Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Eclampsia | Review

Vascular endothelial growth factor and its receptors regulation in gestational diabetes mellitus and eclampsia

Authors: Alayi Bolatai, Yujing He, Na Wu

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

An imbalance in the expression of vascular endothelial growth factor (VEGF) and its receptor (VEGF-R) during pregnancy plays an important role in the pathogenesis of gestational diabetes mellitus (GDM) and eclampsia. VEGF and its receptors change during the regulation of blood vessels as a result of risk factors such as familial genetics. These modifications include loss of original balance of serological indicators, upregulation or downregulation of growth factor indicators, and changes in the placenta, kidney, liver and other organs to varying degrees of damage. This has an impact on both the pregnant woman's and the fetus's health.

Main body

This paper summarizes the mechanisms of unbalanced VEGF and receptor expression based on data from relevant literature on GDM and eclampsia. An Imbalance in VEGF and its binding receptor is often associated with the occurrence of multiple pregnancy disorders. In recent years, researchers have focused on the potential role of VEGF and its receptors in the development of GDM and eclampsia.

Conclusion

This paper summarizes the different VEGF subtypes and their binding receptors, as well as mechanisms that cause GDM and eclampsia, in order to provide valuable data to inform monitoring, diagnosis, and prognosis.
Literature
1.
go back to reference Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59:455–67.PubMed Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59:455–67.PubMed
2.
go back to reference Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.PubMedCrossRef Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.PubMedCrossRef
4.
go back to reference Zhou LF, Duan T. Research progress of vascular endothelial growth factor and pregnancy. Prog Mod Obstet Gynecol. 2014;2014:146–9. Zhou LF, Duan T. Research progress of vascular endothelial growth factor and pregnancy. Prog Mod Obstet Gynecol. 2014;2014:146–9.
5.
go back to reference Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17:611–25.PubMedCrossRef Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17:611–25.PubMedCrossRef
6.
go back to reference Chatziralli I, Touhami S, Cicinelli MV, Agapitou C, Dimitriou E, Theodossiadis G, et al. Disentangling the association between retinal non-perfusion and anti-VEGF agents in diabetic retinopathy. Eye (Lond). 2022;36:692–703.CrossRef Chatziralli I, Touhami S, Cicinelli MV, Agapitou C, Dimitriou E, Theodossiadis G, et al. Disentangling the association between retinal non-perfusion and anti-VEGF agents in diabetic retinopathy. Eye (Lond). 2022;36:692–703.CrossRef
7.
go back to reference Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol Mech Dis. 2007;2:251–75.CrossRef Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol Mech Dis. 2007;2:251–75.CrossRef
8.
go back to reference Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci. 2005;109:227–41.CrossRef Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci. 2005;109:227–41.CrossRef
9.
go back to reference Salabarria A-C, Braun G, Heykants M, Koch M, Reuten R, Mahabir E, et al. Local VEGF-A blockade modulates the microenvironment of the corneal graft bed. Am J Transpl. 2019;19:2446–56.CrossRef Salabarria A-C, Braun G, Heykants M, Koch M, Reuten R, Mahabir E, et al. Local VEGF-A blockade modulates the microenvironment of the corneal graft bed. Am J Transpl. 2019;19:2446–56.CrossRef
10.
go back to reference Bourhis M, Palle J, Galy-Fauroux I, Terme M. Direct and indirect modulation of T cells by VEGF-A counteracted by anti-angiogenic treatment. Front Immunol. 2021;12: 616837.PubMedPubMedCentralCrossRef Bourhis M, Palle J, Galy-Fauroux I, Terme M. Direct and indirect modulation of T cells by VEGF-A counteracted by anti-angiogenic treatment. Front Immunol. 2021;12: 616837.PubMedPubMedCentralCrossRef
11.
go back to reference Zhao WM, Jia GH, Zhou TT, La MJ. Effects of hypoxic environment on VEGF_(165b) gene expression and microvascular density in different tissues of Plateau Zokor. Chin J Appl Physiol. 2017;33(01):68–70. Zhao WM, Jia GH, Zhou TT, La MJ. Effects of hypoxic environment on VEGF_(165b) gene expression and microvascular density in different tissues of Plateau Zokor. Chin J Appl Physiol. 2017;33(01):68–70.
