Skip to main content
Top
Published in: Clinical Pharmacokinetics 11/2019

01-11-2019 | Fosfomycin | Systematic Review

What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review

Authors: Chandra Datta Sumi, Aaron J. Heffernan, Jeffrey Lipman, Jason A. Roberts, Fekade B. Sime

Published in: Clinical Pharmacokinetics | Issue 11/2019

Login to get access

Abstract

Background

The rates of antibiotic resistance in Gram-negative bacteria are increasing. One method to minimize resistance emergence may be optimization of antibiotic dosing regimens to achieve drug exposure that suppress the emergence of resistance.

Objective

The aim of this systematic review was to describe the antibiotic exposures associated with suppression of the emergence of resistance for Gram-negative bacteria.

Methods

We conducted a search of four electronic databases. Articles were included if the antibiotic exposure required to suppress the emergence of resistance in a Gram-negative bacterial isolate was described. Among studies, 57 preclinical studies (in vitro and in vivo) and 2 clinical studies 59 included investigated the monotherapy of antibiotics against susceptible and/or intermediate Gram-negative bacteria.

Results

The pharmacokinetic/pharmacodynamic (PK/PD) indices reported to suppress the emergence of antibiotic resistance for various classes were β-lactam antibiotic minimum concentration to minimum inhibitory concentration (Cmin/MIC) ≥ 4; aminoglycoside maximum concentration to MIC (Cmax/MIC) ratio ≥ 20; fluoroquinolones, area under the concentration-time curve from 0 to 24 h to mutant prevention concentration (AUC24/MPC) ≥ 35; tetracyclines, AUC24 to MIC (AUC24/MIC) ratio ≥ 50; polymyxin B, AUC24/MIC ≥ 808; and fosfomycin, AUC24/MIC ≥ 3136. However, the exposures required to suppress the emergence of resistance varied depending on the specific antibiotic tested, the duration of the experiment, the bacterial species and the specific bacterial isolate tested. Importantly, antibiotic exposures required to suppress the emergence of resistance generally exceeded that associated with clinical efficacy.

