Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5/2013

01-10-2013

T Helper Cell Polarization in Healthy People: Implications for Cardiovascular Disease

Authors: Nels C. Olson, Reem Sallam, Margaret F. Doyle, Russell P. Tracy, Sally A. Huber

Published in: Journal of Cardiovascular Translational Research | Issue 5/2013

Login to get access

Abstract

Atherosclerosis is a chronic inflammatory disease characterized by T lymphocyte infiltration into the atherosclerotic plaque. Assessments of T cell subtypes have demonstrated a predominance of CD4+ T helper (Th) cells, implicated Th1 and Th17 immunity in both human and mouse atherogenesis, and provided some evidence suggesting protective roles of Th2 and T regulatory cells. Observations that certain inbred mouse strains have an inherent T helper bias suggest a genetic predisposition toward developing a particular T helper phenotype. This review summarizes our current understanding of mechanisms of antigen processing for major histocompatibility complex molecules, describes the different T helper cell subsets and their roles in atherosclerosis, and discusses mechanisms of genetic predisposition toward Th1/Th2 bias in mice. We also present data from our laboratory demonstrating inherent Th1/Th2 phenotypes in apparently healthy human volunteers that are stable over time and discuss the potential implications for cardiovascular disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fogg, D. K., Sibon, C., Miled, C., Jung, S., Aucouturier, P., Littman, D. R., Cumano, A., & Geissmann, F. (2006). A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science, 311(5757), 83–87.PubMed Fogg, D. K., Sibon, C., Miled, C., Jung, S., Aucouturier, P., Littman, D. R., Cumano, A., & Geissmann, F. (2006). A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science, 311(5757), 83–87.PubMed
2.
go back to reference Jongstra-Bilen, J., Haidari, M., Zhu, S. N., Chen, M., Guha, D., & Cybulsky, M. I. (2006). Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. The Journal of Experimental Medicine, 203(9), 2073–2083.PubMed Jongstra-Bilen, J., Haidari, M., Zhu, S. N., Chen, M., Guha, D., & Cybulsky, M. I. (2006). Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. The Journal of Experimental Medicine, 203(9), 2073–2083.PubMed
3.
go back to reference Koltsova, E. K., & Ley, K. (2011). How dendritic cells shape atherosclerosis. Trends in Immunology, 32(11), 540–547.PubMed Koltsova, E. K., & Ley, K. (2011). How dendritic cells shape atherosclerosis. Trends in Immunology, 32(11), 540–547.PubMed
4.
go back to reference Woollard, K. J., & Geissmann, F. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7(2), 77–86.PubMed Woollard, K. J., & Geissmann, F. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7(2), 77–86.PubMed
5.
go back to reference Paulson, K. E., Zhu, S. N., Chen, M., Nurmohamed, S., Jongstra-Bilen, J., & Cybulsky, M. I. (2010). Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circulation Research, 106(2), 383–390.PubMed Paulson, K. E., Zhu, S. N., Chen, M., Nurmohamed, S., Jongstra-Bilen, J., & Cybulsky, M. I. (2010). Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circulation Research, 106(2), 383–390.PubMed
6.
go back to reference Jonasson, L., Holm, J., Skalli, O., Bondjers, G., & Hansson, G. K. (1986). Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis, 6(2), 131–138.PubMed Jonasson, L., Holm, J., Skalli, O., Bondjers, G., & Hansson, G. K. (1986). Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis, 6(2), 131–138.PubMed
7.
go back to reference Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 6(7), 508–519.PubMed Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 6(7), 508–519.PubMed
8.
go back to reference Frostegard, J., Ulfgren, A. K., Nyberg, P., Hedin, U., Swedenborg, J., Andersson, U., & Hansson, G. K. (1999). Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis, 145(1), 33–43.PubMed Frostegard, J., Ulfgren, A. K., Nyberg, P., Hedin, U., Swedenborg, J., Andersson, U., & Hansson, G. K. (1999). Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis, 145(1), 33–43.PubMed
9.
go back to reference Paulsson, G., Zhou, X., Tornquist, E., & Hansson, G. K. (2000). Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(1), 10–17.PubMed Paulsson, G., Zhou, X., Tornquist, E., & Hansson, G. K. (2000). Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(1), 10–17.PubMed
10.
go back to reference Stemme, S., Holm, J., & Hansson, G. K. (1992). T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arteriosclerosis and Thrombosis, 12(2), 206–211.PubMed Stemme, S., Holm, J., & Hansson, G. K. (1992). T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arteriosclerosis and Thrombosis, 12(2), 206–211.PubMed
11.
go back to reference Zhou, X., Nicoletti, A., Elhage, R., & Hansson, G. K. (2000). Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation, 102(24), 2919–2922.PubMed Zhou, X., Nicoletti, A., Elhage, R., & Hansson, G. K. (2000). Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation, 102(24), 2919–2922.PubMed
12.
go back to reference Huber, S., Sakkinen, M., David, C., Newell, M., & Tracy, R. (2001). T helper cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation, 103, 2610–2616.PubMed Huber, S., Sakkinen, M., David, C., Newell, M., & Tracy, R. (2001). T helper cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation, 103, 2610–2616.PubMed
13.
go back to reference Hansson, G. K., Jonasson, L., Holm, J., & Claesson-Welsh, L. (1986). Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clinical and Experimental Immunology, 64(2), 261–268.PubMed Hansson, G. K., Jonasson, L., Holm, J., & Claesson-Welsh, L. (1986). Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clinical and Experimental Immunology, 64(2), 261–268.PubMed
14.
go back to reference Stemme, S., Faber, B., Holm, J., Wiklund, O., Witztum, J. L., & Hansson, G. K. (1995). T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 92(9), 3893–3897.PubMed Stemme, S., Faber, B., Holm, J., Wiklund, O., Witztum, J. L., & Hansson, G. K. (1995). T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 92(9), 3893–3897.PubMed
15.
