Q, et al. Hypoxic tumor-derived exosomal Circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:11883–97.PubMedPubMedCentralCrossRef Lu Q, et al. Hypoxic tumor-derived exosomal Circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:11883–97.PubMedPubMedCentralCrossRef
157.
go back to reference Zhang PF, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19(1):110.PubMedPubMedCentralCrossRef Zhang PF, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19(1):110.PubMedPubMedCentralCrossRef
158.
go back to reference Wang X, et al. Exosomal circ-PTPN22 and circ-ADAMTS6 mark T cell exhaustion and neutrophil extracellular traps in asian intrahepatic cholangiocarcinoma. Mol Ther Nucleic Acids. 2023;31:151–63.PubMedCrossRef Wang X, et al. Exosomal circ-PTPN22 and circ-ADAMTS6 mark T cell exhaustion and neutrophil extracellular traps in asian intrahepatic cholangiocarcinoma. Mol Ther Nucleic Acids. 2023;31:151–63.PubMedCrossRef
159.
go back to reference Xu H, et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 2018;10(2):187–97.PubMedCrossRef Xu H, et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 2018;10(2):187–97.PubMedCrossRef
160.
go back to reference Xie M, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 2020;19(1):112.PubMedPubMedCentralCrossRef Xie M, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 2020;19(1):112.PubMedPubMedCentralCrossRef
161.
go back to reference Deng Q, et al. Exosomal hsa_circRNA_047733 integrated with clinical features for preoperative prediction of lymph node metastasis risk in oral squamous cell carcinoma. J Oral Pathol Med. 2023;52(1):37–46.PubMedCrossRef Deng Q, et al. Exosomal hsa_circRNA_047733 integrated with clinical features for preoperative prediction of lymph node metastasis risk in oral squamous cell carcinoma. J Oral Pathol Med. 2023;52(1):37–46.PubMedCrossRef
163.
go back to reference Hong L, et al. Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J Clin Lab Anal. 2022;36(6): e24447.PubMedPubMedCentralCrossRef Hong L, et al. Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J Clin Lab Anal. 2022;36(6): e24447.PubMedPubMedCentralCrossRef
164.
go back to reference Kang Y, et al. Serum and serum exosomal CircRNAs hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 as diagnostic biomarkers for lung adenocarcinoma. Front Oncol. 2022;12: 912246.PubMedPubMedCentralCrossRef Kang Y, et al. Serum and serum exosomal CircRNAs hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 as diagnostic biomarkers for lung adenocarcinoma. Front Oncol. 2022;12: 912246.PubMedPubMedCentralCrossRef
165.
go back to reference Wang Y, et al. The potential of serum exosomal hsa_circ_0028861 as the Novel Diagnostic Biomarker of HBV-Derived Hepatocellular Cancer. Front Genet. 2021;12: 703205.PubMedPubMedCentralCrossRef Wang Y, et al. The potential of serum exosomal hsa_circ_0028861 as the Novel Diagnostic Biomarker of HBV-Derived Hepatocellular Cancer. Front Genet. 2021;12: 703205.PubMedPubMedCentralCrossRef
166.
go back to reference Zheng P, et al. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric Cancer. Pathol Oncol Res. 2022;28: 1610446.PubMedPubMedCentralCrossRef Zheng P, et al. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric Cancer. Pathol Oncol Res. 2022;28: 1610446.PubMedPubMedCentralCrossRef
167.
go back to reference Shen X, et al. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis. Oncogene. 2022;41(42):4724–35.PubMedCrossRef Shen X, et al. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis. Oncogene. 2022;41(42):4724–35.PubMedCrossRef
169.
go back to reference Barbagallo C, et al. LncRNA UCA1, upregulated in CRC Biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Ther Nucleic Acids. 2018;12:229–41.PubMedPubMedCentralCrossRef Barbagallo C, et al. LncRNA UCA1, upregulated in CRC Biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Ther Nucleic Acids. 2018;12:229–41.PubMedPubMedCentralCrossRef
170.