Conclusion

The benefits of implementing such high PK/PD targets must be balanced with the potential risks of antibiotic-associated toxicity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2017;57(13):2857–76.PubMedCrossRef Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2017;57(13):2857–76.PubMedCrossRef
3.
go back to reference Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio. 2016;7(5):e01541–16.PubMedPubMedCentralCrossRef Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio. 2016;7(5):e01541–16.PubMedPubMedCentralCrossRef
4.
go back to reference Vasoo S, Barreto JN, Tosh PK. Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician. Mayo Clin Proc. 2015;90(3):395–403.PubMedCrossRef Vasoo S, Barreto JN, Tosh PK. Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician. Mayo Clin Proc. 2015;90(3):395–403.PubMedCrossRef
5.
go back to reference Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents. 2007;29(6):630–6.PubMedCrossRef Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents. 2007;29(6):630–6.PubMedCrossRef
6.
go back to reference Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One. 2017;12(12):e0189621.PubMedPubMedCentralCrossRef Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One. 2017;12(12):e0189621.PubMedPubMedCentralCrossRef
7.
go back to reference Cabot G, Bruchmann S, Mulet X, et al. Pseudomonas aeruginosa ceftolozane–tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58(6):3091–9.PubMedPubMedCentralCrossRef Cabot G, Bruchmann S, Mulet X, et al. Pseudomonas aeruginosa ceftolozane–tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58(6):3091–9.PubMedPubMedCentralCrossRef
8.
go back to reference Shields RK, Chen L, Cheng S, et al. Emergence of ceftazidime–avibactam resistance due to plasmid-borne blakpc-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61(3):e02097–116.PubMedPubMedCentralCrossRef Shields RK, Chen L, Cheng S, et al. Emergence of ceftazidime–avibactam resistance due to plasmid-borne blakpc-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61(3):e02097–116.PubMedPubMedCentralCrossRef
9.
go back to reference Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov. 2002;1(11):895–910.PubMedCrossRef Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov. 2002;1(11):895–910.PubMedCrossRef
10.
go back to reference Fernandes P, Martens E. Antibiotics in late clinical development. Biochem Pharmacol. 2017;133:152–63.PubMedCrossRef Fernandes P, Martens E. Antibiotics in late clinical development. Biochem Pharmacol. 2017;133:152–63.PubMedCrossRef
11.
go back to reference Bulik CC, Christensen H, Li P, Sutherland CA, Nicolau DP, Kuti JL. Comparison of the activity of a human simulated, high-dose, prolonged infusion of meropenem against Klebsiella pneumoniae producing the KPC carbapenemase versus that against Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2010;54(2):804–10.PubMedCrossRef Bulik CC, Christensen H, Li P, Sutherland CA, Nicolau DP, Kuti JL. Comparison of the activity of a human simulated, high-dose, prolonged infusion of meropenem against Klebsiella pneumoniae producing the KPC carbapenemase versus that against Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2010;54(2):804–10.PubMedCrossRef
12.
go back to reference Ungphakorn W, Tängdén T, Sandegren L, Nielsen EI. A pharmacokinetic–pharmacodynamic model characterizing the emergence of resistant Escherichia coli subpopulations during ertapenem exposure. J Antimicrob Chemother. 2016;71(9):2521–33.PubMedCrossRef Ungphakorn W, Tängdén T, Sandegren L, Nielsen EI. A pharmacokinetic–pharmacodynamic model characterizing the emergence of resistant Escherichia coli subpopulations during ertapenem exposure. J Antimicrob Chemother. 2016;71(9):2521–33.PubMedCrossRef
13.
go back to reference Mouton JW, Muller AE, Canton R, et al. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73(3):564–8.PubMedCrossRef Mouton JW, Muller AE, Canton R, et al. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73(3):564–8.PubMedCrossRef
14.
go back to reference Gugel J, Dos Santos Pereira A, Pignatari AC, Gales AC. Beta-lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(6):2276–7.PubMedPubMedCentralCrossRef Gugel J, Dos Santos Pereira A, Pignatari AC, Gales AC. Beta-lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(6):2276–7.PubMedPubMedCentralCrossRef
15.
go back to reference Hansen GT, Zhao X, Drlica K, Blondeau JM. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int J Antimicrob Agents. 2006;27(2):120–4.PubMedCrossRef Hansen GT, Zhao X, Drlica K, Blondeau JM. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int J Antimicrob Agents. 2006;27(2):120–4.PubMedCrossRef
16.
go back to reference Baldesi O, Michel F, Guervilly C, Embriaco N, Granfond A, et al. Bacterial ventilator-associated pneumonia: bronchoalveolar lavage results are not influenced by dilution. Intensive Care Med. 2009;35(7):1210–5.PubMedCrossRef Baldesi O, Michel F, Guervilly C, Embriaco N, Granfond A, et al. Bacterial ventilator-associated pneumonia: bronchoalveolar lavage results are not influenced by dilution. Intensive Care Med. 2009;35(7):1210–5.PubMedCrossRef
17.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef
18.
go back to reference Fernández-Cruz ML, Hernández-Moreno D, Catalán J, et al. Quality evaluation of human and environmental toxicity studies performed with nanomaterials—the GUIDEnano approach. Environ Sci Nano. 2018;2:381–97.CrossRef Fernández-Cruz ML, Hernández-Moreno D, Catalán J, et al. Quality evaluation of human and environmental toxicity studies performed with nanomaterials—the GUIDEnano approach. Environ Sci Nano. 2018;2:381–97.CrossRef
19.
go back to reference Blaser J, Stone BB, Groner MC, Zinner SH. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother. 1987;31(7):1054–60.PubMedPubMedCentralCrossRef Blaser J, Stone BB, Groner MC, Zinner SH. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother. 1987;31(7):1054–60.PubMedPubMedCentralCrossRef
20.
go back to reference Strayer AH, Gilbert DH, Pivarnik P, Medeiros AA, et al. Pharmacodynamics of piperacillin alone and in combination with tazobactam against piperacillin-resistant and -susceptible organisms in an in vitro model of infection. Antimicrob Agents Chemother. 1994;38(10):2351–6.PubMedPubMedCentralCrossRef Strayer AH, Gilbert DH, Pivarnik P, Medeiros AA, et al. Pharmacodynamics of piperacillin alone and in combination with tazobactam against piperacillin-resistant and -susceptible organisms in an in vitro model of infection. Antimicrob Agents Chemother. 1994;38(10):2351–6.PubMedPubMedCentralCrossRef
21.
go back to reference Palmer SM, Kang SL, Cappelletty DM, Rybak MJ. Bactericidal killing activities of cefepime, ceftazidime, cefotaxime, and ceftriaxone against Staphylococcus aureus and beta-lactamase-producing strains of Enterobacter aerogenes and Klebsiella pneumoniae in an in vitro infection model. Antimicrob Agents Chemother. 1995;39(8):1764–71.PubMedPubMedCentralCrossRef Palmer SM, Kang SL, Cappelletty DM, Rybak MJ. Bactericidal killing activities of cefepime, ceftazidime, cefotaxime, and ceftriaxone against Staphylococcus aureus and beta-lactamase-producing strains of Enterobacter aerogenes and Klebsiella pneumoniae in an in vitro infection model. Antimicrob Agents Chemother. 1995;39(8):1764–71.PubMedPubMedCentralCrossRef
22.
go back to reference Garrison MW, Anderson DE, Campbell DM, et al. Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother. 1996;40(12):2859–64.PubMedPubMedCentralCrossRef Garrison MW, Anderson DE, Campbell DM, et al. Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother. 1996;40(12):2859–64.PubMedPubMedCentralCrossRef
23.
go back to reference Lamp KC, Vickers MK. Pharmacodynamics of ampicillin–sulbactam in an in vitro infection model against Escherichia coli strains with various levels of resistance. Antimicrob Agents Chemother. 1998;42(2):231–5.PubMedPubMedCentralCrossRef Lamp KC, Vickers MK. Pharmacodynamics of ampicillin–sulbactam in an in vitro infection model against Escherichia coli strains with various levels of resistance. Antimicrob Agents Chemother. 1998;42(2):231–5.PubMedPubMedCentralCrossRef
24.
go back to reference Cappelletty DM. Evaluation of several dosing regimens of cefepime, with various simulations of renal function, against clinical isolates of Pseudomonas aeruginosa in a pharmacodynamic infection model. Antimicrob Agents Chemother. 1999;43(1):129–33.PubMedPubMedCentralCrossRef Cappelletty DM. Evaluation of several dosing regimens of cefepime, with various simulations of renal function, against clinical isolates of Pseudomonas aeruginosa in a pharmacodynamic infection model. Antimicrob Agents Chemother. 1999;43(1):129–33.PubMedPubMedCentralCrossRef