12.
go back to reference Tang XL, Dai Y, Din Q, Li Q, Jiang Q, Li J. Expression and clinical significance of LncRNA H19 and VEGF-B in patients with diabetic retinopathy. Chin Lab Diagn. 2022;26(05):642–7. Tang XL, Dai Y, Din Q, Li Q, Jiang Q, Li J. Expression and clinical significance of LncRNA H19 and VEGF-B in patients with diabetic retinopathy. Chin Lab Diagn. 2022;26(05):642–7.
13.
go back to reference Cao Y. VEGF-targeted cancer therapeutics—paradoxical effects in endocrine organs. Nat Rev Endocrinol. 2014;10:530–9.PubMedCrossRef Cao Y. VEGF-targeted cancer therapeutics—paradoxical effects in endocrine organs. Nat Rev Endocrinol. 2014;10:530–9.PubMedCrossRef
14.
go back to reference Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153:13–9.PubMedCrossRef Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153:13–9.PubMedCrossRef
15.
go back to reference Ahmadian E, Pennefather PS, Eftekhari A, Heidari R, Eghbal MA. Role of renin-angiotensin system in liver diseases: an outline on the potential therapeutic points of intervention. Expert Rev Gastroenterol Hepatol. 2016;10:1279–88.PubMedCrossRef Ahmadian E, Pennefather PS, Eftekhari A, Heidari R, Eghbal MA. Role of renin-angiotensin system in liver diseases: an outline on the potential therapeutic points of intervention. Expert Rev Gastroenterol Hepatol. 2016;10:1279–88.PubMedCrossRef
16.
go back to reference Yuan Y, Zhao K, Lu N. Research progress of VEGF/VEGFR signaling pathway and related inhibitors. A summary of the latest medical information in the world. 2017;17(26):74–5. Yuan Y, Zhao K, Lu N. Research progress of VEGF/VEGFR signaling pathway and related inhibitors. A summary of the latest medical information in the world. 2017;17(26):74–5.
17.
go back to reference Wittig C, Scheuer C, Parakenings J, Menger MD, Laschke MW. Geraniol suppresses angiogenesis by downregulating vascular endothelial growth factor (VEGF)/VEGFR-2 signaling. PLoS ONE. 2015;10: e0131946.PubMedPubMedCentralCrossRef Wittig C, Scheuer C, Parakenings J, Menger MD, Laschke MW. Geraniol suppresses angiogenesis by downregulating vascular endothelial growth factor (VEGF)/VEGFR-2 signaling. PLoS ONE. 2015;10: e0131946.PubMedPubMedCentralCrossRef
18.
go back to reference Zanjanchi P, Asghari SM, Mohabatkar H, Shourian M, Shafiee AM. Conjugation of VEGFR1/R2-targeting peptide with gold nanoparticles to enhance antiangiogenic and antitumoral activity. J Nanobiotechnol. 2022;20:1–22.CrossRef Zanjanchi P, Asghari SM, Mohabatkar H, Shourian M, Shafiee AM. Conjugation of VEGFR1/R2-targeting peptide with gold nanoparticles to enhance antiangiogenic and antitumoral activity. J Nanobiotechnol. 2022;20:1–22.CrossRef
19.
go back to reference Zhang DX, Yuan NL, He Q, Zhao YH. Research progress on the relationship between vascular endothelial growth factor and pregnancy-related diseases. Chin Med. 2021;16:1754–6. Zhang DX, Yuan NL, He Q, Zhao YH. Research progress on the relationship between vascular endothelial growth factor and pregnancy-related diseases. Chin Med. 2021;16:1754–6.