go back to reference Xie Y, et al. RNA-Seq profiling of serum exosomal circular RNAs reveals Circ-PNN as a potential biomarker for human colorectal Cancer. Front Oncol. 2020;10: 982.PubMedPubMedCentralCrossRef Xie Y, et al. RNA-Seq profiling of serum exosomal circular RNAs reveals Circ-PNN as a potential biomarker for human colorectal Cancer. Front Oncol. 2020;10: 982.PubMedPubMedCentralCrossRef
171.
go back to reference Li R, et al. CircRNA CDR1as: a novel diagnostic and prognostic biomarker for gastric cancer. Biomarkers. 2023;28(5):448–57.PubMedCrossRef Li R, et al. CircRNA CDR1as: a novel diagnostic and prognostic biomarker for gastric cancer. Biomarkers. 2023;28(5):448–57.PubMedCrossRef
172.
go back to reference Shao Y, et al. Hsa_circ_0065149 is an Indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res. 2020;26(3):1475–82.PubMedCrossRef Shao Y, et al. Hsa_circ_0065149 is an Indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res. 2020;26(3):1475–82.PubMedCrossRef
173.
174.
go back to reference Tao X, et al. Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol Res Pract. 2020;216(1): 152763.PubMedCrossRef Tao X, et al. Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol Res Pract. 2020;216(1): 152763.PubMedCrossRef
175.
go back to reference Chen T, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene. 2021;40(15):2756–71.PubMedCrossRef Chen T, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene. 2021;40(15):2756–71.PubMedCrossRef
177.
go back to reference Xian J, et al. Identification of three circular RNA cargoes in serum exosomes as diagnostic biomarkers of non-small-cell lung cancer in the Chinese population. J Mol Diagn. 2020;22(8):1096–108.PubMedCrossRef Xian J, et al. Identification of three circular RNA cargoes in serum exosomes as diagnostic biomarkers of non-small-cell lung cancer in the Chinese population. J Mol Diagn. 2020;22(8):1096–108.PubMedCrossRef
178.
go back to reference He Y, et al. Exosomal circ_0048856 derived from non-small cell lung cancer contributes to aggressive cancer progression through downregulation of miR-1287-5p. Pathol Res Pract. 2022;232: 153659.PubMedCrossRef He Y, et al. Exosomal circ_0048856 derived from non-small cell lung cancer contributes to aggressive cancer progression through downregulation of miR-1287-5p. Pathol Res Pract. 2022;232: 153659.PubMedCrossRef
179.
go back to reference Chen Y, et al. Serum exosomal hsa_circ_0069313 has a potential to diagnose more aggressive non-small cell lung cancer. Clin Biochem. 2022;102:56–64.PubMedCrossRef Chen Y, et al. Serum exosomal hsa_circ_0069313 has a potential to diagnose more aggressive non-small cell lung cancer. Clin Biochem. 2022;102:56–64.PubMedCrossRef
180.
go back to reference Peng X, et al. Exosomal ERBB2IP contributes to tumor growth via elevating PSAT1 expression in non-small cell lung carcinoma. Thorac Cancer. 2023;14(19):1812–23.PubMedPubMedCentralCrossRef Peng X, et al. Exosomal ERBB2IP contributes to tumor growth via elevating PSAT1 expression in non-small cell lung carcinoma. Thorac Cancer. 2023;14(19):1812–23.PubMedPubMedCentralCrossRef
181.
182.
go back to reference Zhu X, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284(14):2170–82.PubMedCrossRef Zhu X, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284(14):2170–82.PubMedCrossRef
183.
go back to reference Wang Y, et al. Circular RNA expression profile of lung squamous cell carcinoma: identification of potential biomarkers and therapeutic targets. Biosci Rep. 2020;40(4):BSR20194512.PubMedPubMedCentralCrossRef Wang Y, et al. Circular RNA expression profile of lung squamous cell carcinoma: identification of potential biomarkers and therapeutic targets. Biosci Rep. 2020;40(4):BSR20194512.PubMedPubMedCentralCrossRef
184.