25.
go back to reference Tessier PR, Nicolau DP, Onyeji CO, Nightingale CH. Pharmacodynamics of intermittent- and continuous-infusion cefepime alone and in combination with once-daily tobramycin against Pseudomonas aeruginosa in an in vitro infection model. Chemotherapy. 1999;45(4):284–95.PubMedCrossRef Tessier PR, Nicolau DP, Onyeji CO, Nightingale CH. Pharmacodynamics of intermittent- and continuous-infusion cefepime alone and in combination with once-daily tobramycin against Pseudomonas aeruginosa in an in vitro infection model. Chemotherapy. 1999;45(4):284–95.PubMedCrossRef
26.
go back to reference Ross GH, Wright DH, Hovde LB, Peterson ML, Rotschafer JC. Fluoroquinolone resistance in anaerobic bacteria following exposure to levofloxacin, trovafloxacin, and sparfloxacin in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2001;45(7):2136–40.PubMedPubMedCentralCrossRef Ross GH, Wright DH, Hovde LB, Peterson ML, Rotschafer JC. Fluoroquinolone resistance in anaerobic bacteria following exposure to levofloxacin, trovafloxacin, and sparfloxacin in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2001;45(7):2136–40.PubMedPubMedCentralCrossRef
27.
go back to reference Peterson ML, Hovde LB, Wright DH, et al. Pharmacodynamics of trovafloxacin and levofloxacin against Bacteroides fragilis in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2002;46(1):203–10.PubMedPubMedCentralCrossRef Peterson ML, Hovde LB, Wright DH, et al. Pharmacodynamics of trovafloxacin and levofloxacin against Bacteroides fragilis in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2002;46(1):203–10.PubMedPubMedCentralCrossRef
28.
go back to reference Noel AR, Bowker KE, MacGowan AP. Pharmacodynamics of moxifloxacin against anaerobes studied in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 2005;49(10):4234–9.PubMedPubMedCentralCrossRef Noel AR, Bowker KE, MacGowan AP. Pharmacodynamics of moxifloxacin against anaerobes studied in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 2005;49(10):4234–9.PubMedPubMedCentralCrossRef
29.
go back to reference Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(12):4920–7.PubMedPubMedCentralCrossRef Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(12):4920–7.PubMedPubMedCentralCrossRef
30.
go back to reference Tam VH, Schilling AN, Vo G, Kabbara S, Kwa AL, Wiederhold NP, et al. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(9):3624–30.PubMedPubMedCentralCrossRef Tam VH, Schilling AN, Vo G, Kabbara S, Kwa AL, Wiederhold NP, et al. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(9):3624–30.PubMedPubMedCentralCrossRef
31.
go back to reference Alou L, Aguilar L, Sevillano D, Giménez MJ, Cafini F, Valero E, et al. Urine bactericidal activity against resistant Escherichia coli in an in vitro pharmacodynamic model simulating urine concentrations obtained after 2000/125 mg sustained-release co-amoxiclav and 400 mg norfloxacin administration. J Antimicrob Chemother. 2006;57(4):714–9.PubMedCrossRef Alou L, Aguilar L, Sevillano D, Giménez MJ, Cafini F, Valero E, et al. Urine bactericidal activity against resistant Escherichia coli in an in vitro pharmacodynamic model simulating urine concentrations obtained after 2000/125 mg sustained-release co-amoxiclav and 400 mg norfloxacin administration. J Antimicrob Chemother. 2006;57(4):714–9.PubMedCrossRef
32.
go back to reference Olofsson SK, Marcusson LL, Komp Lindgren P, Hughes D, Cars O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother. 2006;57(6):1116–21.PubMedCrossRef Olofsson SK, Marcusson LL, Komp Lindgren P, Hughes D, Cars O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother. 2006;57(6):1116–21.PubMedCrossRef
33.
go back to reference Olofsson SK, Marcusson LI, Strömbäck A, Hughes D, Cars O. Dose-related selection of fluoroquinolone-resistant Escherichia coli. J Antimicrob Chemother. 2007;60(4):795–801.PubMedCrossRef Olofsson SK, Marcusson LI, Strömbäck A, Hughes D, Cars O. Dose-related selection of fluoroquinolone-resistant Escherichia coli. J Antimicrob Chemother. 2007;60(4):795–801.PubMedCrossRef
34.
go back to reference Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother. 2008;52(11):3987–93.PubMedPubMedCentralCrossRef Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother. 2008;52(11):3987–93.PubMedPubMedCentralCrossRef
35.
go back to reference Singh R, Ledesma KR, Chang KT, Hou JG, Prince RA, Tam VH. Pharmacodynamics of moxifloxacin against a high inoculum of Escherichia coli in an in vitro infection model. J Antimicrob Chemother. 2009;64(3):556–62.PubMedCrossRef Singh R, Ledesma KR, Chang KT, Hou JG, Prince RA, Tam VH. Pharmacodynamics of moxifloxacin against a high inoculum of Escherichia coli in an in vitro infection model. J Antimicrob Chemother. 2009;64(3):556–62.PubMedCrossRef
36.
go back to reference Louie A, Bied A, Fregeau C, Van Scoy B, Brown D, Liu WG, et al. Impact of different carbapenems and regimens of administration on resistance emergence for three isogenic Pseudomonas aeruginosa strains with differing mechanisms of resistance. Antimicrob Agents Chemother. 2010;54(6):2638–45.PubMedPubMedCentralCrossRef Louie A, Bied A, Fregeau C, Van Scoy B, Brown D, Liu WG, et al. Impact of different carbapenems and regimens of administration on resistance emergence for three isogenic Pseudomonas aeruginosa strains with differing mechanisms of resistance. Antimicrob Agents Chemother. 2010;54(6):2638–45.PubMedPubMedCentralCrossRef
37.
go back to reference Louie A, Heine HS, VanScoy B, Eichas A, Files K, Fikes S, et al. Use of an in vitro pharmacodynamic model to derive a moxifloxacin regimen that optimizes kill of Yersinia pestis and prevents emergence of resistance. Antimicrob Agents Chemother. 2011;55(2):822–30.PubMedCrossRef Louie A, Heine HS, VanScoy B, Eichas A, Files K, Fikes S, et al. Use of an in vitro pharmacodynamic model to derive a moxifloxacin regimen that optimizes kill of Yersinia pestis and prevents emergence of resistance. Antimicrob Agents Chemother. 2011;55(2):822–30.PubMedCrossRef
38.
go back to reference Firsov AA, Gilbert D, Greer K, Portnoy YA, Zinner SH. Comparative pharmacodynamics and antimutant potentials of doripenem and imipenem with ciprofloxacin-resistant Pseudomonas aeruginosa in an in vitro model. Antimicrob Agents Chemother. 2012;56(3):1223–8.PubMedPubMedCentralCrossRef Firsov AA, Gilbert D, Greer K, Portnoy YA, Zinner SH. Comparative pharmacodynamics and antimutant potentials of doripenem and imipenem with ciprofloxacin-resistant Pseudomonas aeruginosa in an in vitro model. Antimicrob Agents Chemother. 2012;56(3):1223–8.PubMedPubMedCentralCrossRef
39.
go back to reference Louie A, Castanheira M, Liu W, Grasso C, Jones RN, Williams G, et al. Pharmacodynamics of β-lactamase inhibition by NXL104 in combination with ceftaroline: examining organisms with multiple types of β-lactamases. Antimicrob Agents Chemother. 2012;56(1):258–70.PubMedPubMedCentralCrossRef Louie A, Castanheira M, Liu W, Grasso C, Jones RN, Williams G, et al. Pharmacodynamics of β-lactamase inhibition by NXL104 in combination with ceftaroline: examining organisms with multiple types of β-lactamases. Antimicrob Agents Chemother. 2012;56(1):258–70.PubMedPubMedCentralCrossRef
40.
go back to reference Felton TW, Goodwin J, O’Connor L, Sharp A, Gregson L, Livermore J, et al. Impact of bolus dosing versus continuous infusion of piperacillin and tazobactam on the development of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(12):5811–9.PubMedPubMedCentralCrossRef Felton TW, Goodwin J, O’Connor L, Sharp A, Gregson L, Livermore J, et al. Impact of bolus dosing versus continuous infusion of piperacillin and tazobactam on the development of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(12):5811–9.PubMedPubMedCentralCrossRef
41.
go back to reference Firsov AA, Strukova EN, Shlykova DS, Portnoy YA, Kozyreva VK, Edelstein MV, et al. Bacterial resistance studies using in vitro dynamic models: the predictive power of the mutant prevention and minimum inhibitory antibiotic concentrations. Antimicrob Agents Chemother. 2013;57(10):4956–62.PubMedPubMedCentralCrossRef Firsov AA, Strukova EN, Shlykova DS, Portnoy YA, Kozyreva VK, Edelstein MV, et al. Bacterial resistance studies using in vitro dynamic models: the predictive power of the mutant prevention and minimum inhibitory antibiotic concentrations. Antimicrob Agents Chemother. 2013;57(10):4956–62.PubMedPubMedCentralCrossRef
42.