go back to reference Zhu, J., Yamane, H., & Paul, W. E. (2010). Differentiation of effector CD4 T cell populations*. Annual Review of Immunology, 28, 445–489.PubMed Zhu, J., Yamane, H., & Paul, W. E. (2010). Differentiation of effector CD4 T cell populations*. Annual Review of Immunology, 28, 445–489.PubMed
16.
go back to reference Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K., & O'Shea, J. J. (2012). Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annual Review of Immunology, 30, 707–731.PubMed Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K., & O'Shea, J. J. (2012). Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annual Review of Immunology, 30, 707–731.PubMed
17.
go back to reference Mosmann, T., & Coffman, R. (1989). Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology, 7, 145–173.PubMed Mosmann, T., & Coffman, R. (1989). Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology, 7, 145–173.PubMed
18.
go back to reference Lieberman, L. A., Banica, M., Reiner, S. L., & Hunter, C. A. (2004). STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis. Journal of Immunology, 172(1), 457–463. Lieberman, L. A., Banica, M., Reiner, S. L., & Hunter, C. A. (2004). STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis. Journal of Immunology, 172(1), 457–463.
19.
go back to reference Schulz, E. G., Mariani, L., Radbruch, A., & Hofer, T. (2009). Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity, 30(5), 673–683.PubMed Schulz, E. G., Mariani, L., Radbruch, A., & Hofer, T. (2009). Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity, 30(5), 673–683.PubMed
20.
go back to reference Wan, Y. Y. (2010). Multi-tasking of helper T cells. Immunology, 130(2), 166–171.PubMed Wan, Y. Y. (2010). Multi-tasking of helper T cells. Immunology, 130(2), 166–171.PubMed
21.
go back to reference Jager, A., & Kuchroo, V. K. (2010). Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scandinavian Journal of Immunology, 72(3), 173–184.PubMed Jager, A., & Kuchroo, V. K. (2010). Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scandinavian Journal of Immunology, 72(3), 173–184.PubMed
22.
go back to reference Aggarwal, S., & Gurney, A. L. (2002). IL-17: prototype member of an emerging cytokine family. Journal of Leukocyte Biology, 71(1), 1–8.PubMed Aggarwal, S., & Gurney, A. L. (2002). IL-17: prototype member of an emerging cytokine family. Journal of Leukocyte Biology, 71(1), 1–8.PubMed
23.
go back to reference Jovanovic, D. V., Di Battista, J. A., Martel-Pelletier, J., Jolicoeur, F. C., He, Y., Zhang, M., Mineau, F., & Pelletier, J. P. (1998). IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. Journal of Immunology, 160(7), 3513–3521. Jovanovic, D. V., Di Battista, J. A., Martel-Pelletier, J., Jolicoeur, F. C., He, Y., Zhang, M., Mineau, F., & Pelletier, J. P. (1998). IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. Journal of Immunology, 160(7), 3513–3521.
24.
go back to reference Marwaha, A. K., Leung, N. J., McMurchy, A. N., & Levings, M. K. (2012). TH17 Cells in autoimmunity and immunodeficiency: protective or pathogenic? Frontiers in Immunology, 3, 129.PubMed Marwaha, A. K., Leung, N. J., McMurchy, A. N., & Levings, M. K. (2012). TH17 Cells in autoimmunity and immunodeficiency: protective or pathogenic? Frontiers in Immunology, 3, 129.PubMed
25.
go back to reference Torgerson, T. R. (2006). Regulatory T cells in human autoimmune diseases. Springer Seminars in Immunopathology, 28(1), 63–76.PubMed Torgerson, T. R. (2006). Regulatory T cells in human autoimmune diseases. Springer Seminars in Immunopathology, 28(1), 63–76.PubMed
26.
go back to reference Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775–787.PubMed Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775–787.PubMed
27.
go back to reference Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6(4), 345–352.PubMed Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6(4), 345–352.PubMed
28.
go back to reference Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061.PubMed Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061.PubMed
29.
go back to reference Malek, T. R., & Bayer, A. L. (2004). Tolerance, not immunity, crucially depends on IL-2. Nature Reviews Immunology, 4(9), 665–674.PubMed Malek, T. R., & Bayer, A. L. (2004). Tolerance, not immunity, crucially depends on IL-2. Nature Reviews Immunology, 4(9), 665–674.PubMed
30.
go back to reference Ray, A., Khare, A., Krishnamoorthy, N., Qi, Z., & Ray, P. (2010). Regulatory T cells in many flavors control asthma. Mucosal Immunology, 3(3), 216–229.PubMed Ray, A., Khare, A., Krishnamoorthy, N., Qi, Z., & Ray, P. (2010). Regulatory T cells in many flavors control asthma. Mucosal Immunology, 3(3), 216–229.PubMed
31.
go back to reference Ozdemir, C., Akdis, M., & Akdis, C. A. (2009). T regulatory cells and their counterparts: masters of immune regulation. Clinical and Experimental Allergy, 39(5), 626–639.PubMed Ozdemir, C., Akdis, M., & Akdis, C. A. (2009). T regulatory cells and their counterparts: masters of immune regulation. Clinical and Experimental Allergy, 39(5), 626–639.PubMed
32.
go back to reference Chtanova, T., Tangye, S. G., Newton, R., Frank, N., Hodge, M. R., Rolph, M. S., & Mackay, C. R. (2004). T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. Journal of Immunology, 173(1), 68–78. Chtanova, T., Tangye, S. G., Newton, R., Frank, N., Hodge, M. R., Rolph, M. S., & Mackay, C. R. (2004). T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. Journal of Immunology, 173(1), 68–78.
