Skip to main content
Top
Published in: Clinical Pharmacokinetics 11/2019

Open Access 01-11-2019 | Isoniazid | Original Research Article

Optimal Sampling Strategies for Therapeutic Drug Monitoring of First-Line Tuberculosis Drugs in Patients with Tuberculosis

Authors: Antonia Morita I. Saktiawati, Marcel Harkema, Althaf Setyawan, Yanri W. Subronto, Sumardi, Ymkje Stienstra, Rob E. Aarnoutse, Cecile Magis-Escurra, Jos G. W. Kosterink, Tjip S. van der Werf, Jan-Willem C. Alffenaar, Marieke G. G. Sturkenboom

Published in: Clinical Pharmacokinetics | Issue 11/2019

Login to get access

Abstract

Background

The 24-h area under the concentration–time curve (AUC24)/minimal inhibitory concentration ratio is the best predictive pharmacokinetic/pharmacodynamic (PK/PD) parameter of the efficacy of first-line anti-tuberculosis (TB) drugs. An optimal sampling strategy (OSS) is useful for accurately estimating AUC24; however, OSS has not been developed in the fed state or in the early phase of treatment for first-line anti-TB drugs.

Methods

An OSS for the prediction of AUC24 of isoniazid, rifampicin, ethambutol and pyrazinamide was developed for TB patients starting treatment. A prospective, randomized, crossover trial was performed during the first 3 days of treatment in which first-line anti-TB drugs were administered either intravenously or in fasting or fed conditions. The PK data were used to develop OSS with best subset selection multiple linear regression. The OSS was internally validated using a jackknife analysis and externally validated with other patients from different ethnicities and in a steady state of treatment.

Results

OSS using time points of 2, 4 and 8 h post-dose performed best. Bias was < 5% and imprecision was < 15% for all drugs except ethambutol in the fed condition. External validation showed that OSS2-4-8 cannot be used for rifampicin in steady state conditions.

Conclusion

OSS at 2, 4 and 8 h post-dose enabled an accurate and precise prediction of AUC24 values of first-line anti-TB drugs in this population.