go back to reference Vanscoy B, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Forrest A, et al. Relationship between ceftolozane–tazobactam exposure and drug resistance amplification in a hollow-fiber infection model. Antimicrob Agents Chemother. 2013;57(9):4134–8.PubMedPubMedCentralCrossRef Vanscoy B, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Forrest A, et al. Relationship between ceftolozane–tazobactam exposure and drug resistance amplification in a hollow-fiber infection model. Antimicrob Agents Chemother. 2013;57(9):4134–8.PubMedPubMedCentralCrossRef
43.
go back to reference Hagihara M, Housman ST, Nicolau DP, Kuti JL. In vitro pharmacodynamics of polymyxin B and tigecycline alone and in combination against carbapenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2014;58(2):874–9.PubMedPubMedCentralCrossRef Hagihara M, Housman ST, Nicolau DP, Kuti JL. In vitro pharmacodynamics of polymyxin B and tigecycline alone and in combination against carbapenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2014;58(2):874–9.PubMedPubMedCentralCrossRef
44.
go back to reference Li X, Wang L, Zhang XJ, et al. Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58(11):6773–81.PubMedPubMedCentralCrossRef Li X, Wang L, Zhang XJ, et al. Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58(11):6773–81.PubMedPubMedCentralCrossRef
45.
go back to reference VanScoy BD, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Jones RN, et al. Relationship between ceftolozane–tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58(10):6024–31.PubMedPubMedCentralCrossRef VanScoy BD, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Jones RN, et al. Relationship between ceftolozane–tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58(10):6024–31.PubMedPubMedCentralCrossRef
46.
go back to reference Werth BJ, Rybak MJ. Ceftaroline plus avibactam demonstrates bactericidal activity against pathogenic anaerobic bacteria in a one-compartment in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2014;58(1):559–62.PubMedPubMedCentralCrossRef Werth BJ, Rybak MJ. Ceftaroline plus avibactam demonstrates bactericidal activity against pathogenic anaerobic bacteria in a one-compartment in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2014;58(1):559–62.PubMedPubMedCentralCrossRef
47.
go back to reference Docobo-Pérez F, Drusano GL, Johnson A, Goodwin J, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59(9):5602–10.PubMedPubMedCentralCrossRef Docobo-Pérez F, Drusano GL, Johnson A, Goodwin J, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59(9):5602–10.PubMedPubMedCentralCrossRef
48.
go back to reference VanScoy BD, McCauley J, Ellis-Grosse EJ, Okusanya OO, Bhavnani SM, Forrest A, et al. Exploration of the pharmacokinetic-pharmacodynamic relationships for fosfomycin efficacy using an in vitro infection model. Antimicrob Agents Chemother. 2015;59(12):7170–7.PubMedPubMedCentralCrossRef VanScoy BD, McCauley J, Ellis-Grosse EJ, Okusanya OO, Bhavnani SM, Forrest A, et al. Exploration of the pharmacokinetic-pharmacodynamic relationships for fosfomycin efficacy using an in vitro infection model. Antimicrob Agents Chemother. 2015;59(12):7170–7.PubMedPubMedCentralCrossRef
49.
go back to reference Bergen PJ, Bulitta JB, Kirkpatrick CMJ, Rogers KE, McGregor MJ, Wallis SC, et al. Effect of different renal function on antibacterial effects of piperacillin against Pseudomonas aeruginosa evaluated via the hollow-fibre infection model and mechanism-based modelling. J Antimicrob Chemother. 2016;71(9):2509–20.PubMedCrossRef Bergen PJ, Bulitta JB, Kirkpatrick CMJ, Rogers KE, McGregor MJ, Wallis SC, et al. Effect of different renal function on antibacterial effects of piperacillin against Pseudomonas aeruginosa evaluated via the hollow-fibre infection model and mechanism-based modelling. J Antimicrob Chemother. 2016;71(9):2509–20.PubMedCrossRef
50.
go back to reference Strukova EN, Portnoy YA, Romanov AV, Edelstein MV, Zinner SH, Firsov AA. Searching for the optimal predictor of ciprofloxacin resistance in Klebsiella pneumoniae by using in vitro dynamic models. Antimicrob Agents Chemother. 2016;60(3):1208–15.PubMedCentralCrossRef Strukova EN, Portnoy YA, Romanov AV, Edelstein MV, Zinner SH, Firsov AA. Searching for the optimal predictor of ciprofloxacin resistance in Klebsiella pneumoniae by using in vitro dynamic models. Antimicrob Agents Chemother. 2016;60(3):1208–15.PubMedCentralCrossRef
51.
go back to reference Strukova EN, Portnoy YA, Zinner SH, Firsov AA. Predictors of bacterial resistance using in vitro dynamic models: area under the concentration–time curve related to either the minimum inhibitory or mutant prevention antibiotic concentration. J Antimicrob Chemother. 2016;71(3):678–84.PubMedCrossRef Strukova EN, Portnoy YA, Zinner SH, Firsov AA. Predictors of bacterial resistance using in vitro dynamic models: area under the concentration–time curve related to either the minimum inhibitory or mutant prevention antibiotic concentration. J Antimicrob Chemother. 2016;71(3):678–84.PubMedCrossRef
52.
go back to reference VanScoy B, McCauley J, Bhavnani SM, Ellis-Grosse EJ, Ambrose PG. Relationship between fosfomycin exposure and amplification of Escherichia coli subpopulations with reduced susceptibility in a hollow-fiber infection model. Antimicrob Agents Chemother. 2016;60(9):5141–5.PubMedPubMedCentralCrossRef VanScoy B, McCauley J, Bhavnani SM, Ellis-Grosse EJ, Ambrose PG. Relationship between fosfomycin exposure and amplification of Escherichia coli subpopulations with reduced susceptibility in a hollow-fiber infection model. Antimicrob Agents Chemother. 2016;60(9):5141–5.PubMedPubMedCentralCrossRef
53.
go back to reference Alfouzan WA, Noel AR, Bowker KE, Attwood MLG, Tomaselli SG, MacGowan AP. Pharmacodynamics of minocycline against Acinetobacter baumannii studied in a pharmacokinetic model of infection. Int J Antimicrob Agents. 2017;50(6):715–7.PubMedCrossRef Alfouzan WA, Noel AR, Bowker KE, Attwood MLG, Tomaselli SG, MacGowan AP. Pharmacodynamics of minocycline against Acinetobacter baumannii studied in a pharmacokinetic model of infection. Int J Antimicrob Agents. 2017;50(6):715–7.PubMedCrossRef
54.
go back to reference Bergen PJ, Bulitta JB, Kirkpatrick CMJ, Rogers KE, McGregor MJ, Wallis SC, et al. Substantial impact of altered pharmacokinetics in critically ill patients on the antibacterial effects of meropenem evaluated via the dynamic hollow-fiber infection model. Antimicrob Agents Chemother. 2017;61(5):e02642.PubMedPubMedCentralCrossRef Bergen PJ, Bulitta JB, Kirkpatrick CMJ, Rogers KE, McGregor MJ, Wallis SC, et al. Substantial impact of altered pharmacokinetics in critically ill patients on the antibacterial effects of meropenem evaluated via the dynamic hollow-fiber infection model. Antimicrob Agents Chemother. 2017;61(5):e02642.PubMedPubMedCentralCrossRef
55.
go back to reference Ghazi IM, Grupper M, Nicolau DP. Antibacterial activity of human simulated epithelial lining fluid concentrations of amikacin inhale alone and in combination with meropenem against Acinetobacter baumannii. Infect Dis. 2017;49(11–12):831–9.CrossRef Ghazi IM, Grupper M, Nicolau DP. Antibacterial activity of human simulated epithelial lining fluid concentrations of amikacin inhale alone and in combination with meropenem against Acinetobacter baumannii. Infect Dis. 2017;49(11–12):831–9.CrossRef
56.
go back to reference Soon RL, Lenhard JR, Bulman ZP, Holden PN, Kelchlin P, Steenbergen JN, et al. In vitro pharmacodynamic evaluation of ceftolozane/tazobactam against beta-lactamase-producing Escherichia coli in a hollow-fibre infection model. Int J Antimicrob Agents. 2017;49(1):25–30.PubMedCrossRef Soon RL, Lenhard JR, Bulman ZP, Holden PN, Kelchlin P, Steenbergen JN, et al. In vitro pharmacodynamic evaluation of ceftolozane/tazobactam against beta-lactamase-producing Escherichia coli in a hollow-fibre infection model. Int J Antimicrob Agents. 2017;49(1):25–30.PubMedCrossRef
57.
go back to reference Strukova EN, Portnoy YA, Zinner SH, Firsov AA. Species differences in ciprofloxacin resistance among Gram-negative bacteria: can “anti-mutant” ratios of the area under the concentration-time curve to the MIC be achieved clinically? J Chemother. 2017;29(6):351–7.PubMedCrossRef Strukova EN, Portnoy YA, Zinner SH, Firsov AA. Species differences in ciprofloxacin resistance among Gram-negative bacteria: can “anti-mutant” ratios of the area under the concentration-time curve to the MIC be achieved clinically? J Chemother. 2017;29(6):351–7.PubMedCrossRef
58.