20.
go back to reference Karamzad N, Eftekhari A, Ashrafi-Asgarabad A, Sullman MJM, Sahebkar A, Safiri S. Serum hepcidin, the hepcidin/ferritin ratio and the risk of type 2 diabetes: a systematic review and meta-analysis. Curr Med Chem. 2021;28:1224–33.PubMedCrossRef Karamzad N, Eftekhari A, Ashrafi-Asgarabad A, Sullman MJM, Sahebkar A, Safiri S. Serum hepcidin, the hepcidin/ferritin ratio and the risk of type 2 diabetes: a systematic review and meta-analysis. Curr Med Chem. 2021;28:1224–33.PubMedCrossRef
21.
go back to reference Ma C, Liu G, Liu W, Xu W, Li H, Piao S, et al. CXCL1 stimulates decidual angiogenesis via the VEGF-A pathway during the first trimester of pregnancy. Mol Cell Biochem. 2021;476:2989–98.PubMedCrossRef Ma C, Liu G, Liu W, Xu W, Li H, Piao S, et al. CXCL1 stimulates decidual angiogenesis via the VEGF-A pathway during the first trimester of pregnancy. Mol Cell Biochem. 2021;476:2989–98.PubMedCrossRef
22.
go back to reference Wu XF, Liu T, Zhang Q. Progress in the mechanism of pro-angiogenic factors on diabetic foot. Med Inform. 2018. Wu XF, Liu T, Zhang Q. Progress in the mechanism of pro-angiogenic factors on diabetic foot. Med Inform. 2018.
23.
go back to reference Wang YY, Zhang JW, Cai YQ. Correlation between vascular endothelial growth factor expression and gene polymorphisms and the risk of gestational diabetes mellitus. Hebei Med. 2020;26:868–72. Wang YY, Zhang JW, Cai YQ. Correlation between vascular endothelial growth factor expression and gene polymorphisms and the risk of gestational diabetes mellitus. Hebei Med. 2020;26:868–72.
24.
go back to reference Sun XR. The value of Vascular endothelial growth factor in neonatal diabetes. Jiangxi Med. 2013;48:1227–9. Sun XR. The value of Vascular endothelial growth factor in neonatal diabetes. Jiangxi Med. 2013;48:1227–9.
25.
go back to reference Wu FF, Jiang WJ. Trends in the change of Cfp-mRNA, Cff-DNA and VEGF, and SFlt-1 levels in the peripheral blood of pregnant women with gestational diabetes. Medical J Air Force. 2019;(5):425-8. Wu FF, Jiang WJ. Trends in the change of Cfp-mRNA, Cff-DNA and VEGF, and SFlt-1 levels in the peripheral blood of pregnant women with gestational diabetes. Medical J Air Force. 2019;(5):425-8.
26.
go back to reference Wang ZS, Xie XH, Shen HC. Changes in vascular endothelial growth factor, placental growth factor, and serum soluble epidermal growth factor receptor protein in the placental tissue and maternal serum of pregnant women with preeclampsia. Chin Med J Natl Coal Ind. 2021;24(02):188–91. Wang ZS, Xie XH, Shen HC. Changes in vascular endothelial growth factor, placental growth factor, and serum soluble epidermal growth factor receptor protein in the placental tissue and maternal serum of pregnant women with preeclampsia. Chin Med J Natl Coal Ind. 2021;24(02):188–91.
27.
go back to reference Al-Ofi E, Alrafiah A, Maidi S, Almaghrabi S, Hakami N. Altered expression of angiogenic biomarkers in pregnancy associated with gestational diabetes. Int J Gen Med. 2021;14:3367.PubMedPubMedCentralCrossRef Al-Ofi E, Alrafiah A, Maidi S, Almaghrabi S, Hakami N. Altered expression of angiogenic biomarkers in pregnancy associated with gestational diabetes. Int J Gen Med. 2021;14:3367.PubMedPubMedCentralCrossRef
28.
go back to reference Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of maternal obesity and gestational diabetes mellitus on the placenta: current knowledge and targets for therapeutic interventions. Curr Vasc Pharmacol. 2021;19:176–92.PubMedCrossRef Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of maternal obesity and gestational diabetes mellitus on the placenta: current knowledge and targets for therapeutic interventions. Curr Vasc Pharmacol. 2021;19:176–92.PubMedCrossRef
29.
