Skip to main content
Top
Published in: Advances in Therapy 8/2020

Open Access 01-08-2020 | Insulins | Review

Challenging Issues in the Management of Cardiovascular Risk Factors in Diabetes During the COVID-19 Pandemic: A Review of Current Literature

Authors: Leili Rahimi, Mojtaba Malek, Faramarz Ismail-Beigi, Mohammad E. Khamseh

Published in: Advances in Therapy | Issue 8/2020

Login to get access

Abstract

The COVID-19 outbreak was declared a pandemic on March 2020. Many patients with SARS-CoV-2 infection have underlying chronic medical conditions such as diabetes, cardiovascular disease (CVD), and hypertension. Patient-related outcomes are worse if there are associated comorbidities. We do not have enough evidence regarding the most appropriate management of patients with diabetes during COVID-19 infection. Insulin resistance and CVD together increase the inflammatory state of the body, which can contribute to and perhaps mediate the increase of COVID-19 severity. Hence, in addition to management of dysglycemia, other CVD risk factors should be targeted. We explore the possible pathophysiologic links between diabetes and COVID-19 and discuss various options to treat dysglycemia, hypertension, and dyslipidemia in the era of COVID-19.
Literature
1.
go back to reference Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.CrossRefPubMedPubMedCentral Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.CrossRefPubMedPubMedCentral
3.
go back to reference Organization WH. Rolling updates on coronavirus disease (COVID-19). 2020. Organization WH. Rolling updates on coronavirus disease (COVID-19). 2020.
4.
go back to reference Organization WH. Coronavirus disease (COVID-19) Situation Report—124, 23 May 2020. Organization WH. Coronavirus disease (COVID-19) Situation Report—124, 23 May 2020.
5.
go back to reference Yanga J, Zhenga Y, Goua X, Pua K, Chena Z, Guoa Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5. Yanga J, Zhenga Y, Goua X, Pua K, Chena Z, Guoa Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5.
6.
go back to reference Chen Y, Gong X, Wang L, Guo J. Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: a systematic review and meta-analysis. medRxiv. 2020. Chen Y, Gong X, Wang L, Guo J. Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: a systematic review and meta-analysis. medRxiv. 2020.
7.
go back to reference Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical and mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect. 2020;28(15):12. Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical and mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect. 2020;28(15):12.
9.
go back to reference Hespanhol V, Bárbara C. Pneumonia mortality, comorbidities matter? Pulmonology. 2020;26(3):123–9.PubMed Hespanhol V, Bárbara C. Pneumonia mortality, comorbidities matter? Pulmonology. 2020;26(3):123–9.PubMed
10.
go back to reference Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3):563.PubMedCentral Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3):563.PubMedCentral
11.
go back to reference Yang J-K, Lin S-S, Ji X-J, Guo L-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–9.PubMed Yang J-K, Lin S-S, Ji X-J, Guo L-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–9.PubMed
12.
go back to reference Knapp S. Diabetes and infection: is there a link? A mini-review. Gerontology. 2013;59(2):99–104.PubMed Knapp S. Diabetes and infection: is there a link? A mini-review. Gerontology. 2013;59(2):99–104.PubMed
13.
go back to reference Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.PubMed Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.PubMed
16.
go back to reference Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–84.PubMed Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–84.PubMed
20.
go back to reference Rojas LBA, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndrome. 2013;5(1):6. Rojas LBA, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndrome. 2013;5(1):6.
21.
go back to reference Guimarães TA, Farias LC, Santos ES, de Carvalho Fraga CA, Orsini LA, de Teles Freitas L, et al. Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget. 2016;7(34):55057.PubMedPubMedCentral Guimarães TA, Farias LC, Santos ES, de Carvalho Fraga CA, Orsini LA, de Teles Freitas L, et al. Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget. 2016;7(34):55057.PubMedPubMedCentral
22.
go back to reference Amin S, Lux A, O’Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol. 2019;85(1):37–46.PubMed Amin S, Lux A, O’Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol. 2019;85(1):37–46.PubMed
23.
go back to reference South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020;318(5):H1084–90.PubMedPubMedCentral South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020;318(5):H1084–90.PubMedPubMedCentral
24.