go back to reference Tam VH, Chang KT, Zhou J, Ledesma KR, Phe K, Gao S, et al. Determining beta-lactam exposure threshold to suppress resistance development in Gram-negative bacteria. J Antimicrob Chemother. 2017;72(5):1421–8.PubMedCrossRef Tam VH, Chang KT, Zhou J, Ledesma KR, Phe K, Gao S, et al. Determining beta-lactam exposure threshold to suppress resistance development in Gram-negative bacteria. J Antimicrob Chemother. 2017;72(5):1421–8.PubMedCrossRef
59.
go back to reference Zhanel GG, Parkinson K, Higgins S, Denisuik A, Adam H, Pitout J, et al. Pharmacodynamic activity of fosfomycin simulating urinary concentrations achieved after a single 3-g oral dose versus Escherichia coli using an in vitro model. Diagn Microbiol Infect Dis. 2017;88(3):271–5.PubMedCrossRef Zhanel GG, Parkinson K, Higgins S, Denisuik A, Adam H, Pitout J, et al. Pharmacodynamic activity of fosfomycin simulating urinary concentrations achieved after a single 3-g oral dose versus Escherichia coli using an in vitro model. Diagn Microbiol Infect Dis. 2017;88(3):271–5.PubMedCrossRef
60.
go back to reference Abbott IJ, Meletiadis J, Belghanch I, Wijma RA, Kanioura L, Roberts JA, et al. Fosfomycin efficacy and emergence of resistance among Enterobacteriaceae in an in vitro dynamic bladder infection model. J Antimicrob Chemother. 2018;73(3):709–19.PubMedCrossRef Abbott IJ, Meletiadis J, Belghanch I, Wijma RA, Kanioura L, Roberts JA, et al. Fosfomycin efficacy and emergence of resistance among Enterobacteriaceae in an in vitro dynamic bladder infection model. J Antimicrob Chemother. 2018;73(3):709–19.PubMedCrossRef
61.
go back to reference Sabet M, Tarazi Z, Rubio-Aparicio D, Nolan TG, Parkinson J, Lomovskaya O, et al. Activity of simulated human dosage regimens of meropenem and vaborbactam against carbapenem-resistant enterobacteriaceae in an in vitro hollow-fiber model. Antimicrob Agents Chemother. 2018;62(2):e01969–17.PubMedPubMedCentralCrossRef Sabet M, Tarazi Z, Rubio-Aparicio D, Nolan TG, Parkinson J, Lomovskaya O, et al. Activity of simulated human dosage regimens of meropenem and vaborbactam against carbapenem-resistant enterobacteriaceae in an in vitro hollow-fiber model. Antimicrob Agents Chemother. 2018;62(2):e01969–17.PubMedPubMedCentralCrossRef
62.
go back to reference Noel AR, Bowker KE, Attwood M, MacGowan AP. Antibacterial effect of ceftolozane/tazobactam in combination with amikacin against aerobic Gram-negative bacilli studied in an in vitro pharmacokinetic model of infection. J Antimicrob Chemother. 2018;73(9):2411–7.PubMedCrossRef Noel AR, Bowker KE, Attwood M, MacGowan AP. Antibacterial effect of ceftolozane/tazobactam in combination with amikacin against aerobic Gram-negative bacilli studied in an in vitro pharmacokinetic model of infection. J Antimicrob Chemother. 2018;73(9):2411–7.PubMedCrossRef
63.
go back to reference Barber KE, Pogue JM, Warnock HD, Bonomo RA, Kaye KS. Ceftazidime/avibactam versus standard-of-care agents against carbapenem-resistant Enterobacteriaceae harbouring blaKPC in a one-compartment pharmacokinetic/pharmacodynamic model. J Antimicrob Chemother. 2018;73(9):2405–10.PubMedCrossRefPubMedCentral Barber KE, Pogue JM, Warnock HD, Bonomo RA, Kaye KS. Ceftazidime/avibactam versus standard-of-care agents against carbapenem-resistant Enterobacteriaceae harbouring blaKPC in a one-compartment pharmacokinetic/pharmacodynamic model. J Antimicrob Chemother. 2018;73(9):2405–10.PubMedCrossRefPubMedCentral
64.
go back to reference Abodakpi H, Chang KT, Gao S, Sanchez-Diaz AM, Canton R, Tam VH. Optimal piperacillin–tazobactam dosing strategies against extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63(2):e01906– 18.PubMedPubMedCentralCrossRef Abodakpi H, Chang KT, Gao S, Sanchez-Diaz AM, Canton R, Tam VH. Optimal piperacillin–tazobactam dosing strategies against extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63(2):e01906– 18.PubMedPubMedCentralCrossRef
65.
go back to reference Jumbe N, Louie A, Leary R, Liu W, Deziel MR, Tam VH, et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Investig. 2003;112(2):275–85.PubMedCrossRefPubMedCentral Jumbe N, Louie A, Leary R, Liu W, Deziel MR, Tam VH, et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Investig. 2003;112(2):275–85.PubMedCrossRefPubMedCentral
66.
go back to reference Bakker-Woudenberg IA, ten Kate MT, Goessens WH, Mouton JW. Effect of treatment duration on pharmacokinetic/pharmacodynamic indices correlating with therapeutic efficacy of ceftazidime in experimental Klebsiella pneumoniae lung infection. Antimicrob Agents Chemother. 2006;50(9):2919–25.PubMedPubMedCentralCrossRef Bakker-Woudenberg IA, ten Kate MT, Goessens WH, Mouton JW. Effect of treatment duration on pharmacokinetic/pharmacodynamic indices correlating with therapeutic efficacy of ceftazidime in experimental Klebsiella pneumoniae lung infection. Antimicrob Agents Chemother. 2006;50(9):2919–25.PubMedPubMedCentralCrossRef
67.
go back to reference Maciá MD, Borrell N, Segura M, Gómez C, Pérez JL, Oliver A. Efficacy and potential for resistance selection of antipseudomonal treatments in a mouse model of lung infection by hypermutable Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(3):975–83.PubMedPubMedCentralCrossRef Maciá MD, Borrell N, Segura M, Gómez C, Pérez JL, Oliver A. Efficacy and potential for resistance selection of antipseudomonal treatments in a mouse model of lung infection by hypermutable Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(3):975–83.PubMedPubMedCentralCrossRef
68.
go back to reference Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis. 2007;57(2):153–61.PubMedCrossRef Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis. 2007;57(2):153–61.PubMedCrossRef
69.
go back to reference Stearne LE, Goessens WH, Mouton JW, Gyssens IC. Effect of dosing and dosing frequency on the efficacy of ceftizoxime and the emergence of ceftizoxime resistance during the early development of murine abscesses caused by Bacteroides fragilis and Enterobacter cloacae mixed infection. Antimicrob Agents Chemother. 2007;51(10):3605–11.PubMedPubMedCentralCrossRef Stearne LE, Goessens WH, Mouton JW, Gyssens IC. Effect of dosing and dosing frequency on the efficacy of ceftizoxime and the emergence of ceftizoxime resistance during the early development of murine abscesses caused by Bacteroides fragilis and Enterobacter cloacae mixed infection. Antimicrob Agents Chemother. 2007;51(10):3605–11.PubMedPubMedCentralCrossRef
70.
go back to reference Crandon JL, Schuck VJ, Banevicius MA, Beaudoin ME, Nichols WW, Tanudra MA, et al. Comparative in vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime–avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56(12):6137–46.PubMedPubMedCentralCrossRef Crandon JL, Schuck VJ, Banevicius MA, Beaudoin ME, Nichols WW, Tanudra MA, et al. Comparative in vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime–avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56(12):6137–46.PubMedPubMedCentralCrossRef
71.
go back to reference Louie A, Liu W, Fikes S, Brown D, Drusano GL. Impact of meropenem in combination with tobramycin in a murine model of Pseudomonas aeruginosa pneumonia. Antimicrob Agents Chemother. 2013;57(6):2788–92.PubMedPubMedCentralCrossRef Louie A, Liu W, Fikes S, Brown D, Drusano GL. Impact of meropenem in combination with tobramycin in a murine model of Pseudomonas aeruginosa pneumonia. Antimicrob Agents Chemother. 2013;57(6):2788–92.PubMedPubMedCentralCrossRef
72.
go back to reference Ni W, Song X, Cui J. Testing the mutant selection window hypothesis with Escherichia coli exposed to levofloxacin in a rabbit tissue cage infection model. Eur J Clin Microbiol Infect Dis. 2014;33(3):385–9.PubMedCrossRef Ni W, Song X, Cui J. Testing the mutant selection window hypothesis with Escherichia coli exposed to levofloxacin in a rabbit tissue cage infection model. Eur J Clin Microbiol Infect Dis. 2014;33(3):385–9.PubMedCrossRef
73.
go back to reference Soubirou JF, Rossi B, Couffignal C, Ruppé E, Chau F, Massias L, et al. Activity of temocillin in a murine model of urinary tract infection due to Escherichia coli producing or not producing the ESBL CTX-M-15. J Antimicrob Chemother. 2015;70(5):1466–72.PubMedCrossRef Soubirou JF, Rossi B, Couffignal C, Ruppé E, Chau F, Massias L, et al. Activity of temocillin in a murine model of urinary tract infection due to Escherichia coli producing or not producing the ESBL CTX-M-15. J Antimicrob Chemother. 2015;70(5):1466–72.PubMedCrossRef
74.
go back to reference Pan AJ, Mei Q, Ye Y, Li HR, Liu B, Li JB. Validation of the mutant selection window hypothesis with fosfomycin against Escherichia coli and Pseudomonas aeruginosa: an in vitro and in vivo comparative study. J Antibiot (Tokyo). 2017;70(2):166–73.CrossRef Pan AJ, Mei Q, Ye Y, Li HR, Liu B, Li JB. Validation of the mutant selection window hypothesis with fosfomycin against Escherichia coli and Pseudomonas aeruginosa: an in vitro and in vivo comparative study. J Antibiot (Tokyo). 2017;70(2):166–73.CrossRef