go back to reference Byford A, Baird-Rayner C, Forbes K. Don’t sugar coat it: the effects of gestational diabetes on the placental vasculature. Biochemist. 2021;43:34–9.CrossRef Byford A, Baird-Rayner C, Forbes K. Don’t sugar coat it: the effects of gestational diabetes on the placental vasculature. Biochemist. 2021;43:34–9.CrossRef
30.
go back to reference Diceglie C, Anelli GM, Martelli C, Serati A, Lo Dico A, Lisso F, et al. Placental antioxidant defenses and autophagy-related genes in maternal obesity and gestational diabetes mellitus. Nutrients. 2021;13:1303.PubMedPubMedCentralCrossRef Diceglie C, Anelli GM, Martelli C, Serati A, Lo Dico A, Lisso F, et al. Placental antioxidant defenses and autophagy-related genes in maternal obesity and gestational diabetes mellitus. Nutrients. 2021;13:1303.PubMedPubMedCentralCrossRef
31.
go back to reference Hosni A, Abd El-twab S, Abdul-Hamid M, Prinsen E, AbdElgawad H, Abdel-Moneim A, et al. Cinnamaldehyde mitigates placental vascular dysfunction of gestational diabetes and protects from the associated fetal hypoxia by modulating placental angiogenesis, metabolic activity and oxidative stress. Pharmacol Res. 2021;165: 105426.PubMedCrossRef Hosni A, Abd El-twab S, Abdul-Hamid M, Prinsen E, AbdElgawad H, Abdel-Moneim A, et al. Cinnamaldehyde mitigates placental vascular dysfunction of gestational diabetes and protects from the associated fetal hypoxia by modulating placental angiogenesis, metabolic activity and oxidative stress. Pharmacol Res. 2021;165: 105426.PubMedCrossRef
33.
go back to reference Sultan SA, Liu W, Peng Y, Roberts W, Whitelaw D, Graham AM. The role of maternal gestational diabetes in inducing fetal endothelial dysfunction. J Cell Physiol. 2015;230:2695–705.PubMedCrossRef Sultan SA, Liu W, Peng Y, Roberts W, Whitelaw D, Graham AM. The role of maternal gestational diabetes in inducing fetal endothelial dysfunction. J Cell Physiol. 2015;230:2695–705.PubMedCrossRef
34.
go back to reference Atallah R, Gindlhuber J, Platzer W, Bärnthaler T, Tatzl E, Toller W, et al. SUCNR1 is expressed in human placenta and mediates angiogenesis: significance in gestational diabetes. Int J Mol Sci. 2021;22:12408.CrossRef Atallah R, Gindlhuber J, Platzer W, Bärnthaler T, Tatzl E, Toller W, et al. SUCNR1 is expressed in human placenta and mediates angiogenesis: significance in gestational diabetes. Int J Mol Sci. 2021;22:12408.CrossRef
36.
go back to reference Ma XL, Li LY. Serum expression of RBP4, Visfatin, and VEGF in pregnant women with gestational diabetes mellitus and its relationship to perinatal outcomes. Chin Clin J Obstet Gynecol. 2020;21(01):81–2. Ma XL, Li LY. Serum expression of RBP4, Visfatin, and VEGF in pregnant women with gestational diabetes mellitus and its relationship to perinatal outcomes. Chin Clin J Obstet Gynecol. 2020;21(01):81–2.
37.
go back to reference Troncoso F, Acurio J, Herlitz K, Aguayo C, Bertoglia P, Guzman-Gutierrez E, et al. Gestational diabetes mellitus is associated with increased pro-migratory activation of vascular endothelial growth factor receptor 2 and reduced expression of vascular endothelial growth factor receptor 1. PLoS ONE. 2017;12: e0182509.PubMedPubMedCentralCrossRef Troncoso F, Acurio J, Herlitz K, Aguayo C, Bertoglia P, Guzman-Gutierrez E, et al. Gestational diabetes mellitus is associated with increased pro-migratory activation of vascular endothelial growth factor receptor 2 and reduced expression of vascular endothelial growth factor receptor 1. PLoS ONE. 2017;12: e0182509.PubMedPubMedCentralCrossRef
38.