go back to reference Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, et al. AMPK: a balancer of the renin–angiotensin system. Biosci Rep. 2019;39(9):BSR20181994.PubMedPubMedCentral Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, et al. AMPK: a balancer of the renin–angiotensin system. Biosci Rep. 2019;39(9):BSR20181994.PubMedPubMedCentral
25.
go back to reference Plattner F, Bibb JA. Serine and threonine phosphorylation. Basic neurochemistry. Amsterdam: Elsevier; 2012. p. 467–92. Plattner F, Bibb JA. Serine and threonine phosphorylation. Basic neurochemistry. Amsterdam: Elsevier; 2012. p. 467–92.
27.
go back to reference Wang Y, Zhang M, Duan X, Zhou S, Ermek T, Wang Y, et al. Effects of antidiabetic drug metformin on human breast carcinoma cells with different estrogen receptor expressing in vitro. Xi bao yu fen zi mian yi xue za zhi = Chin J Cell Mol Immunol. 2011;27(3):253–6. Wang Y, Zhang M, Duan X, Zhou S, Ermek T, Wang Y, et al. Effects of antidiabetic drug metformin on human breast carcinoma cells with different estrogen receptor expressing in vitro. Xi bao yu fen zi mian yi xue za zhi = Chin J Cell Mol Immunol. 2011;27(3):253–6.
29.
go back to reference Chen Y, Gu F, Guan J-L. Metformin might inhibit virus through increasing insulin sensitivity. Chin Med J. 2018;131(3):376.PubMedPubMedCentral Chen Y, Gu F, Guan J-L. Metformin might inhibit virus through increasing insulin sensitivity. Chin Med J. 2018;131(3):376.PubMedPubMedCentral
31.
go back to reference Ohnuma K, Takahashi N, Yamochi T, Hosono O, Dang NH, Morimoto C. Role of CD26/dipeptidyl peptidase IV in human T cell activation and function. Front Biosci. 2008;13(2):299. Ohnuma K, Takahashi N, Yamochi T, Hosono O, Dang NH, Morimoto C. Role of CD26/dipeptidyl peptidase IV in human T cell activation and function. Front Biosci. 2008;13(2):299.
32.
go back to reference Yang W, Cai X, Han X, Ji L. DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2016;32(4):391–404.PubMed Yang W, Cai X, Han X, Ji L. DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2016;32(4):391–404.PubMed
33.
go back to reference Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A. Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ. 2012;344:e1369.PubMed Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A. Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ. 2012;344:e1369.PubMed
34.
go back to reference Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMed Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMed
35.
go back to reference Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMed Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMed
36.
go back to reference Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.PubMed Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.PubMed
37.
go back to reference Dekkers CC, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink HJ. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab. 2018;20(8):1988–93.PubMedPubMedCentral Dekkers CC, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink HJ. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab. 2018;20(8):1988–93.PubMedPubMedCentral
38.
go back to reference Kappel BA, Lehrke M, Schütt K, Artati A, Adamski J, Lebherz C, et al. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation. 2017;136(10):969–72.PubMed Kappel BA, Lehrke M, Schütt K, Artati A, Adamski J, Lebherz C, et al. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation. 2017;136(10):969–72.PubMed
39.
go back to reference Kawanami D, Matoba K, Takeda Y, Nagai Y, Akamine T, Yokota T, et al. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int J Mol Sci. 2017;18(5):1083.PubMedCentral Kawanami D, Matoba K, Takeda Y, Nagai Y, Akamine T, Yokota T, et al. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int J Mol Sci. 2017;18(5):1083.PubMedCentral
40.
go back to reference Cure E, Cure MC. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab Syndrome. 2020;14(4):405. Cure E, Cure MC. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab Syndrome. 2020;14(4):405.
41.
go back to reference Lebovitz HE. Thiazolidinediones: the forgotten diabetes medications. Curr Diabetes Rep. 2019;19(12):151. Lebovitz HE. Thiazolidinediones: the forgotten diabetes medications. Curr Diabetes Rep. 2019;19(12):151.
43.
go back to reference Kutsukake M, Matsutani T, Tamura K, Matsuda A, Kobayashi M, Tachikawa E, et al. Pioglitazone attenuates lung injury by modulating adipose inflammation. J Surg Res. 2014;189(2):295–303.PubMed Kutsukake M, Matsutani T, Tamura K, Matsuda A, Kobayashi M, Tachikawa E, et al. Pioglitazone attenuates lung injury by modulating adipose inflammation. J Surg Res. 2014;189(2):295–303.PubMed
44.