75.
go back to reference Abdelraouf K, Kim A, Krause KM, Nicolau DP. In vivo efficacy of plazomicin alone or in combination with meropenem or tigecycline against Enterobacteriaceae isolates exhibiting various resistance mechanisms in an immunocompetent murine septicemia model. Antimicrob Agents Chemother. 2018;62(8):e01074–116.PubMedPubMedCentralCrossRef Abdelraouf K, Kim A, Krause KM, Nicolau DP. In vivo efficacy of plazomicin alone or in combination with meropenem or tigecycline against Enterobacteriaceae isolates exhibiting various resistance mechanisms in an immunocompetent murine septicemia model. Antimicrob Agents Chemother. 2018;62(8):e01074–116.PubMedPubMedCentralCrossRef
76.
go back to reference Thomas JK, Forrest A, Bhavnani SM, Hyatt JM, Cheng A, Ballow CH, et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother. 1998;42(3):521–7.PubMedPubMedCentralCrossRef Thomas JK, Forrest A, Bhavnani SM, Hyatt JM, Cheng A, Ballow CH, et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother. 1998;42(3):521–7.PubMedPubMedCentralCrossRef
77.
go back to reference Hyatt JM, Schentag JJ. Pharmacodynamic modeling of risk factors for ciprofloxacin resistance in Pseudomonas aeruginosa. Infect Control Hosp Epidemiol. 2000;21(1 Suppl):S9–11.PubMedCrossRef Hyatt JM, Schentag JJ. Pharmacodynamic modeling of risk factors for ciprofloxacin resistance in Pseudomonas aeruginosa. Infect Control Hosp Epidemiol. 2000;21(1 Suppl):S9–11.PubMedCrossRef
78.
go back to reference Muller AE, Punt N, Mouton JW. Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother. 2013;68(4):900–6.PubMedCrossRef Muller AE, Punt N, Mouton JW. Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother. 2013;68(4):900–6.PubMedCrossRef
79.
go back to reference MacVane SH, Kuti JL, Nicolau DP. Clinical pharmacodynamics of antipseudomonal cephalosporins in patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2014;58(3):1359–64.PubMedPubMedCentralCrossRef MacVane SH, Kuti JL, Nicolau DP. Clinical pharmacodynamics of antipseudomonal cephalosporins in patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2014;58(3):1359–64.PubMedPubMedCentralCrossRef
80.
go back to reference Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother. 2002;50(3):425–8.PubMedCrossRef Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother. 2002;50(3):425–8.PubMedCrossRef
81.
go back to reference Delattre IK, Taccone FS, Jacobs F, Hites M, Dugernier T, Spapen H, et al. Optimizing beta-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets: are first conventional doses effective? Expert Rev Anti Infect Ther. 2017;15(7):677–88.PubMedCrossRef Delattre IK, Taccone FS, Jacobs F, Hites M, Dugernier T, Spapen H, et al. Optimizing beta-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets: are first conventional doses effective? Expert Rev Anti Infect Ther. 2017;15(7):677–88.PubMedCrossRef
82.
go back to reference Rhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu JJ, et al. Defining clinical exposures of cefepime for gram-negative bloodstream infections that are associated with improved survival. Antimicrob Agents Chemother. 2016;60(3):1401–10.PubMedCentralCrossRef Rhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu JJ, et al. Defining clinical exposures of cefepime for gram-negative bloodstream infections that are associated with improved survival. Antimicrob Agents Chemother. 2016;60(3):1401–10.PubMedCentralCrossRef
83.
go back to reference Miglis C, Rhodes NJ, Kuti JL, Nicolau DP, Van Wart SA, Scheetz MH. Defining the impact of severity of illness on time above the MIC threshold for cefepime in Gram-negative bacteraemia: a ‘Goldilocks’ window. Int J Antimicrob Agents. 2017;50(3):487–90.PubMedCrossRef Miglis C, Rhodes NJ, Kuti JL, Nicolau DP, Van Wart SA, Scheetz MH. Defining the impact of severity of illness on time above the MIC threshold for cefepime in Gram-negative bacteraemia: a ‘Goldilocks’ window. Int J Antimicrob Agents. 2017;50(3):487–90.PubMedCrossRef
84.
go back to reference Dhaese SAM, Roberts JA, Carlier M, Verstraete AG, Stove V, DeWaele JJ. Population pharmacokinetics of continuous infusion of piperacillin in critically ill patients. Int J Antimicrob Agents. 2018;51(4):594–600.PubMedCrossRef Dhaese SAM, Roberts JA, Carlier M, Verstraete AG, Stove V, DeWaele JJ. Population pharmacokinetics of continuous infusion of piperacillin in critically ill patients. Int J Antimicrob Agents. 2018;51(4):594–600.PubMedCrossRef
85.
go back to reference Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, et al. Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients. Antimicrob Agents Chemother. 2017;61(3):e01276–316.PubMedPubMedCentralCrossRef Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, et al. Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients. Antimicrob Agents Chemother. 2017;61(3):e01276–316.PubMedPubMedCentralCrossRef
86.
go back to reference Sinnollareddy MG, Roberts MS, Lipman J, Peake SL, Roberts JA. Pharmacokinetics of piperacillin in critically ill patients with acute kidney injury receiving sustained low-efficiency diafiltration. J Antimicrob Chemother. 2018;73(6):1647–50.PubMedCrossRef Sinnollareddy MG, Roberts MS, Lipman J, Peake SL, Roberts JA. Pharmacokinetics of piperacillin in critically ill patients with acute kidney injury receiving sustained low-efficiency diafiltration. J Antimicrob Chemother. 2018;73(6):1647–50.PubMedCrossRef
87.
go back to reference Rhodes NJ, Grove ME, Kiel PJ, O’Donnell JN, Whited LK, Rose DT, et al. Population pharmacokinetics of cefepime in febrile neutropenia: implications for dose-dependent susceptibility and contemporary dosing regimens. Int J Antimicrob Agents. 2017;50(3):482–6.PubMedCrossRef Rhodes NJ, Grove ME, Kiel PJ, O’Donnell JN, Whited LK, Rose DT, et al. Population pharmacokinetics of cefepime in febrile neutropenia: implications for dose-dependent susceptibility and contemporary dosing regimens. Int J Antimicrob Agents. 2017;50(3):482–6.PubMedCrossRef
88.
go back to reference Roos JF, Bulitta J, Lipman J, Kirkpatrick CM. Pharmacokinetic–pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother. 2006;58(5):987–93.PubMedCrossRef Roos JF, Bulitta J, Lipman J, Kirkpatrick CM. Pharmacokinetic–pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother. 2006;58(5):987–93.PubMedCrossRef
89.
go back to reference Minichmayr IK, Roberts JA, Frey OR, Roehr AC, Kloft C, Brinkmann A. Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J Antimicrob Chemother. 2018;73(5):1330–9.PubMedCrossRef Minichmayr IK, Roberts JA, Frey OR, Roehr AC, Kloft C, Brinkmann A. Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J Antimicrob Chemother. 2018;73(5):1330–9.PubMedCrossRef
90.
go back to reference Pai MP, Cojutti P, Pea F. Pharmacokinetics and pharmacodynamics of continuous infusion meropenem in overweight, obese, and morbidly obese patients with stable and unstable kidney function: a step toward dose optimization for the treatment of severe gram-negative bacterial infections. Clin Pharmacokinet. 2015;54(9):933–41.PubMedCrossRef Pai MP, Cojutti P, Pea F. Pharmacokinetics and pharmacodynamics of continuous infusion meropenem in overweight, obese, and morbidly obese patients with stable and unstable kidney function: a step toward dose optimization for the treatment of severe gram-negative bacterial infections. Clin Pharmacokinet. 2015;54(9):933–41.PubMedCrossRef
91.
go back to reference Jamal JA, Udy AA, Lipman J, Roberts JA. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens. Crit Care Med. 2014;42(7):1640–50.PubMedCrossRef Jamal JA, Udy AA, Lipman J, Roberts JA. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens. Crit Care Med. 2014;42(7):1640–50.PubMedCrossRef
92.
go back to reference Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–83.PubMedCrossRef Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–83.PubMedCrossRef
93.
go back to reference Valenza G, Seifert H, Decker-Burgard S, Laeuffer J, Morrissey I, Mutters R. Comparative activity of carbapenem testing (COMPACT) study in Germany. Int J Antimicrob Agents. 2012;39(3):255–8.PubMedCrossRef Valenza G, Seifert H, Decker-Burgard S, Laeuffer J, Morrissey I, Mutters R. Comparative activity of carbapenem testing (COMPACT) study in Germany. Int J Antimicrob Agents. 2012;39(3):255–8.PubMedCrossRef
94.