go back to reference Pietro L, Daher S, Rudge MVC, de Calderon I MP, Damasceno DC, Sinzato YK, et al. Vascular endothelial growth factor (VEGF) and VEGF-receptor expression in placenta of hyperglycemic pregnant women. Placenta. 2010;31:770–80.PubMedCrossRef Pietro L, Daher S, Rudge MVC, de Calderon I MP, Damasceno DC, Sinzato YK, et al. Vascular endothelial growth factor (VEGF) and VEGF-receptor expression in placenta of hyperglycemic pregnant women. Placenta. 2010;31:770–80.PubMedCrossRef
39.
go back to reference Sugimoto M, Kondo M, Kamimoto Y, Ikeda T, Cutler A, Mariya A, et al. Changes in VEGF-related factors are associated with presence of inflammatory factors in carbohydrate metabolism disorders during pregnancy. PLoS ONE. 2019;14: e0220650.PubMedPubMedCentralCrossRef Sugimoto M, Kondo M, Kamimoto Y, Ikeda T, Cutler A, Mariya A, et al. Changes in VEGF-related factors are associated with presence of inflammatory factors in carbohydrate metabolism disorders during pregnancy. PLoS ONE. 2019;14: e0220650.PubMedPubMedCentralCrossRef
40.
go back to reference Dong P. Association of vascular endothelial growth factor expression and polymorphisms with the risk of gestational diabetes mellitus. J Clin Lab Anal. 2019;33: e22686.PubMedCrossRef Dong P. Association of vascular endothelial growth factor expression and polymorphisms with the risk of gestational diabetes mellitus. J Clin Lab Anal. 2019;33: e22686.PubMedCrossRef
41.
go back to reference Yang Z, Zhang WY. Interpretation of guidelines for the guidelines for diagnosis and treatment of hypertension in pregnancy (2020). Chin J Obstet Gynecol Department. 2020;55:425–32. Yang Z, Zhang WY. Interpretation of guidelines for the guidelines for diagnosis and treatment of hypertension in pregnancy (2020). Chin J Obstet Gynecol Department. 2020;55:425–32.
42.
go back to reference Ali LE, Salih MM, Elhassan EM, Mohmmed AA, Adam I. Placental growth factor, vascular endothelial growth factor, and hypoxia-inducible factor-1α in the placentas of women with pre-eclampsia. J Matern Fetal Neonatal Med. 2019;32:2628–32.PubMedCrossRef Ali LE, Salih MM, Elhassan EM, Mohmmed AA, Adam I. Placental growth factor, vascular endothelial growth factor, and hypoxia-inducible factor-1α in the placentas of women with pre-eclampsia. J Matern Fetal Neonatal Med. 2019;32:2628–32.PubMedCrossRef
43.
go back to reference Yu Y, Lu HY. Correlation study of vascular endothelial growth factor imbalance and complement deposition and pre-eclampsia. Chin J Comp Med. 2020;30:70–6. Yu Y, Lu HY. Correlation study of vascular endothelial growth factor imbalance and complement deposition and pre-eclampsia. Chin J Comp Med. 2020;30:70–6.
45.
go back to reference Varughese B, Bhatla N, Kumar R, Dwivedi SN, Dhingra R. Circulating angiogenic factors in pregnancies complicated by pre-eclampsia. Natl Med J India. 2010;23:77.PubMed Varughese B, Bhatla N, Kumar R, Dwivedi SN, Dhingra R. Circulating angiogenic factors in pregnancies complicated by pre-eclampsia. Natl Med J India. 2010;23:77.PubMed
46.
go back to reference Cindrova-Davies T, Sanders DA, Burton GJ, Charnock-Jones DS. Soluble FLT1 sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signalling. Cardiovasc Res. 2011;89:671–9.PubMedCrossRef Cindrova-Davies T, Sanders DA, Burton GJ, Charnock-Jones DS. Soluble FLT1 sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signalling. Cardiovasc Res. 2011;89:671–9.PubMedCrossRef
47.