go back to reference Zhang W, Li C, Liu B, Wu R, Zou N, Xu Y-Z, et al. Pioglitazone upregulates hepatic angiotensin converting enzyme 2 expression in rats with steatohepatitis. Ann Hepatol. 2013;12(6):892–900.PubMed Zhang W, Li C, Liu B, Wu R, Zou N, Xu Y-Z, et al. Pioglitazone upregulates hepatic angiotensin converting enzyme 2 expression in rats with steatohepatitis. Ann Hepatol. 2013;12(6):892–900.PubMed
47.
go back to reference Rajpal A, Rahimi L, Ismail-Beigi F. COVID-19 and diabetes: factors leading to high morbidity and mortality. J Diabetes (Submitted). Rajpal A, Rahimi L, Ismail-Beigi F. COVID-19 and diabetes: factors leading to high morbidity and mortality. J Diabetes (Submitted).
49.
go back to reference Salvetti A, Brogi G, Di Legge V, Bernini G. The inter-relationship between insulin resistance and hypertension. Drugs. 1993;46(2):149–59.PubMed Salvetti A, Brogi G, Di Legge V, Bernini G. The inter-relationship between insulin resistance and hypertension. Drugs. 1993;46(2):149–59.PubMed
51.
go back to reference Tikellis C, Thomas M. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012. Tikellis C, Thomas M. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012.
52.
go back to reference Kassiri Z, Zhong J, Guo D, Basu R, Wang X, Liu PP, et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail. 2009;2(5):446–55.PubMed Kassiri Z, Zhong J, Guo D, Basu R, Wang X, Liu PP, et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail. 2009;2(5):446–55.PubMed
53.
go back to reference Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43.PubMed Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43.PubMed
54.
go back to reference Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;297:1–2. Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;297:1–2.
55.
go back to reference Simoes e Silva A, Silveira K, Ferreira A, Teixeira M. ACE2, angiotensin-(1–7) and M as receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–92.PubMedPubMedCentral Simoes e Silva A, Silveira K, Ferreira A, Teixeira M. ACE2, angiotensin-(1–7) and M as receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–92.PubMedPubMedCentral
58.
go back to reference Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21–38.PubMedPubMedCentral Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21–38.PubMedPubMedCentral
59.
go back to reference Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004;43(5):970–6.PubMed Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004;43(5):970–6.PubMed
60.
go back to reference Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–10.PubMed Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–10.PubMed
62.
go back to reference Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020:102433. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020:102433.
63.
go back to reference Vaduganathan M, Vardeny O, Michel T, McMurray JJ, Pfeffer MA, Solomon SD. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–9.PubMed Vaduganathan M, Vardeny O, Michel T, McMurray JJ, Pfeffer MA, Solomon SD. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–9.PubMed
67.
go back to reference Horng T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol. 2014;35(6):253–61.PubMedPubMedCentral Horng T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol. 2014;35(6):253–61.PubMedPubMedCentral
68.
go back to reference Kim HJ, Han SJ, Kim DJ, Jang HC, Lim S, Choi SH, et al. Effects of valsartan and amlodipine on oxidative stress in type 2 diabetic patients with hypertension: a randomized, multicenter study. Korean J Intern Med. 2017;32(3):497.PubMed Kim HJ, Han SJ, Kim DJ, Jang HC, Lim S, Choi SH, et al. Effects of valsartan and amlodipine on oxidative stress in type 2 diabetic patients with hypertension: a randomized, multicenter study. Korean J Intern Med. 2017;32(3):497.PubMed
70.
go back to reference Tan K, Harazim M, Tang B, Mclean A, Nalos M. The association between premorbid beta blocker exposure and mortality in sepsis—a systematic review. Crit Care. 2019;23(1):298.PubMedPubMedCentral Tan K, Harazim M, Tang B, Mclean A, Nalos M. The association between premorbid beta blocker exposure and mortality in sepsis—a systematic review. Crit Care. 2019;23(1):298.PubMedPubMedCentral
71.
go back to reference Al-Qadi MO, Kashyap R. A42 ARDS: RISK, TREATMENT, AND OUTCOMES: effect of chronic beta blockers use on sepsis-related acute respiratory distress syndrome. Am J Respir Crit Care Med. 2015;191:1. Al-Qadi MO, Kashyap R. A42 ARDS: RISK, TREATMENT, AND OUTCOMES: effect of chronic beta blockers use on sepsis-related acute respiratory distress syndrome. Am J Respir Crit Care Med. 2015;191:1.
72.
go back to reference Coppola S, Froio S, Chiumello D. β-blockers in critically ill patients: from physiology to clinical evidence. Annual Update in Intensive Care and Emergency Medicine 2015: Springer; 2015. p. 139–52. Coppola S, Froio S, Chiumello D. β-blockers in critically ill patients: from physiology to clinical evidence. Annual Update in Intensive Care and Emergency Medicine 2015: Springer; 2015. p. 139–52.