go back to reference Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of beta-lactam concentration-toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–7.PubMedCrossRef Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of beta-lactam concentration-toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–7.PubMedCrossRef
95.
go back to reference Beumier M, Casu GS, Hites M, Wolff F, Cotton F, Vincent JL, et al. Elevated beta-lactam concentrations associated with neurological deterioration in ICU septic patients. Miner Anestesiol. 2015;81(5):497–506. Beumier M, Casu GS, Hites M, Wolff F, Cotton F, Vincent JL, et al. Elevated beta-lactam concentrations associated with neurological deterioration in ICU septic patients. Miner Anestesiol. 2015;81(5):497–506.
96.
go back to reference Quinton MC, Bodeau S, Kontar L, Zerbib Y, Maizel J, Slama M, et al. Neurotoxic concentration of piperacillin during continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2017;61(9):6.CrossRef Quinton MC, Bodeau S, Kontar L, Zerbib Y, Maizel J, Slama M, et al. Neurotoxic concentration of piperacillin during continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2017;61(9):6.CrossRef
97.
go back to reference Lamoth F, Buclin T, Pascual A, et al. High cefepime plasma concentrations and neurological toxicity in febrile neutropenic patients with mild impairment of renal function. Antimicrob Agents Chemother. 2010;54(10):4360–7.PubMedPubMedCentralCrossRef Lamoth F, Buclin T, Pascual A, et al. High cefepime plasma concentrations and neurological toxicity in febrile neutropenic patients with mild impairment of renal function. Antimicrob Agents Chemother. 2010;54(10):4360–7.PubMedPubMedCentralCrossRef
98.
go back to reference Pajot O, Burdet C, Couffignal C, Massias L, et al. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J Antimicrob Chemother. 2015;70(5):1487–94.PubMedCrossRef Pajot O, Burdet C, Couffignal C, Massias L, et al. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J Antimicrob Chemother. 2015;70(5):1487–94.PubMedCrossRef
99.
go back to reference Kashuba AD, Nafziger AN, Drusano GL, Bertino JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother. 1999;43(3):623–9.PubMedPubMedCentralCrossRef Kashuba AD, Nafziger AN, Drusano GL, Bertino JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother. 1999;43(3):623–9.PubMedPubMedCentralCrossRef
100.
go back to reference Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155(1):93–9.PubMedCrossRef Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155(1):93–9.PubMedCrossRef
101.
go back to reference Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother. 2003;52(4):668–74.PubMedCrossRef Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother. 2003;52(4):668–74.PubMedCrossRef
102.
go back to reference Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39(3):650–5.PubMedPubMedCentralCrossRef Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39(3):650–5.PubMedPubMedCentralCrossRef
103.
go back to reference Rea RS, Capitano B. Optimizing use of aminoglycosides in the critically ill. Semin Respir Crit Care Med. 2007;28(6):596–603.PubMedCrossRef Rea RS, Capitano B. Optimizing use of aminoglycosides in the critically ill. Semin Respir Crit Care Med. 2007;28(6):596–603.PubMedCrossRef
104.
go back to reference Rea RS, Capitano B, Bies R, Bigos KL, Smith R, Lee H. Suboptimal aminoglycoside dosing in critically ill patients. Ther Drug Monit. 2008;30(6):674–81.PubMedCrossRef Rea RS, Capitano B, Bies R, Bigos KL, Smith R, Lee H. Suboptimal aminoglycoside dosing in critically ill patients. Ther Drug Monit. 2008;30(6):674–81.PubMedCrossRef
105.
go back to reference Roger C, Nucci B, Louart B, Friggeri A, Knani H, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71(1):208–12.PubMedCrossRef Roger C, Nucci B, Louart B, Friggeri A, Knani H, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71(1):208–12.PubMedCrossRef
106.
go back to reference Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(5):1604–13.PubMedPubMedCentralCrossRef Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(5):1604–13.PubMedPubMedCentralCrossRef
107.
go back to reference Tam VH, Louie A, Deziel MR, Liu WG, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother. 2007;51(2):744–7.PubMedCrossRef Tam VH, Louie A, Deziel MR, Liu WG, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother. 2007;51(2):744–7.PubMedCrossRef
108.
go back to reference van Zanten ARH, Polderman KH, van Geijlswijk IM, van der Meer GYG, Schouten MA, Girbes ARJ. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23(3):422–30.PubMedCrossRef van Zanten ARH, Polderman KH, van Geijlswijk IM, van der Meer GYG, Schouten MA, Girbes ARJ. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23(3):422–30.PubMedCrossRef
109.
go back to reference Cazaubon Y, Bourguignon L, Goutelle S, Martin O, Maire P, Ducher M. Are ciprofloxacin dosage regimens adequate for antimicrobial efficacy and prevention of resistance? Pseudomonas aeruginosa bloodstream infection in elderly patients as a simulation case study. Fundam Clin Pharmacol. 2015;29(6):615–24.PubMedCrossRef Cazaubon Y, Bourguignon L, Goutelle S, Martin O, Maire P, Ducher M. Are ciprofloxacin dosage regimens adequate for antimicrobial efficacy and prevention of resistance? Pseudomonas aeruginosa bloodstream infection in elderly patients as a simulation case study. Fundam Clin Pharmacol. 2015;29(6):615–24.PubMedCrossRef
110.
go back to reference Haeseker M, Stolk L, Nieman F, Hoebe C, Neef C, Bruggeman C, et al. The ciprofloxacin target AUC:MIC ratio is not reached in hospitalized patients with the recommended dosing regimens. Br J Clin Pharmacol. 2013;75(1):180–5.PubMedCrossRef Haeseker M, Stolk L, Nieman F, Hoebe C, Neef C, Bruggeman C, et al. The ciprofloxacin target AUC:MIC ratio is not reached in hospitalized patients with the recommended dosing regimens. Br J Clin Pharmacol. 2013;75(1):180–5.PubMedCrossRef
111.
go back to reference Zavascki AP, Goldani LZ, Cao G, Superti SV, Lutz L, Barth AL, et al. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis. 2008;47(10):1298–304.PubMedCrossRef Zavascki AP, Goldani LZ, Cao G, Superti SV, Lutz L, Barth AL, et al. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis. 2008;47(10):1298–304.PubMedCrossRef
112.
go back to reference Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, et al. Population pharmacokinetics of intravenous polymyxin b in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis. 2013;57(4):524–31.PubMedCrossRef Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, et al. Population pharmacokinetics of intravenous polymyxin b in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis. 2013;57(4):524–31.PubMedCrossRef
113.
go back to reference Nelson BC, Eiras DP, Gomez-Simmonds A, Loo AS, Satlin MJ, Jenkins SG, et al. Clinical outcomes associated with polymyxin B dose in patients with bloodstream infections due to carbapenem-resistant Gram-negative rods. Antimicrob Agents Chemother. 2015;59(11):7000–6.PubMedPubMedCentralCrossRef Nelson BC, Eiras DP, Gomez-Simmonds A, Loo AS, Satlin MJ, Jenkins SG, et al. Clinical outcomes associated with polymyxin B dose in patients with bloodstream infections due to carbapenem-resistant Gram-negative rods. Antimicrob Agents Chemother. 2015;59(11):7000–6.PubMedPubMedCentralCrossRef
114.
go back to reference Karaiskos I, Friberg LE, Pontikis K, Ioannidis K, Tsagkari V, Galani L, et al. Colistin population pharmacokinetics after application of a loading dose of 9 mu colistin methanesulfonate in critically ill patients. Antimicrob Agents Chemother. 2015;59(12):7240–8.PubMedPubMedCentralCrossRef Karaiskos I, Friberg LE, Pontikis K, Ioannidis K, Tsagkari V, Galani L, et al. Colistin population pharmacokinetics after application of a loading dose of 9 mu colistin methanesulfonate in critically ill patients. Antimicrob Agents Chemother. 2015;59(12):7240–8.PubMedPubMedCentralCrossRef
115.
go back to reference Nation RL, Garonzik SM, Thamlikitkul V, et al. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2017;64(5):565–71.PubMed Nation RL, Garonzik SM, Thamlikitkul V, et al. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2017;64(5):565–71.PubMed
116.
go back to reference Parker SL, Frantzeskaki F, Wallis SC, Diakaki C, et al. Population pharmacokinetics of fosfomycin in critically ill patients. Antimicrob Agents Chemother. 2015;59(10):6471–6.PubMedPubMedCentralCrossRef Parker SL, Frantzeskaki F, Wallis SC, Diakaki C, et al. Population pharmacokinetics of fosfomycin in critically ill patients. Antimicrob Agents Chemother. 2015;59(10):6471–6.PubMedPubMedCentralCrossRef
117.