go back to reference Dong D, Khoong Y, Ko Y, Zhang Y. microRNA-646 inhibits angiogenesis of endothelial progenitor cells in pre-eclamptic pregnancy by targeting the VEGF-A/HIF-1α axis. Exp Ther Med. 2020;20:1879–88.PubMedPubMedCentral Dong D, Khoong Y, Ko Y, Zhang Y. microRNA-646 inhibits angiogenesis of endothelial progenitor cells in pre-eclamptic pregnancy by targeting the VEGF-A/HIF-1α axis. Exp Ther Med. 2020;20:1879–88.PubMedPubMedCentral
48.
go back to reference Sundrani DP, Reddy US, Joshi AA, Mehendale SS, Chavan-Gautam PM, Hardikar AA, et al. Differential placental methylation and expression of VEGF, FLT-1 and KDR genes in human term and preterm preeclampsia. Clin Epigenetics. 2013;5:1–11.CrossRef Sundrani DP, Reddy US, Joshi AA, Mehendale SS, Chavan-Gautam PM, Hardikar AA, et al. Differential placental methylation and expression of VEGF, FLT-1 and KDR genes in human term and preterm preeclampsia. Clin Epigenetics. 2013;5:1–11.CrossRef
50.
go back to reference Yu S J. Association study of maternal, offspring VEGF-A gene polymorphism and pre-eclampsia. PhD Thesis. Huazhong University of Science and Technology; 2019. Yu S J. Association study of maternal, offspring VEGF-A gene polymorphism and pre-eclampsia. PhD Thesis. Huazhong University of Science and Technology; 2019.
51.
go back to reference Niktalab R, Piravar Z, Behzadi R. Different polymorphisms of vascular endothelial growth factor gene in patients with pre-eclampsia among the Iranian women population. Int J Fertil Steril. 2020;14:41.PubMedPubMedCentral Niktalab R, Piravar Z, Behzadi R. Different polymorphisms of vascular endothelial growth factor gene in patients with pre-eclampsia among the Iranian women population. Int J Fertil Steril. 2020;14:41.PubMedPubMedCentral
52.
go back to reference Bills VL, Varet J, Millar A, Harper SJ, Soothill PW, Bates DO. Failure to up-regulate VEGF165b in maternal plasma is a first trimester predictive marker for pre-eclampsia. Clin Sci. 2009;116:265–72.CrossRef Bills VL, Varet J, Millar A, Harper SJ, Soothill PW, Bates DO. Failure to up-regulate VEGF165b in maternal plasma is a first trimester predictive marker for pre-eclampsia. Clin Sci. 2009;116:265–72.CrossRef
53.
go back to reference Xiang QQ, Yang Z, Huai J, Wang GJ. Effect of pravastatin on the expression of sFlt-1, PlGF, and VEGF in different pre-eclampsia-like mouse models. Chin J Obstet Gynecol Department. 2019;54:601–7. Xiang QQ, Yang Z, Huai J, Wang GJ. Effect of pravastatin on the expression of sFlt-1, PlGF, and VEGF in different pre-eclampsia-like mouse models. Chin J Obstet Gynecol Department. 2019;54:601–7.
54.
go back to reference Yazihan N, Tanacan A, Erol SA, Anuk AT, Sinaci S, Biriken D, et al. Comparison of VEGF-A values between pregnant women with COVID-19 and healthy pregnancies and its association with composite adverse outcomes. J Med Virol. 2021;93:2204–9.PubMedCrossRef Yazihan N, Tanacan A, Erol SA, Anuk AT, Sinaci S, Biriken D, et al. Comparison of VEGF-A values between pregnant women with COVID-19 and healthy pregnancies and its association with composite adverse outcomes. J Med Virol. 2021;93:2204–9.PubMedCrossRef
55.
go back to reference Yin X-X, Zheng X-R, Peng W, Wu M-L, Mao X-Y. Vascular endothelial growth factor (VEGF) as a vital target for brain inflammation during the COVID-19 outbreak. ACS Chem Neurosci. 2020;11:1704–5.PubMedCrossRef Yin X-X, Zheng X-R, Peng W, Wu M-L, Mao X-Y. Vascular endothelial growth factor (VEGF) as a vital target for brain inflammation during the COVID-19 outbreak. ACS Chem Neurosci. 2020;11:1704–5.PubMedCrossRef
56.