33.
go back to reference Kim, C. H., Lim, H. W., Kim, J. R., Rott, L., Hillsamer, P., & Butcher, E. C. (2004). Unique gene expression program of human germinal center T helper cells. Blood, 104(7), 1952–1960.PubMed Kim, C. H., Lim, H. W., Kim, J. R., Rott, L., Hillsamer, P., & Butcher, E. C. (2004). Unique gene expression program of human germinal center T helper cells. Blood, 104(7), 1952–1960.PubMed
34.
go back to reference King, C., Tangye, S. G., & Mackay, C. R. (2008). T follicular helper (TFH) cells in normal and dysregulated immune responses. Annual Review of Immunology, 26, 741–766.PubMed King, C., Tangye, S. G., & Mackay, C. R. (2008). T follicular helper (TFH) cells in normal and dysregulated immune responses. Annual Review of Immunology, 26, 741–766.PubMed
35.
go back to reference Vinuesa, C. G., Tangye, S. G., Moser, B., & Mackay, C. R. (2005). Follicular B helper T cells in antibody responses and autoimmunity. Nature Reviews Immunology, 5(11), 853–865.PubMed Vinuesa, C. G., Tangye, S. G., Moser, B., & Mackay, C. R. (2005). Follicular B helper T cells in antibody responses and autoimmunity. Nature Reviews Immunology, 5(11), 853–865.PubMed
36.
go back to reference Haynes, N. M. (2008). Follicular associated T cells and their B-cell helper qualities. Tissue Antigens, 71(2), 97–104.PubMed Haynes, N. M. (2008). Follicular associated T cells and their B-cell helper qualities. Tissue Antigens, 71(2), 97–104.PubMed
37.
go back to reference King, C. (2011). A fine romance: T follicular helper cells and B cells. Immunity, 34(6), 827–829.PubMed King, C. (2011). A fine romance: T follicular helper cells and B cells. Immunity, 34(6), 827–829.PubMed
38.
go back to reference van Leeuwen, M., Damoiseaux, J., Duijvestijn, A., & Tervaert, J. W. (2009). The therapeutic potential of targeting B cells and anti-oxLDL antibodies in atherosclerosis. Autoimmunity Reviews, 9(1), 53–57.PubMed van Leeuwen, M., Damoiseaux, J., Duijvestijn, A., & Tervaert, J. W. (2009). The therapeutic potential of targeting B cells and anti-oxLDL antibodies in atherosclerosis. Autoimmunity Reviews, 9(1), 53–57.PubMed
39.
go back to reference Zhou, L., Chong, M. M., & Littman, D. R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity, 30(5), 646–655.PubMed Zhou, L., Chong, M. M., & Littman, D. R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity, 30(5), 646–655.PubMed
40.
go back to reference Korn, T., Mitsdoerffer, M., Croxford, A. L., Awasthi, A., Dardalhon, V. A., Galileos, G., Vollmar, P., Stritesky, G. L., Kaplan, M. H., Waisman, A., et al. (2008). IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18460–18465.PubMed Korn, T., Mitsdoerffer, M., Croxford, A. L., Awasthi, A., Dardalhon, V. A., Galileos, G., Vollmar, P., Stritesky, G. L., Kaplan, M. H., Waisman, A., et al. (2008). IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18460–18465.PubMed
41.
go back to reference Lee, Y. K., Turner, H., Maynard, C. L., Oliver, J. R., Chen, D., Elson, C. O., & Weaver, C. T. (2009). Late developmental plasticity in the T helper 17 lineage. Immunity, 30(1), 92–107.PubMed Lee, Y. K., Turner, H., Maynard, C. L., Oliver, J. R., Chen, D., Elson, C. O., & Weaver, C. T. (2009). Late developmental plasticity in the T helper 17 lineage. Immunity, 30(1), 92–107.PubMed
42.
go back to reference Hegazy, A. N., Peine, M., Helmstetter, C., Panse, I., Frohlich, A., Bergthaler, A., Flatz, L., Pinschewer, D. D., Radbruch, A., & Lohning, M. (2010). Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity, 32(1), 116–128.PubMed Hegazy, A. N., Peine, M., Helmstetter, C., Panse, I., Frohlich, A., Bergthaler, A., Flatz, L., Pinschewer, D. D., Radbruch, A., & Lohning, M. (2010). Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity, 32(1), 116–128.PubMed
43.
go back to reference Wei, G., Wei, L., Zhu, J., Zang, C., Hu-Li, J., Yao, Z., Cui, K., Kanno, Y., Roh, T. Y., Watford, W. T., et al. (2009). Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity, 30(1), 155–167.PubMed Wei, G., Wei, L., Zhu, J., Zang, C., Hu-Li, J., Yao, Z., Cui, K., Kanno, Y., Roh, T. Y., Watford, W. T., et al. (2009). Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity, 30(1), 155–167.PubMed
44.
go back to reference Benagiano, M., Azzurri, A., Ciervo, A., Amedei, A., Tamburini, C., Ferrari, M., Telford, J. L., Baldari, C. T., Romagnani, S., Cassone, A., et al. (2003). T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6658–6663.PubMed Benagiano, M., Azzurri, A., Ciervo, A., Amedei, A., Tamburini, C., Ferrari, M., Telford, J. L., Baldari, C. T., Romagnani, S., Cassone, A., et al. (2003). T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6658–6663.PubMed
45.
go back to reference Tracy, R. P., Doyle, M. F., Olson, N. C., Huber, S. A., Jenny, N. S., Sallam, R., Psaty, B. M., & Kronmal, R. A. (2013). T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the multi-ethnic study of atherosclerosis. J Am Heart Assoc, 2(3), e000117.PubMed Tracy, R. P., Doyle, M. F., Olson, N. C., Huber, S. A., Jenny, N. S., Sallam, R., Psaty, B. M., & Kronmal, R. A. (2013). T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the multi-ethnic study of atherosclerosis. J Am Heart Assoc, 2(3), e000117.PubMed
46.