go back to reference Yang G, et al. Has_Circ_0002490 circular RNA: a potential novel biomarker for lung cancer. Genet Test Mol Biomark. 2022;26(1):1–7.CrossRef Yang G, et al. Has_Circ_0002490 circular RNA: a potential novel biomarker for lung cancer. Genet Test Mol Biomark. 2022;26(1):1–7.CrossRef
185.
go back to reference Zhang X, et al. The circular RNA hsa_circ_0001445 regulates the proliferation and migration of hepatocellular carcinoma and may serve as a diagnostic biomarker. Dis Markers. 2018;2018:3073467.PubMedPubMedCentralCrossRef Zhang X, et al. The circular RNA hsa_circ_0001445 regulates the proliferation and migration of hepatocellular carcinoma and may serve as a diagnostic biomarker. Dis Markers. 2018;2018:3073467.PubMedPubMedCentralCrossRef
186.
go back to reference Guo S, et al. Circular RNA 0006602 in plasma exosomes: a new potential diagnostic biomarker for hepatocellular carcinoma. Am J Transl Res. 2021;13(6):6001–15.PubMedPubMedCentral Guo S, et al. Circular RNA 0006602 in plasma exosomes: a new potential diagnostic biomarker for hepatocellular carcinoma. Am J Transl Res. 2021;13(6):6001–15.PubMedPubMedCentral
187.
188.
go back to reference Liu S, et al. Upregulated expression of serum exosomal hsa_circ_0026611 is associated with lymph node metastasis and poor prognosis of esophageal squamous cell carcinoma. J Cancer. 2021;12(3):918–26.PubMedPubMedCentralCrossRef Liu S, et al. Upregulated expression of serum exosomal hsa_circ_0026611 is associated with lymph node metastasis and poor prognosis of esophageal squamous cell carcinoma. J Cancer. 2021;12(3):918–26.PubMedPubMedCentralCrossRef
189.
190.
go back to reference Luo Y, Gui R. Circulating exosomal CircMYC is associated with recurrence and bortezomib resistance in patients with multiple myeloma. Turk J Haematol. 2020;37(4):248–62.PubMedPubMedCentralCrossRef Luo Y, Gui R. Circulating exosomal CircMYC is associated with recurrence and bortezomib resistance in patients with multiple myeloma. Turk J Haematol. 2020;37(4):248–62.PubMedPubMedCentralCrossRef
191.
go back to reference Jiang Z, et al. Exosomal circEPB41L2 serves as a sponge for mir-21-5p and mir-942-5p to suppress colorectal cancer progression by regulating the PTEN/AKT signalling pathway. Eur J Clin Invest. 2021;51(9):e13581.PubMedCrossRef Jiang Z, et al. Exosomal circEPB41L2 serves as a sponge for mir-21-5p and mir-942-5p to suppress colorectal cancer progression by regulating the PTEN/AKT signalling pathway. Eur J Clin Invest. 2021;51(9):e13581.PubMedCrossRef
192.
go back to reference Sang H, et al. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis. 2022;13(1):56.PubMedPubMedCentralCrossRef Sang H, et al. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis. 2022;13(1):56.PubMedPubMedCentralCrossRef
193.
go back to reference Guo Z, et al. Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 Axis. J Transl Med. 2022;20(1):326.PubMedPubMedCentralCrossRef Guo Z, et al. Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 Axis. J Transl Med. 2022;20(1):326.PubMedPubMedCentralCrossRef
194.
go back to reference Li C, Li X. Exosome-derived Circ_0094343 promotes chemosensitivity of colorectal cancer cells by regulating glycolysis via the miR-766-5p/TRIM67 Axis. Contrast Media Mol Imaging. 2022;2022:2878557.PubMedPubMedCentral Li C, Li X. Exosome-derived Circ_0094343 promotes chemosensitivity of colorectal cancer cells by regulating glycolysis via the miR-766-5p/TRIM67 Axis. Contrast Media Mol Imaging. 2022;2022:2878557.PubMedPubMedCentral
195.
go back to reference Yao X, et al. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/betai>-catenin axis. Cancer Lett. 2021;512:38–50.PubMedCrossRef Yao X, et al. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/betai>-catenin axis. Cancer Lett. 2021;512:38–50.PubMedCrossRef
196.