go back to reference Kong Y, Han J, Wu X, Zeng H, Liu J, Zhang H. VEGF-D: a novel biomarker for detection of COVID-19 progression. Crit Care. 2020;24:1–4.CrossRef Kong Y, Han J, Wu X, Zeng H, Liu J, Zhang H. VEGF-D: a novel biomarker for detection of COVID-19 progression. Crit Care. 2020;24:1–4.CrossRef
57.
go back to reference Zhang Y, Lin M, Wang XM. Serum Lipocalin-2, sFlt-1, and PIGF levels and their clinical significance in patients with gestational diabetes mellitus and preeclampsia. J Clin Exp Med. 2017;16(18):1844–7. Zhang Y, Lin M, Wang XM. Serum Lipocalin-2, sFlt-1, and PIGF levels and their clinical significance in patients with gestational diabetes mellitus and preeclampsia. J Clin Exp Med. 2017;16(18):1844–7.
58.
go back to reference Mao YL, Li XM, Huang WZ, Mao LL. Correlation studies of soluble vascular endothelial growth factor receptor-1, brain-sodium atridium peptide, and serum nitric oxide levels with maternal preeclampsia conditions. Chin J Health Insp. 2021;31(02):213–5. Mao YL, Li XM, Huang WZ, Mao LL. Correlation studies of soluble vascular endothelial growth factor receptor-1, brain-sodium atridium peptide, and serum nitric oxide levels with maternal preeclampsia conditions. Chin J Health Insp. 2021;31(02):213–5.
59.
go back to reference Yang LP, Hou JD, Duan AH, Shen ZW. Association of the expression of placental growth factor and nitric oxide and early-onset preeclampsia. Mater Child Health Care China. 2015;30(07):1030–2. Yang LP, Hou JD, Duan AH, Shen ZW. Association of the expression of placental growth factor and nitric oxide and early-onset preeclampsia. Mater Child Health Care China. 2015;30(07):1030–2.
60.
go back to reference Leiva A, Fuenzalida B, Barros E, Sobrevia B, Salsoso R, Sáez T, et al. Nitric oxide is a central common metabolite in vascular dysfunction associated with diseases of human pregnancy. Curr Vasc Pharmacol. 2016;14:237–59.PubMedCrossRef Leiva A, Fuenzalida B, Barros E, Sobrevia B, Salsoso R, Sáez T, et al. Nitric oxide is a central common metabolite in vascular dysfunction associated with diseases of human pregnancy. Curr Vasc Pharmacol. 2016;14:237–59.PubMedCrossRef
61.
go back to reference Huang L-T, Hsieh C-S, Chang K-A, Tain Y-L. Roles of nitric oxide and asymmetric dimethylarginine in pregnancy and fetal programming. Int J Mol Sci. 2012;13:14606–22.PubMedPubMedCentralCrossRef Huang L-T, Hsieh C-S, Chang K-A, Tain Y-L. Roles of nitric oxide and asymmetric dimethylarginine in pregnancy and fetal programming. Int J Mol Sci. 2012;13:14606–22.PubMedPubMedCentralCrossRef
62.
go back to reference Wang BS, Zhou QM, Sheng WW, Wei MT, Yang N, Li YM. Investigation and analysis of the risk factors of gestational diabetes mellitus and pregnancy outcomes in China. Chin Med J. 2019;54:1014–9. Wang BS, Zhou QM, Sheng WW, Wei MT, Yang N, Li YM. Investigation and analysis of the risk factors of gestational diabetes mellitus and pregnancy outcomes in China. Chin Med J. 2019;54:1014–9.
63.
go back to reference Yang HX, Zhang MH, Sun WJ, Dong Y. Related factors of preeclampsia in pregnant women with abnormal glucose metabolism during pregnancy. Chin J Obstet Gynecol Dept. 2005;9:5–8. Yang HX, Zhang MH, Sun WJ, Dong Y. Related factors of preeclampsia in pregnant women with abnormal glucose metabolism during pregnancy. Chin J Obstet Gynecol Dept. 2005;9:5–8.