go back to reference Engelbertsen, D., Andersson, L., Ljungcrantz, I., Wigren, M., Hedblad, B., Nilsson, J., & Bjorkbacka, H. (2013). T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(3), 637–644.PubMed Engelbertsen, D., Andersson, L., Ljungcrantz, I., Wigren, M., Hedblad, B., Nilsson, J., & Bjorkbacka, H. (2013). T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(3), 637–644.PubMed
47.
go back to reference Buono, C., Binder, C. J., Stavrakis, G., Witztum, J. L., Glimcher, L. H., & Lichtman, A. H. (2005). T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1596–1601.PubMed Buono, C., Binder, C. J., Stavrakis, G., Witztum, J. L., Glimcher, L. H., & Lichtman, A. H. (2005). T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1596–1601.PubMed
48.
go back to reference Gupta, S., Pablo, A. M., Jiang, X., Wang, N., Tall, A. R., & Schindler, C. (1997). IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. The Journal of Clinical Investigation, 99(11), 2752–2761.PubMed Gupta, S., Pablo, A. M., Jiang, X., Wang, N., Tall, A. R., & Schindler, C. (1997). IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. The Journal of Clinical Investigation, 99(11), 2752–2761.PubMed
49.
go back to reference Davenport, P., & Tipping, P. G. (2003). The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. American Journal of Pathology, 163(3), 1117–1125.PubMed Davenport, P., & Tipping, P. G. (2003). The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. American Journal of Pathology, 163(3), 1117–1125.PubMed
50.
go back to reference Elhage, R., Jawien, J., Rudling, M., Ljunggren, H. G., Takeda, K., Akira, S., Bayard, F., & Hansson, G. K. (2003). Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovascular Research, 59(1), 234–240.PubMed Elhage, R., Jawien, J., Rudling, M., Ljunggren, H. G., Takeda, K., Akira, S., Bayard, F., & Hansson, G. K. (2003). Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovascular Research, 59(1), 234–240.PubMed
51.
go back to reference Huber, S., Sakkinen, P., Conce, D., Hardin, N., & Tracy, R. (1999). Interleukin-6 exacerbates early atherosclerosis in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2364–2367.PubMed Huber, S., Sakkinen, P., Conce, D., Hardin, N., & Tracy, R. (1999). Interleukin-6 exacerbates early atherosclerosis in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2364–2367.PubMed
52.
go back to reference Lee, T. S., Yen, H. C., Pan, C. C., & Chau, L. Y. (1999). The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(3), 734–742.PubMed Lee, T. S., Yen, H. C., Pan, C. C., & Chau, L. Y. (1999). The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(3), 734–742.PubMed
53.
go back to reference Whitman, S. C., Ravisankar, P., & Daugherty, A. (2002). Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circulation Research, 90(2), E34–E38.PubMed Whitman, S. C., Ravisankar, P., & Daugherty, A. (2002). Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circulation Research, 90(2), E34–E38.PubMed
54.
go back to reference Whitman, S. C., Ravisankar, P., Elam, H., & Daugherty, A. (2000). Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. American Journal of Pathology, 157(6), 1819–1824.PubMed Whitman, S. C., Ravisankar, P., Elam, H., & Daugherty, A. (2000). Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. American Journal of Pathology, 157(6), 1819–1824.PubMed
55.
go back to reference Zhou, X. (2003). CD4+ T cells in atherosclerosis. Biomedicine and Pharmacotherapy, 57(7), 287–291.PubMed Zhou, X. (2003). CD4+ T cells in atherosclerosis. Biomedicine and Pharmacotherapy, 57(7), 287–291.PubMed
56.
go back to reference Ouyang, W., Ranganath, S. H., Weindel, K., Bhattacharya, D., Murphy, T. L., Sha, W. C., & Murphy, K. M. (1998). Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity, 9(5), 745–755.PubMed Ouyang, W., Ranganath, S. H., Weindel, K., Bhattacharya, D., Murphy, T. L., Sha, W. C., & Murphy, K. M. (1998). Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity, 9(5), 745–755.PubMed
57.
go back to reference Hart, P. H., Vitti, G. F., Burgess, D. R., Whitty, G. A., Piccoli, D. S., & Hamilton, J. A. (1989). Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proceedings of the National Academy of Sciences of the United States of America, 86(10), 3803–3807.PubMed Hart, P. H., Vitti, G. F., Burgess, D. R., Whitty, G. A., Piccoli, D. S., & Hamilton, J. A. (1989). Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proceedings of the National Academy of Sciences of the United States of America, 86(10), 3803–3807.PubMed
58.
go back to reference Larche, M., Robinson, D. S., & Kay, A. B. (2003). The role of T lymphocytes in the pathogenesis of asthma. The Journal of Allergy and Clinical Immunology, 111(3), 450–463. quiz 464.PubMed Larche, M., Robinson, D. S., & Kay, A. B. (2003). The role of T lymphocytes in the pathogenesis of asthma. The Journal of Allergy and Clinical Immunology, 111(3), 450–463. quiz 464.PubMed
59.
go back to reference King, V. L., Szilvassy, S. J., & Daugherty, A. (2002). Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(3), 456–461.PubMed King, V. L., Szilvassy, S. J., & Daugherty, A. (2002). Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(3), 456–461.PubMed
60.
go back to reference King, V. L., Cassis, L. A., & Daugherty, A. (2007). Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. American Journal of Pathology, 171(6), 2040–2047.PubMed King, V. L., Cassis, L. A., & Daugherty, A. (2007). Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. American Journal of Pathology, 171(6), 2040–2047.PubMed
61.
go back to reference Butcher, M., & Galkina, E. (2011). Current views on the functions of interleukin-17A-producing cells in atherosclerosis. Thrombosis and Haemostasis, 106(5), 787–795.PubMed Butcher, M., & Galkina, E. (2011). Current views on the functions of interleukin-17A-producing cells in atherosclerosis. Thrombosis and Haemostasis, 106(5), 787–795.PubMed
62.