Trial Registration

ClinicalTrials.gov (NCT02121314).
Literature
1.
go back to reference World Health Organization. Global tuberculosis report. Geneva: World Health Organization; 2017. World Health Organization. Global tuberculosis report. Geneva: World Health Organization; 2017.
2.
go back to reference World Health Organization. Guidelines for the treatment of drug-susceptible tuberculosis and patient care. Geneva: World Health Organization; 2017. World Health Organization. Guidelines for the treatment of drug-susceptible tuberculosis and patient care. Geneva: World Health Organization; 2017.
3.
go back to reference Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208:1464–73.CrossRef Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208:1464–73.CrossRef
4.
go back to reference Srivastava S, Pasipanodya JG, Meek C, Leff R, Gumbo T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204:1951–9.CrossRef Srivastava S, Pasipanodya JG, Meek C, Leff R, Gumbo T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204:1951–9.CrossRef
5.
go back to reference McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50:1170–7.CrossRef McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50:1170–7.CrossRef
6.
go back to reference Yew WW. Clinically significant interactions with drugs used in the treatment of tuberculosis. Drug Saf. 2002;25:111–33.CrossRef Yew WW. Clinically significant interactions with drugs used in the treatment of tuberculosis. Drug Saf. 2002;25:111–33.CrossRef
7.
go back to reference Müller A, Osório C, Silva D, Sbruzzi G, de Tarso P, Dalcin R. Interventions to improve adherence to tuberculosis treatment: systematic review and meta-analysis. Int J Tuberc Lung Dis. 2018;22:731–40.CrossRef Müller A, Osório C, Silva D, Sbruzzi G, de Tarso P, Dalcin R. Interventions to improve adherence to tuberculosis treatment: systematic review and meta-analysis. Int J Tuberc Lung Dis. 2018;22:731–40.CrossRef
8.
go back to reference Alsaad N, Wilffert B, van Altena R, de Lange WC, van der Werf TS, Kosterink JG, et al. Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis. Eur Respir J. 2014;43:884–97.CrossRef Alsaad N, Wilffert B, van Altena R, de Lange WC, van der Werf TS, Kosterink JG, et al. Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis. Eur Respir J. 2014;43:884–97.CrossRef
9.
go back to reference Chang K, Nuermberger E, Sotgiu G, Leung C. New drugs and regimens for tuberculosis. Respirology. 2018;23:978–90.CrossRef Chang K, Nuermberger E, Sotgiu G, Leung C. New drugs and regimens for tuberculosis. Respirology. 2018;23:978–90.CrossRef
10.
go back to reference Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother. 2010;54:1484–91.CrossRef Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother. 2010;54:1484–91.CrossRef
11.
go back to reference Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74:839–54.CrossRef Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74:839–54.CrossRef
12.
go back to reference Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, et al. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol. 2016;12:509–21.CrossRef Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, et al. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol. 2016;12:509–21.CrossRef
13.
go back to reference Alffenaar J-W, Tiberi S, Verbeeck RK, Heysell SK, Grobusch MP. Therapeutic drug monitoring in tuberculosis: practical application for physicians. Clin Infect Dis. 2017;64:104–5.CrossRef Alffenaar J-W, Tiberi S, Verbeeck RK, Heysell SK, Grobusch MP. Therapeutic drug monitoring in tuberculosis: practical application for physicians. Clin Infect Dis. 2017;64:104–5.CrossRef
14.
go back to reference Motta I, Calcagno A, Bonora S. Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment optimization? Expert Opin Drug Metab Toxicol. 2018;14:59–82.CrossRef Motta I, Calcagno A, Bonora S. Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment optimization? Expert Opin Drug Metab Toxicol. 2018;14:59–82.CrossRef
15.
go back to reference Sturkenboom MG, Mulder LW, de Jager A, van Altena R, Aarnoutse RE, de Lange WCM, et al. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59:4907–13.CrossRef Sturkenboom MG, Mulder LW, de Jager A, van Altena R, Aarnoutse RE, de Lange WCM, et al. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59:4907–13.CrossRef
16.
go back to reference Magis-Escurra C, Later-Nijland HMJ, Alffenaar JWC, Broeders J, Burger DM, van Crevel R, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44:229–34.CrossRef Magis-Escurra C, Later-Nijland HMJ, Alffenaar JWC, Broeders J, Burger DM, van Crevel R, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44:229–34.CrossRef
17.
go back to reference Cojutti P, Giangreco M, Isola M, Pea F. Limited sampling strategies for determining the area under the plasma concentration–time curve for isoniazid might be a valuable approach for optimizing treatment in adult patients with tuberculosis. Int J Antimicrob Agents. 2017;50:23–8.CrossRef Cojutti P, Giangreco M, Isola M, Pea F. Limited sampling strategies for determining the area under the plasma concentration–time curve for isoniazid might be a valuable approach for optimizing treatment in adult patients with tuberculosis. Int J Antimicrob Agents. 2017;50:23–8.CrossRef
18.
go back to reference Medellin-Garibay SE, Correa-Lopez T, Romero-Mendez C, Milan-Segovia RC, Romano-Moreno S. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin. Ther Drug Monit. 2014;36:746–51.CrossRef Medellin-Garibay SE, Correa-Lopez T, Romero-Mendez C, Milan-Segovia RC, Romano-Moreno S. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin. Ther Drug Monit. 2014;36:746–51.CrossRef
19.
go back to reference Saktiawati AM, Sturkenboom MG, Stienstra Y, Subronto YW, Sumardi S, Kosterink JG, et al. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. J Antimicrob Chemother. 2016;71:703–10.CrossRef Saktiawati AM, Sturkenboom MG, Stienstra Y, Subronto YW, Sumardi S, Kosterink JG, et al. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. J Antimicrob Chemother. 2016;71:703–10.CrossRef
20.