go back to reference Bacconi A, Richmond GS, Baroldi MA, Laffler TG, et al. Improved sensitivity for molecular detection of bacterial and Candida infections in blood. J Clin Microbiol. 2014;52(9):3164–74.PubMedPubMedCentralCrossRef Bacconi A, Richmond GS, Baroldi MA, Laffler TG, et al. Improved sensitivity for molecular detection of bacterial and Candida infections in blood. J Clin Microbiol. 2014;52(9):3164–74.PubMedPubMedCentralCrossRef
118.
go back to reference Drusano GL, Fregeau C, Liu W, Brown DL, Louie A. Impact of burden on granulocyte clearance of bacteria in a mouse thigh infection model. Antimicrob Agents Chemother. 2010;54(10):4368–72.PubMedPubMedCentralCrossRef Drusano GL, Fregeau C, Liu W, Brown DL, Louie A. Impact of burden on granulocyte clearance of bacteria in a mouse thigh infection model. Antimicrob Agents Chemother. 2010;54(10):4368–72.PubMedPubMedCentralCrossRef
119.
go back to reference Drusano GL, Vanscoy B, Liu W, Fikes S, Brown D, Louie A. Saturability of granulocyte kill of Pseudomonas aeruginosa in a murine model of pneumonia. Antimicrob Agents Chemother. 2011;55(6):2693–5.PubMedPubMedCentralCrossRef Drusano GL, Vanscoy B, Liu W, Fikes S, Brown D, Louie A. Saturability of granulocyte kill of Pseudomonas aeruginosa in a murine model of pneumonia. Antimicrob Agents Chemother. 2011;55(6):2693–5.PubMedPubMedCentralCrossRef
121.
go back to reference Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol. 2018;58(4):428–39.PubMedPubMedCentralCrossRef Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol. 2018;58(4):428–39.PubMedPubMedCentralCrossRef
122.
go back to reference Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290(19):2588–98.PubMedCrossRef Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290(19):2588–98.PubMedCrossRef
123.
go back to reference Yusuf E, Van Herendael B, Verbrugghe W, et al. Emergence of antimicrobial resistance to Pseudomonas aeruginosa in the intensive care unit: association with the duration of antibiotic exposure and mode of administration. Ann Intensive Care. 2017;7(1):72.PubMedPubMedCentralCrossRef Yusuf E, Van Herendael B, Verbrugghe W, et al. Emergence of antimicrobial resistance to Pseudomonas aeruginosa in the intensive care unit: association with the duration of antibiotic exposure and mode of administration. Ann Intensive Care. 2017;7(1):72.PubMedPubMedCentralCrossRef
124.
go back to reference Li RC, Zhu ZY. The integration of four major determinants of antibiotic action: bactericidal activity, postantibiotic effect, susceptibility, and pharmacokinetics. J Chemother. 2002;14(6):579–83.PubMedCrossRef Li RC, Zhu ZY. The integration of four major determinants of antibiotic action: bactericidal activity, postantibiotic effect, susceptibility, and pharmacokinetics. J Chemother. 2002;14(6):579–83.PubMedCrossRef
125.
go back to reference Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002;18(4):1140–54.CrossRef Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002;18(4):1140–54.CrossRef
126.
go back to reference Schembri MA, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol. 2003;48(1):253–67.PubMedCrossRef Schembri MA, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol. 2003;48(1):253–67.PubMedCrossRef
127.
go back to reference Denis B, Lafaurie M, Donay JL, Fontaine JP, et al. Prevalence, risk factors, and impact on clinical outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteraemia: a five-year study. Int J Infect Dis. 2015;39:1–6.PubMedCrossRef Denis B, Lafaurie M, Donay JL, Fontaine JP, et al. Prevalence, risk factors, and impact on clinical outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteraemia: a five-year study. Int J Infect Dis. 2015;39:1–6.PubMedCrossRef
128.
go back to reference Vehreschild MJ, Hamprecht A, Peterson L, Schubert S, et al. A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother. 2014;69(12):3387–92.PubMedCrossRef Vehreschild MJ, Hamprecht A, Peterson L, Schubert S, et al. A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother. 2014;69(12):3387–92.PubMedCrossRef
129.
go back to reference Adam D, Zellner PR, Koeppe P, Wesch R. Phannacokinetics of ticarcillin/clavulanate in severely burned patients. J Antimicrob Chemother. 1989;24:121–9.PubMedCrossRef Adam D, Zellner PR, Koeppe P, Wesch R. Phannacokinetics of ticarcillin/clavulanate in severely burned patients. J Antimicrob Chemother. 1989;24:121–9.PubMedCrossRef
130.
go back to reference Oesterreicher Z, Minichmayr I, Sauermann R, et al. Pharmacokinetics of doripenem in plasma and epithelial lining fluid (ELF): comparison of two dosage regimens. Eur J Clin Pharmacol. 2017;73(12):1609–13.PubMedPubMedCentralCrossRef Oesterreicher Z, Minichmayr I, Sauermann R, et al. Pharmacokinetics of doripenem in plasma and epithelial lining fluid (ELF): comparison of two dosage regimens. Eur J Clin Pharmacol. 2017;73(12):1609–13.PubMedPubMedCentralCrossRef
131.
go back to reference Lipš M, Siller M, Strojil J, Urbánek K, Balík M, Suchánková H. Pharmacokinetics of imipenem in critically ill patients during empirical treatment of nosocomial pneumonia: a comparison of 0.5-h and 3-h infusions. Int J Antimicrob Agents. 2014;44(4):358–62.PubMedCrossRef Lipš M, Siller M, Strojil J, Urbánek K, Balík M, Suchánková H. Pharmacokinetics of imipenem in critically ill patients during empirical treatment of nosocomial pneumonia: a comparison of 0.5-h and 3-h infusions. Int J Antimicrob Agents. 2014;44(4):358–62.PubMedCrossRef
132.
go back to reference Taccone FS, Laterre PF, Spapen H, Dugernier T, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14(2):R53.PubMedPubMedCentralCrossRef Taccone FS, Laterre PF, Spapen H, Dugernier T, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14(2):R53.PubMedPubMedCentralCrossRef
133.
go back to reference Sawchuk RJ, Zaske DE, Cipolle RJ, Wargin WA, Strate RG. Kinetic model for gentamicin dosing with the use of individual patient parameters. Clin Pharmacol Ther. 1977;21(3):362–9.PubMedCrossRef Sawchuk RJ, Zaske DE, Cipolle RJ, Wargin WA, Strate RG. Kinetic model for gentamicin dosing with the use of individual patient parameters. Clin Pharmacol Ther. 1977;21(3):362–9.PubMedCrossRef
134.
go back to reference Lipman J, Scribante J, Gous AG, Hon H, Tshukutsoane S, The Baragwanath Ciprofloxacin Study Group. Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. Antimicrob Agents Chemother. 1998;42(9):2235–9.PubMedPubMedCentralCrossRef Lipman J, Scribante J, Gous AG, Hon H, Tshukutsoane S, The Baragwanath Ciprofloxacin Study Group. Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. Antimicrob Agents Chemother. 1998;42(9):2235–9.PubMedPubMedCentralCrossRef
135.
go back to reference Fowler RG, Degnen GE, Cox EC. Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol Gen Genet. 1974;133:179–91.PubMedCrossRef Fowler RG, Degnen GE, Cox EC. Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol Gen Genet. 1974;133:179–91.PubMedCrossRef
136.
go back to reference Zeitlinger MA, Dehghanyar P, Mayer BX, et al. Relevance of soft-tissue penetration by levofloxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother. 2003;47(11):3548–53.PubMedPubMedCentralCrossRef Zeitlinger MA, Dehghanyar P, Mayer BX, et al. Relevance of soft-tissue penetration by levofloxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother. 2003;47(11):3548–53.PubMedPubMedCentralCrossRef
137.
go back to reference Roberts JA, Lipman J. Optimal doripenem dosing simulations in critically ill nosocomial pneumonia patients with obesity, augmented renal clearance, and decreased bacterial susceptibility. Crit Care Med. 2013;41(2):489–95.PubMedCrossRef Roberts JA, Lipman J. Optimal doripenem dosing simulations in critically ill nosocomial pneumonia patients with obesity, augmented renal clearance, and decreased bacterial susceptibility. Crit Care Med. 2013;41(2):489–95.PubMedCrossRef
138.
go back to reference Zedtwitz-Liebenstein K, Schenk P, Apfalter P, Fuhrmann V, et al. Ventilator-associated pneumonia: increased bacterial counts in bronchoalveolar lavage by using urea as an endogenous marker of dilution. Crit Care Med. 2005;33:756–9.PubMedCrossRef Zedtwitz-Liebenstein K, Schenk P, Apfalter P, Fuhrmann V, et al. Ventilator-associated pneumonia: increased bacterial counts in bronchoalveolar lavage by using urea as an endogenous marker of dilution. Crit Care Med. 2005;33:756–9.PubMedCrossRef
Metadata
Title
What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review
Authors
Chandra Datta Sumi
Aaron J. Heffernan
Jeffrey Lipman
Jason A. Roberts
Fekade B. Sime
Publication date
01-11-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 11/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00791-z

Other articles of this Issue 11/2019

Clinical Pharmacokinetics 11/2019 Go to the issue