go back to reference Liu, Z., Lu, F., Pan, H., Zhao, Y., Wang, S., Sun, S., Li, J., Hu, X., & Wang, L. (2012). Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication. Atherosclerosis, 221(1), 232–241.PubMed Liu, Z., Lu, F., Pan, H., Zhao, Y., Wang, S., Sun, S., Li, J., Hu, X., & Wang, L. (2012). Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication. Atherosclerosis, 221(1), 232–241.PubMed
63.
go back to reference Madhur, M. S., Funt, S. A., Li, L., Vinh, A., Chen, W., Lob, H. E., Iwakura, Y., Blinder, Y., Rahman, A., Quyyumi, A. A., et al. (2011). Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(7), 1565–1572.PubMed Madhur, M. S., Funt, S. A., Li, L., Vinh, A., Chen, W., Lob, H. E., Iwakura, Y., Blinder, Y., Rahman, A., Quyyumi, A. A., et al. (2011). Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(7), 1565–1572.PubMed
64.
go back to reference Erbel, C., Chen, L., Bea, F., Wangler, S., Celik, S., Lasitschka, F., Wang, Y., Bockler, D., Katus, H. A., & Dengler, T. J. (2009). Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. Journal of Immunology, 183(12), 8167–8175. Erbel, C., Chen, L., Bea, F., Wangler, S., Celik, S., Lasitschka, F., Wang, Y., Bockler, D., Katus, H. A., & Dengler, T. J. (2009). Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. Journal of Immunology, 183(12), 8167–8175.
65.
go back to reference Smith, E., Prasad, K. M., Butcher, M., Dobrian, A., Kolls, J. K., Ley, K., & Galkina, E. (2010). Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation, 121(15), 1746–1755.PubMed Smith, E., Prasad, K. M., Butcher, M., Dobrian, A., Kolls, J. K., Ley, K., & Galkina, E. (2010). Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation, 121(15), 1746–1755.PubMed
66.
go back to reference Gao, Q., Jiang, Y., Ma, T., Zhu, F., Gao, F., Zhang, P., Guo, C., Wang, Q., Wang, X., Ma, C., et al. (2010). A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. Journal of Immunology, 185(10), 5820–5827. Gao, Q., Jiang, Y., Ma, T., Zhu, F., Gao, F., Zhang, P., Guo, C., Wang, Q., Wang, X., Ma, C., et al. (2010). A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. Journal of Immunology, 185(10), 5820–5827.
67.
go back to reference van Es, T., van Puijvelde, G. H., Ramos, O. H., Segers, F. M., Joosten, L. A., van den Berg, W. B., Michon, I. M., de Vos, P., van Berkel, T. J., & Kuiper, J. (2009). Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochemical and Biophysical Research Communications, 388(2), 261–265.PubMed van Es, T., van Puijvelde, G. H., Ramos, O. H., Segers, F. M., Joosten, L. A., van den Berg, W. B., Michon, I. M., de Vos, P., van Berkel, T. J., & Kuiper, J. (2009). Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochemical and Biophysical Research Communications, 388(2), 261–265.PubMed
68.
go back to reference Cheng, X., Taleb, S., Wang, J., Tang, T. T., Chen, J., Gao, X. L., Yao, R., Xie, J. J., Yu, X., Xia, N., et al. (2011). Inhibition of IL-17A in atherosclerosis. Atherosclerosis, 215(2), 471–474.PubMed Cheng, X., Taleb, S., Wang, J., Tang, T. T., Chen, J., Gao, X. L., Yao, R., Xie, J. J., Yu, X., Xia, N., et al. (2011). Inhibition of IL-17A in atherosclerosis. Atherosclerosis, 215(2), 471–474.PubMed
69.
go back to reference Butcher, M. J., Gjurich, B. N., Phillips, T., & Galkina, E. V. (2012). The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circulation Research, 110(5), 675–687.PubMed Butcher, M. J., Gjurich, B. N., Phillips, T., & Galkina, E. V. (2012). The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circulation Research, 110(5), 675–687.PubMed
70.
go back to reference Taleb, S., Romain, M., Ramkhelawon, B., Uyttenhove, C., Pasterkamp, G., Herbin, O., Esposito, B., Perez, N., Yasukawa, H., Van Snick, J., et al. (2009). Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. The Journal of Experimental Medicine, 206(10), 2067–2077.PubMed Taleb, S., Romain, M., Ramkhelawon, B., Uyttenhove, C., Pasterkamp, G., Herbin, O., Esposito, B., Perez, N., Yasukawa, H., Van Snick, J., et al. (2009). Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. The Journal of Experimental Medicine, 206(10), 2067–2077.PubMed
71.
go back to reference Sasaki, N., Yamashita, T., Takeda, M., & Hirata, K. (2012). Regulatory T cells in atherogenesis. Journal of Atherosclerosis and Thrombosis, 19(6), 503–515.PubMed Sasaki, N., Yamashita, T., Takeda, M., & Hirata, K. (2012). Regulatory T cells in atherogenesis. Journal of Atherosclerosis and Thrombosis, 19(6), 503–515.PubMed
72.
go back to reference George, J., Schwartzenberg, S., Medvedovsky, D., Jonas, M., Charach, G., Afek, A., & Shamiss, A. (2012). Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis, 222(2), 519–523.PubMed George, J., Schwartzenberg, S., Medvedovsky, D., Jonas, M., Charach, G., Afek, A., & Shamiss, A. (2012). Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis, 222(2), 519–523.PubMed
73.