go back to reference Meng H, et al. Nanoparticles mediated circROBO1 silencing to inhibit Hepatocellular Carcinoma Progression by modulating miR-130a-5p/CCNT2 Axis. Int J Nanomed. 2023;18:1677–93.CrossRef Meng H, et al. Nanoparticles mediated circROBO1 silencing to inhibit Hepatocellular Carcinoma Progression by modulating miR-130a-5p/CCNT2 Axis. Int J Nanomed. 2023;18:1677–93.CrossRef
197.
go back to reference Gu C, Lu H, Qian Z. Matrine reduces the secretion of exosomal circSLC7A6 from cancer-associated fibroblast to inhibit tumorigenesis of colorectal cancer by regulating CXCR5. Biochem Biophys Res Commun. 2020;527(3):638–45.PubMedCrossRef Gu C, Lu H, Qian Z. Matrine reduces the secretion of exosomal circSLC7A6 from cancer-associated fibroblast to inhibit tumorigenesis of colorectal cancer by regulating CXCR5. Biochem Biophys Res Commun. 2020;527(3):638–45.PubMedCrossRef
198.
go back to reference Chao F, et al. Extracellular vesicles derived circSH3PXD2A inhibits chemoresistance of small cell lung cancer by miR-375-3p/YAP1. Int J Nanomed. 2023;18:2989–3006.CrossRef Chao F, et al. Extracellular vesicles derived circSH3PXD2A inhibits chemoresistance of small cell lung cancer by miR-375-3p/YAP1. Int J Nanomed. 2023;18:2989–3006.CrossRef
199.
go back to reference Lu L, et al. EIF4a3-regulated circRABL2B regulates cell stemness and drug sensitivity of lung cancer via YBX1-dependent downregulation of MUC5AC expression. Int J Biol Sci. 2023;19(9):2725–39.PubMedPubMedCentralCrossRef Lu L, et al. EIF4a3-regulated circRABL2B regulates cell stemness and drug sensitivity of lung cancer via YBX1-dependent downregulation of MUC5AC expression. Int J Biol Sci. 2023;19(9):2725–39.PubMedPubMedCentralCrossRef
200.
go back to reference Wang L, et al. Exosome-transmitted hsa_circ_0012634 suppresses pancreatic ductal adenocarcinoma progression through regulating miR-147b/HIPK2 axis. Cancer Biol Ther. 2023;24(1): 2218514.PubMedPubMedCentralCrossRef Wang L, et al. Exosome-transmitted hsa_circ_0012634 suppresses pancreatic ductal adenocarcinoma progression through regulating miR-147b/HIPK2 axis. Cancer Biol Ther. 2023;24(1): 2218514.PubMedPubMedCentralCrossRef
201.
go back to reference Song J, et al. Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization. Hum Cell. 2022;35(5):1499–511.PubMedCrossRef Song J, et al. Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization. Hum Cell. 2022;35(5):1499–511.PubMedCrossRef
202.
go back to reference Shu G, et al. Exosomal circSPIRE1 mediates glycosylation of E-cadherin to suppress metastasis of renal cell carcinoma. Oncogene. 2023;42(22):1802–20.PubMedPubMedCentralCrossRef Shu G, et al. Exosomal circSPIRE1 mediates glycosylation of E-cadherin to suppress metastasis of renal cell carcinoma. Oncogene. 2023;42(22):1802–20.PubMedPubMedCentralCrossRef
203.
go back to reference Zhou X, et al. EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci. 2022;79(7):357.PubMedCrossRef Zhou X, et al. EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci. 2022;79(7):357.PubMedCrossRef
204.
go back to reference Chen RX, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10(1):4695.PubMedPubMedCentralCrossRef Chen RX, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10(1):4695.PubMedPubMedCentralCrossRef
Metadata
Title
Recent advances of exosomal circRNAs in cancer and their potential clinical applications
Authors
Qian Yi
Jiaji Yue
Yang Liu
Houyin Shi
Wei Sun
Jianguo Feng
Weichao Sun
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2023
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04348-4

Other articles of this Issue 1/2023

Journal of Translational Medicine 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.