go back to reference Sturkenboom MGG, van der Lijke H, Jongedijk EM, Kok WT, Greijdanus B, Uges DRA, et al. Quantification of isoniazid, pyrazinamide and ethambutol in serum using liquid chromatography-tandem mass spectrometry. J Appl Bioanal. 2015;1:89–98.CrossRef Sturkenboom MGG, van der Lijke H, Jongedijk EM, Kok WT, Greijdanus B, Uges DRA, et al. Quantification of isoniazid, pyrazinamide and ethambutol in serum using liquid chromatography-tandem mass spectrometry. J Appl Bioanal. 2015;1:89–98.CrossRef
21.
go back to reference de Velde F, Alffenaar JW, Wessels AM, Greijdanus B, Uges DR. Simultaneous determination of clarithromycin, rifampicin and their main metabolites in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2009;877:1771–7.CrossRef de Velde F, Alffenaar JW, Wessels AM, Greijdanus B, Uges DR. Simultaneous determination of clarithromycin, rifampicin and their main metabolites in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2009;877:1771–7.CrossRef
22.
go back to reference Ting LSL, Villeneuve E, Ensom MH. Beyond cyclosporine: a systematic review of limited sampling strategies for other immunosuppressants. Ther Drug Monit. 2006;28:419–30.CrossRef Ting LSL, Villeneuve E, Ensom MH. Beyond cyclosporine: a systematic review of limited sampling strategies for other immunosuppressants. Ther Drug Monit. 2006;28:419–30.CrossRef
23.
go back to reference Barraclough KA, Isbel NM, Kirkpatrick CM, Lee KJ, Taylor PJ, Johnson DW, et al. Evaluation of limited sampling methods for estimation of tacrolimus exposure in adult kidney transplant recipients. Br J Clin Pharmacol. 2011;71:207–23.CrossRef Barraclough KA, Isbel NM, Kirkpatrick CM, Lee KJ, Taylor PJ, Johnson DW, et al. Evaluation of limited sampling methods for estimation of tacrolimus exposure in adult kidney transplant recipients. Br J Clin Pharmacol. 2011;71:207–23.CrossRef
24.
go back to reference David OJ, Johnston A. Limited sampling strategies for estimating cyclosporin area under the concentration-time curve: review of current algorithms. Ther Drug Monit. 2001;23:100–14.CrossRef David OJ, Johnston A. Limited sampling strategies for estimating cyclosporin area under the concentration-time curve: review of current algorithms. Ther Drug Monit. 2001;23:100–14.CrossRef
25.
go back to reference Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9:503–12.CrossRef Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9:503–12.CrossRef
26.
go back to reference Meier-Kriesche HU, Kaplan B, Brannan P, Kahan BD, Portman RJ. A limited sampling strategy for the estimation of eight-hour neoral areas under the curve in renal transplantation. Ther Drug Monit. 1998;20:401–7.CrossRef Meier-Kriesche HU, Kaplan B, Brannan P, Kahan BD, Portman RJ. A limited sampling strategy for the estimation of eight-hour neoral areas under the curve in renal transplantation. Ther Drug Monit. 1998;20:401–7.CrossRef
27.
go back to reference Ruslami R, Nijland HM, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51:2546–51.CrossRef Ruslami R, Nijland HM, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51:2546–51.CrossRef
28.
go back to reference Cojutti P, Duranti S, Isola M, Baraldo M, Viale P, Bassetti M, et al. Might isoniazid plasma exposure be a valuable predictor of drug-related hepatotoxicity risk among adult patients with TB? J Antimicrob Chemother. 2016;71:1323–9.CrossRef Cojutti P, Duranti S, Isola M, Baraldo M, Viale P, Bassetti M, et al. Might isoniazid plasma exposure be a valuable predictor of drug-related hepatotoxicity risk among adult patients with TB? J Antimicrob Chemother. 2016;71:1323–9.CrossRef
29.
go back to reference Chirehwa MT, Rustomjee R, Mthiyane T, Onyebujoh P, Smith P, McIlleron H, et al. Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother. 2016;60:487–94.CrossRef Chirehwa MT, Rustomjee R, Mthiyane T, Onyebujoh P, Smith P, McIlleron H, et al. Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother. 2016;60:487–94.CrossRef
30.
go back to reference Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, et al. A dose ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191:1058–65.CrossRef Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, et al. A dose ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191:1058–65.CrossRef
31.
go back to reference Gumbo T, Angulo-Barturen I, Ferrer-Bazaga S. Pharmacokinetic-pharmacodynamic and dose-response relationships of antituberculosis drugs: recommendations and standards for industry and academia. J Infect Dis. 2015;211(Suppl):S96–106.CrossRef Gumbo T, Angulo-Barturen I, Ferrer-Bazaga S. Pharmacokinetic-pharmacodynamic and dose-response relationships of antituberculosis drugs: recommendations and standards for industry and academia. J Infect Dis. 2015;211(Suppl):S96–106.CrossRef
32.
go back to reference Alsultan A, Savic R, Dooley KE, Weiner M, Whitworth W, MacKenzie WR, et al. Population Pharmacokinetics of Pyrazinamide in Patients with Tuberculosis. Antimicrob Agents Chemother. 2017;61:e02625–7.PubMedPubMedCentral Alsultan A, Savic R, Dooley KE, Weiner M, Whitworth W, MacKenzie WR, et al. Population Pharmacokinetics of Pyrazinamide in Patients with Tuberculosis. Antimicrob Agents Chemother. 2017;61:e02625–7.PubMedPubMedCentral
33.
go back to reference Diacon AH, Donald PR. The early bactericidal activity of antituberculosis drugs. Expert Rev Anti Infect Ther. 2014;12:223–37.CrossRef Diacon AH, Donald PR. The early bactericidal activity of antituberculosis drugs. Expert Rev Anti Infect Ther. 2014;12:223–37.CrossRef
Metadata
Title
Optimal Sampling Strategies for Therapeutic Drug Monitoring of First-Line Tuberculosis Drugs in Patients with Tuberculosis
Authors
Antonia Morita I. Saktiawati
Marcel Harkema
Althaf Setyawan
Yanri W. Subronto
Sumardi
Ymkje Stienstra
Rob E. Aarnoutse
Cecile Magis-Escurra
Jos G. W. Kosterink
Tjip S. van der Werf
Jan-Willem C. Alffenaar
Marieke G. G. Sturkenboom
Publication date
01-11-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 11/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00763-3

Other articles of this Issue 11/2019

Clinical Pharmacokinetics 11/2019 Go to the issue