go back to reference Wigren, M., Bjorkbacka, H., Andersson, L., Ljungcrantz, I., Fredrikson, G. N., Persson, M., Bryngelsson, C., Hedblad, B., & Nilsson, J. (2012). Low levels of circulating CD4 + FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 2000–2004.PubMed Wigren, M., Bjorkbacka, H., Andersson, L., Ljungcrantz, I., Fredrikson, G. N., Persson, M., Bryngelsson, C., Hedblad, B., & Nilsson, J. (2012). Low levels of circulating CD4 + FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 2000–2004.PubMed
74.
go back to reference Ammirati, E., Cianflone, D., Banfi, M., Vecchio, V., Palini, A., De Metrio, M., Marenzi, G., Panciroli, C., Tumminello, G., Anzuini, A., et al. (2010). Circulating CD4 + CD25hiCD127lo regulatory T-cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(9), 1832–1841.PubMed Ammirati, E., Cianflone, D., Banfi, M., Vecchio, V., Palini, A., De Metrio, M., Marenzi, G., Panciroli, C., Tumminello, G., Anzuini, A., et al. (2010). Circulating CD4 + CD25hiCD127lo regulatory T-cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(9), 1832–1841.PubMed
75.
go back to reference Mor, A., Planer, D., Luboshits, G., Afek, A., Metzger, S., Chajek-Shaul, T., Keren, G., & George, J. (2007). Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(4), 893–900.PubMed Mor, A., Planer, D., Luboshits, G., Afek, A., Metzger, S., Chajek-Shaul, T., Keren, G., & George, J. (2007). Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(4), 893–900.PubMed
76.
go back to reference Sasaki, N., Yamashita, T., Takeda, M., Shinohara, M., Nakajima, K., Tawa, H., Usui, T., & Hirata, K. (2009). Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation, 120(20), 1996–2005.PubMed Sasaki, N., Yamashita, T., Takeda, M., Shinohara, M., Nakajima, K., Tawa, H., Usui, T., & Hirata, K. (2009). Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation, 120(20), 1996–2005.PubMed
77.
go back to reference Mallat, Z., Gojova, A., Brun, V., Esposito, B., Fournier, N., Cottrez, F., Tedgui, A., & Groux, H. (2003). Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation, 108(10), 1232–1237.PubMed Mallat, Z., Gojova, A., Brun, V., Esposito, B., Fournier, N., Cottrez, F., Tedgui, A., & Groux, H. (2003). Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation, 108(10), 1232–1237.PubMed
78.
go back to reference Meng, X., Zhang, K., Li, J., Dong, M., Yang, J., An, G., Qin, W., Gao, F., Zhang, C., & Zhang, Y. (2012). Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Molecular Medicine, 18, 598–605.PubMed Meng, X., Zhang, K., Li, J., Dong, M., Yang, J., An, G., Qin, W., Gao, F., Zhang, C., & Zhang, Y. (2012). Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Molecular Medicine, 18, 598–605.PubMed
79.
go back to reference Dietrich, T., Hucko, T., Schneemann, C., Neumann, M., Menrad, A., Willuda, J., Atrott, K., Stibenz, D., Fleck, E., Graf, K., et al. (2012). Local delivery of IL-2 reduces atherosclerosis via expansion of regulatory T cells. Atherosclerosis, 220(2), 329–336.PubMed Dietrich, T., Hucko, T., Schneemann, C., Neumann, M., Menrad, A., Willuda, J., Atrott, K., Stibenz, D., Fleck, E., Graf, K., et al. (2012). Local delivery of IL-2 reduces atherosclerosis via expansion of regulatory T cells. Atherosclerosis, 220(2), 329–336.PubMed
80.
go back to reference Wadwa, R. P., Kinney, G. L., Ogden, L., Snell-Bergeon, J. K., Maahs, D. M., Cornell, E., Tracy, R. P., & Rewers, M. (2006). Soluble interleukin-2 receptor as a marker for progression of coronary artery calcification in type 1 diabetes. The International Journal of Biochemistry & Cell Biology, 38(5–6), 996–1003. Wadwa, R. P., Kinney, G. L., Ogden, L., Snell-Bergeon, J. K., Maahs, D. M., Cornell, E., Tracy, R. P., & Rewers, M. (2006). Soluble interleukin-2 receptor as a marker for progression of coronary artery calcification in type 1 diabetes. The International Journal of Biochemistry & Cell Biology, 38(5–6), 996–1003.
81.
go back to reference Sakamoto, A., Ishizaka, N., Saito, K., Imai, Y., Morita, H., Koike, K., Kohro, T., & Nagai, R. (2012). Serum levels of IgG4 and soluble interleukin-2 receptor in patients with coronary artery disease. Clinica Chimica Acta, 413(5–6), 577–581. Sakamoto, A., Ishizaka, N., Saito, K., Imai, Y., Morita, H., Koike, K., Kohro, T., & Nagai, R. (2012). Serum levels of IgG4 and soluble interleukin-2 receptor in patients with coronary artery disease. Clinica Chimica Acta, 413(5–6), 577–581.
82.
go back to reference Elkind, M. S., Rundek, T., Sciacca, R. R., Ramas, R., Chen, H. J., Boden-Albala, B., Rabbani, L., & Sacco, R. L. (2005). Interleukin-2 levels are associated with carotid artery intima-media thickness. Atherosclerosis, 180(1), 181–187.PubMed Elkind, M. S., Rundek, T., Sciacca, R. R., Ramas, R., Chen, H. J., Boden-Albala, B., Rabbani, L., & Sacco, R. L. (2005). Interleukin-2 levels are associated with carotid artery intima-media thickness. Atherosclerosis, 180(1), 181–187.PubMed
83.
go back to reference Reiner, S. L., & Locksley, R. M. (1995). The regulation of immunity to Leishmania major. Annual Review of Immunology, 13, 151–177.PubMed Reiner, S. L., & Locksley, R. M. (1995). The regulation of immunity to Leishmania major. Annual Review of Immunology, 13, 151–177.PubMed
84.