73.
go back to reference Vasanthakumar N. Can beta-adrenergic blockers be used in the treatment of COVID-19? Med Hypotheses. 2020;5(142):109809. Vasanthakumar N. Can beta-adrenergic blockers be used in the treatment of COVID-19? Med Hypotheses. 2020;5(142):109809.
74.
go back to reference Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, et al. Renin–angiotensin–aldosterone system inhibitors and risk of Covid-19. N Engl J Med. 2020. Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, et al. Renin–angiotensin–aldosterone system inhibitors and risk of Covid-19. N Engl J Med. 2020.
75.
go back to reference Kazory A, Ronco C, McCullough PA, editors. SARS-CoV-2 (COVID-19) and intravascular volume management strategies in the critically ill. Baylor University Medical Center Proceedings; 2020: Taylor & Francis. Kazory A, Ronco C, McCullough PA, editors. SARS-CoV-2 (COVID-19) and intravascular volume management strategies in the critically ill. Baylor University Medical Center Proceedings; 2020: Taylor & Francis.
76.
go back to reference Vincent J-L, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.PubMed Vincent J-L, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.PubMed
77.
go back to reference Khawaja AP, Warwick AN, Hysi PG, Kastner A, Dick A, Khaw PT, et al. Associations with covid-19 hospitalisation amongst 406,793 adults: the UK Biobank prospective cohort study. medRxiv. 2020. Khawaja AP, Warwick AN, Hysi PG, Kastner A, Dick A, Khaw PT, et al. Associations with covid-19 hospitalisation amongst 406,793 adults: the UK Biobank prospective cohort study. medRxiv. 2020.
78.
go back to reference Yan H, Valdes AM, Vijay A, Wang S, Liang L, Yang S, et al. Role of drugs affecting the renin–angiotensin–aldosterone system on susceptibility and severity of COVID-19: a large case-control study from Zheijang Province, China. medRxiv. 2020. Yan H, Valdes AM, Vijay A, Wang S, Liang L, Yang S, et al. Role of drugs affecting the renin–angiotensin–aldosterone system on susceptibility and severity of COVID-19: a large case-control study from Zheijang Province, China. medRxiv. 2020.
81.
go back to reference Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.PubMedPubMedCentral Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.PubMedPubMedCentral
84.
go back to reference Diamantis E, Kyriakos G, Victoria Quiles-Sanchez L, Farmaki P, Troupis T. The anti-inflammatory effects of statins on coronary artery disease: an updated review of the literature. Curr Cardiol Rev. 2017;13(3):209–16.PubMedPubMedCentral Diamantis E, Kyriakos G, Victoria Quiles-Sanchez L, Farmaki P, Troupis T. The anti-inflammatory effects of statins on coronary artery disease: an updated review of the literature. Curr Cardiol Rev. 2017;13(3):209–16.PubMedPubMedCentral
85.
go back to reference Shin YH, Min JJ, Lee J-H, Kim E-H, Kim GE, Kim MH, et al. The effect of fluvastatin on cardiac fibrosis and angiotensin-converting enzyme-2 expression in glucose-controlled diabetic rat hearts. Heart Vessels. 2017;32(5):618–27.PubMed Shin YH, Min JJ, Lee J-H, Kim E-H, Kim GE, Kim MH, et al. The effect of fluvastatin on cardiac fibrosis and angiotensin-converting enzyme-2 expression in glucose-controlled diabetic rat hearts. Heart Vessels. 2017;32(5):618–27.PubMed
86.
go back to reference Li G, He X, Zhang L, Ran Q, Wang J, Xiong A, et al. Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. J Autoimmun. 2020:102463. Li G, He X, Zhang L, Ran Q, Wang J, Xiong A, et al. Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. J Autoimmun. 2020:102463.
88.
89.
go back to reference Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75(3):645–62.PubMedPubMedCentral Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75(3):645–62.PubMedPubMedCentral
90.
go back to reference Belfort R, Berria R, Cornell J, Cusi K. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with metabolic syndrome. J Clin Endocrinol Metab. 2010;95(2):829–36.PubMedPubMedCentral Belfort R, Berria R, Cornell J, Cusi K. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with metabolic syndrome. J Clin Endocrinol Metab. 2010;95(2):829–36.PubMedPubMedCentral
91.
go back to reference Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020;75(23):2950.PubMedPubMedCentral Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020;75(23):2950.PubMedPubMedCentral
Metadata
Title
Challenging Issues in the Management of Cardiovascular Risk Factors in Diabetes During the COVID-19 Pandemic: A Review of Current Literature
Authors
Leili Rahimi
Mojtaba Malek
Faramarz Ismail-Beigi
Mohammad E. Khamseh
Publication date
01-08-2020
Publisher
Springer Healthcare
Published in
Advances in Therapy / Issue 8/2020
Print ISSN: 0741-238X
Electronic ISSN: 1865-8652
DOI
https://doi.org/10.1007/s12325-020-01417-8

Other articles of this Issue 8/2020

Advances in Therapy 8/2020 Go to the issue