64.
go back to reference Taati Yengejeh F, Shabani Shayeh J, Rahmandoust M, Fatemi F, Arjmand S. A highly-sensitive vascular endothelial growth factor-A(165) immunosensor, as a tool for early detection of cancer. J Biomed Mater Res B Appl Biomater. 2021;109:1505–11.PubMedCrossRef Taati Yengejeh F, Shabani Shayeh J, Rahmandoust M, Fatemi F, Arjmand S. A highly-sensitive vascular endothelial growth factor-A(165) immunosensor, as a tool for early detection of cancer. J Biomed Mater Res B Appl Biomater. 2021;109:1505–11.PubMedCrossRef
66.
go back to reference Duley L, Henderson-Smart D, Knight M, King J. Antiplatelet drugs for prevention of pre-eclampsia and its consequences: systematic review. BMJ. 2001;322:329–33.PubMedPubMedCentralCrossRef Duley L, Henderson-Smart D, Knight M, King J. Antiplatelet drugs for prevention of pre-eclampsia and its consequences: systematic review. BMJ. 2001;322:329–33.PubMedPubMedCentralCrossRef
67.
go back to reference Leon MG, Moussa HN, Longo M, Pedroza C, Haidar ZA, Mendez-Figueroa H, et al. Rate of gestational diabetes mellitus and pregnancy outcomes in patients with chronic hypertension. Am J Perinatol. 2016;33:745–50.PubMedCrossRef Leon MG, Moussa HN, Longo M, Pedroza C, Haidar ZA, Mendez-Figueroa H, et al. Rate of gestational diabetes mellitus and pregnancy outcomes in patients with chronic hypertension. Am J Perinatol. 2016;33:745–50.PubMedCrossRef
68.
go back to reference Grant WB. Role of vitamin D in up-regulating VEGF and reducing the risk of pre-eclampsia. Clin Sci. 2009;116:871–871.CrossRef Grant WB. Role of vitamin D in up-regulating VEGF and reducing the risk of pre-eclampsia. Clin Sci. 2009;116:871–871.CrossRef
69.
go back to reference Song J, Li Y, An R. Vitamin D restores angiogenic balance and decreases tumor necrosis factor-α in a rat model of pre-eclampsia. J Obstet Gynaecol Res. 2017;43:42–9.PubMedCrossRef Song J, Li Y, An R. Vitamin D restores angiogenic balance and decreases tumor necrosis factor-α in a rat model of pre-eclampsia. J Obstet Gynaecol Res. 2017;43:42–9.PubMedCrossRef
70.
go back to reference Zheng L, Huang J, Su Y, Wang F, Kong H, Xin H. Vitexin ameliorates preeclampsia phenotypes by inhibiting TFPI-2 and HIF-1α/VEGF in al-NAME induced rat model. Drug Dev Res. 2019;80:1120–7.PubMedCrossRef Zheng L, Huang J, Su Y, Wang F, Kong H, Xin H. Vitexin ameliorates preeclampsia phenotypes by inhibiting TFPI-2 and HIF-1α/VEGF in al-NAME induced rat model. Drug Dev Res. 2019;80:1120–7.PubMedCrossRef
72.
go back to reference Sáez T, Salsoso R, Leiva A, Toledo F, de Vos P, Faas M, et al. Human umbilical vein endothelium-derived exosomes play a role in foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2018;1864:499–508.PubMedCrossRef Sáez T, Salsoso R, Leiva A, Toledo F, de Vos P, Faas M, et al. Human umbilical vein endothelium-derived exosomes play a role in foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2018;1864:499–508.PubMedCrossRef
73.
go back to reference Li Y. Study on the correlation of serum adiponectin, nitric oxide and C-peptide in patients with hypertension during pregnancy. 2008. Li Y. Study on the correlation of serum adiponectin, nitric oxide and C-peptide in patients with hypertension during pregnancy. 2008.
Metadata
Title
Vascular endothelial growth factor and its receptors regulation in gestational diabetes mellitus and eclampsia
Authors
Alayi Bolatai
Yujing He
Na Wu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03603-4

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.