go back to reference Kosarova, M., Havelkova, H., Krulova, M., Demant, P., & Lipoldova, M. (1999). The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3, respectively. Immunogenetics, 49(2), 134–141.PubMed Kosarova, M., Havelkova, H., Krulova, M., Demant, P., & Lipoldova, M. (1999). The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3, respectively. Immunogenetics, 49(2), 134–141.PubMed
85.
go back to reference Zhang, F., Liang, Z., Matsuki, N., Van Kaer, L., Joyce, S., Wakeland, E. K., & Aune, T. M. (2003). A murine locus on chromosome 18 controls NKT cell homeostasis and Th cell differentiation. Journal of Immunology, 171(9), 4613–4620. Zhang, F., Liang, Z., Matsuki, N., Van Kaer, L., Joyce, S., Wakeland, E. K., & Aune, T. M. (2003). A murine locus on chromosome 18 controls NKT cell homeostasis and Th cell differentiation. Journal of Immunology, 171(9), 4613–4620.
86.
go back to reference Baguet, A., Epler, J., Wen, K. W., & Bix, M. (2004). A Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell bias-controlling quantitative trait locus. The Journal of Experimental Medicine, 200(12), 1605–1612.PubMed Baguet, A., Epler, J., Wen, K. W., & Bix, M. (2004). A Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell bias-controlling quantitative trait locus. The Journal of Experimental Medicine, 200(12), 1605–1612.PubMed
87.
go back to reference Choi, P., Xanthaki, D., Rose, S. J., Haywood, M., Reiser, H., & Morley, B. J. (2005). Linkage analysis of the genetic determinants of T-cell IL-4 secretion, and identification of Flj20274 as a putative candidate gene. Genes and Immunity, 6(4), 290–297.PubMed Choi, P., Xanthaki, D., Rose, S. J., Haywood, M., Reiser, H., & Morley, B. J. (2005). Linkage analysis of the genetic determinants of T-cell IL-4 secretion, and identification of Flj20274 as a putative candidate gene. Genes and Immunity, 6(4), 290–297.PubMed
88.
go back to reference Okamoto, M., Van Stry, M., Chung, L., Koyanagi, M., Sun, X., Suzuki, Y., Ohara, O., Kitamura, H., Hijikata, A., Kubo, M., et al. (2009). Mina, an Il4 repressor, controls T helper type 2 bias. Nature Immunology, 10(8), 872–879.PubMed Okamoto, M., Van Stry, M., Chung, L., Koyanagi, M., Sun, X., Suzuki, Y., Ohara, O., Kitamura, H., Hijikata, A., Kubo, M., et al. (2009). Mina, an Il4 repressor, controls T helper type 2 bias. Nature Immunology, 10(8), 872–879.PubMed
89.
go back to reference Gourh, P., Agarwal, S. K., Divecha, D., Assassi, S., Paz, G., Arora-Singh, R. K., Reveille, J. D., Shete, S., Mayes, M. D., Arnett, F. C., et al. (2009). Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis and Rheumatism, 60(12), 3794–3806.PubMed Gourh, P., Agarwal, S. K., Divecha, D., Assassi, S., Paz, G., Arora-Singh, R. K., Reveille, J. D., Shete, S., Mayes, M. D., Arnett, F. C., et al. (2009). Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis and Rheumatism, 60(12), 3794–3806.PubMed
90.
go back to reference Weng, N. P., Araki, Y., & Subedi, K. (2012). The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nature Reviews Immunology, 12(4), 306–315.PubMed Weng, N. P., Araki, Y., & Subedi, K. (2012). The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nature Reviews Immunology, 12(4), 306–315.PubMed
91.
go back to reference Yamashita, M., Hirahara, K., Shinnakasu, R., Hosokawa, H., Norikane, S., Kimura, M. Y., Hasegawa, A., & Nakayama, T. (2006). Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity, 24(5), 611–622.PubMed Yamashita, M., Hirahara, K., Shinnakasu, R., Hosokawa, H., Norikane, S., Kimura, M. Y., Hasegawa, A., & Nakayama, T. (2006). Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity, 24(5), 611–622.PubMed
92.
go back to reference Misu, T., Onodera, H., Fujihara, K., Matsushima, K., Yoshie, O., Okita, N., Takase, S., & Itoyama, Y. (2001). Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. Journal of Neuroimmunology, 114(1–2), 207–212.PubMed Misu, T., Onodera, H., Fujihara, K., Matsushima, K., Yoshie, O., Okita, N., Takase, S., & Itoyama, Y. (2001). Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. Journal of Neuroimmunology, 114(1–2), 207–212.PubMed
93.
go back to reference Robinson, D. S. (2010). The role of the T cell in asthma. The Journal of Allergy and Clinical Immunology, 126(6), 1081–1091. quiz 1092–1083.PubMed Robinson, D. S. (2010). The role of the T cell in asthma. The Journal of Allergy and Clinical Immunology, 126(6), 1081–1091. quiz 1092–1083.PubMed
94.
go back to reference Huber, S. A. (2009). Depletion of gammadelta+ T cells increases CD4+ FoxP3 (T regulatory) cell response in coxsackievirus B3-induced myocarditis. Immunology, 127(4), 567–576.PubMed Huber, S. A. (2009). Depletion of gammadelta+ T cells increases CD4+ FoxP3 (T regulatory) cell response in coxsackievirus B3-induced myocarditis. Immunology, 127(4), 567–576.PubMed
95.
go back to reference Sakkinen, P. A., Macy, E. M., Callas, P. W., Cornell, E. S., Hayes, T. E., Kuller, L. H., & Tracy, R. P. (1999). Analytical and biologic variability in measures of hemostasis, fibrinolysis, and inflammation: assessment and implications for epidemiology. American Journal of Epidemiology, 149(3), 261–267.PubMed Sakkinen, P. A., Macy, E. M., Callas, P. W., Cornell, E. S., Hayes, T. E., Kuller, L. H., & Tracy, R. P. (1999). Analytical and biologic variability in measures of hemostasis, fibrinolysis, and inflammation: assessment and implications for epidemiology. American Journal of Epidemiology, 149(3), 261–267.PubMed
96.
go back to reference Stavnezer, J. (1996). Immunoglobulin class switching. Current Opinion in Immunology, 8(2), 199–205.PubMed Stavnezer, J. (1996). Immunoglobulin class switching. Current Opinion in Immunology, 8(2), 199–205.PubMed
97.
go back to reference Widhe, M., Ekerfelt, C., Forsberg, P., Bergstrom, S., & Ernerudh, J. (1998). IgG subclasses in Lyme borreliosis: a study of specific IgG subclass distribution in an interferon-gamma-predominated disease. Scandinavian Journal of Immunology, 47(6), 575–581.PubMed Widhe, M., Ekerfelt, C., Forsberg, P., Bergstrom, S., & Ernerudh, J. (1998). IgG subclasses in Lyme borreliosis: a study of specific IgG subclass distribution in an interferon-gamma-predominated disease. Scandinavian Journal of Immunology, 47(6), 575–581.PubMed
98.
go back to reference Greve, B., Magnusson, C. G., Melms, A., & Weissert, R. (2001). Immunoglobulin isotypes reveal a predominant role of type 1 immunity in multiple sclerosis. Journal of Neuroimmunology, 121(1–2), 120–125.PubMed Greve, B., Magnusson, C. G., Melms, A., & Weissert, R. (2001). Immunoglobulin isotypes reveal a predominant role of type 1 immunity in multiple sclerosis. Journal of Neuroimmunology, 121(1–2), 120–125.PubMed
99.
go back to reference Sousa, A. O., Henry, S., Maroja, F. M., Lee, F. K., Brum, L., Singh, M., Lagrange, P. H., & Aucouturier, P. (1998). IgG subclass distribution of antibody responses to protein and polysaccharide mycobacterial antigens in leprosy and tuberculosis patients. Clinical and Experimental Immunology, 111(1), 48–55.PubMed Sousa, A. O., Henry, S., Maroja, F. M., Lee, F. K., Brum, L., Singh, M., Lagrange, P. H., & Aucouturier, P. (1998). IgG subclass distribution of antibody responses to protein and polysaccharide mycobacterial antigens in leprosy and tuberculosis patients. Clinical and Experimental Immunology, 111(1), 48–55.PubMed
100.
go back to reference Lundgren, M., Persson, U., Larsson, P., Magnusson, C., Smith, C. I., Hammarstrom, L., & Severinson, E. (1989). Interleukin 4 induces synthesis of IgE and IgG4 in human B cells. European Journal of Immunology, 19(7), 1311–1315.PubMed Lundgren, M., Persson, U., Larsson, P., Magnusson, C., Smith, C. I., Hammarstrom, L., & Severinson, E. (1989). Interleukin 4 induces synthesis of IgE and IgG4 in human B cells. European Journal of Immunology, 19(7), 1311–1315.PubMed
101.
go back to reference Soejima, H., Irie, A., Miyamoto, S., Kajiwara, I., Kojima, S., Hokamaki, J., Sakamoto, T., Tanaka, T., Yoshimura, M., Nishimura, Y., et al. (2003). Preference toward a T-helper type 1 response in patients with coronary spastic angina. Circulation, 107(17), 2196–2200.PubMed Soejima, H., Irie, A., Miyamoto, S., Kajiwara, I., Kojima, S., Hokamaki, J., Sakamoto, T., Tanaka, T., Yoshimura, M., Nishimura, Y., et al. (2003). Preference toward a T-helper type 1 response in patients with coronary spastic angina. Circulation, 107(17), 2196–2200.PubMed
102.
go back to reference Methe, H., Brunner, S., Wiegand, D., Nabauer, M., Koglin, J., & Edelman, E. R. (2005). Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. Journal of the American College of Cardiology, 45(12), 1939–1945.PubMed Methe, H., Brunner, S., Wiegand, D., Nabauer, M., Koglin, J., & Edelman, E. R. (2005). Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. Journal of the American College of Cardiology, 45(12), 1939–1945.PubMed
103.
go back to reference Han, S. F., Liu, P., Zhang, W., Bu, L., Shen, M., Li, H., Fan, Y. H., Cheng, K., Cheng, H. X., Li, C. X., et al. (2007). The opposite-direction modulation of CD4 + CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clinical Immunology, 124(1), 90–97.PubMed Han, S. F., Liu, P., Zhang, W., Bu, L., Shen, M., Li, H., Fan, Y. H., Cheng, K., Cheng, H. X., Li, C. X., et al. (2007). The opposite-direction modulation of CD4 + CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clinical Immunology, 124(1), 90–97.PubMed
104.
go back to reference Sherry, C. L., Kim, S. S., Dilger, R. N., Bauer, L. L., Moon, M. L., Tapping, R. I., Fahey, G. C., Jr., Tappenden, K. A., & Freund, G. G. (2010). Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization. Brain, Behavior, and Immunity, 24(4), 631–640.PubMed Sherry, C. L., Kim, S. S., Dilger, R. N., Bauer, L. L., Moon, M. L., Tapping, R. I., Fahey, G. C., Jr., Tappenden, K. A., & Freund, G. G. (2010). Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization. Brain, Behavior, and Immunity, 24(4), 631–640.PubMed
105.
go back to reference Viardot, A., Lord, R. V., & Samaras, K. (2010). The effects of weight loss and gastric banding on the innate and adaptive immune system in type 2 diabetes and prediabetes. Journal of Clinical Endocrinology and Metabolism, 95(6), 2845–2850.PubMed Viardot, A., Lord, R. V., & Samaras, K. (2010). The effects of weight loss and gastric banding on the innate and adaptive immune system in type 2 diabetes and prediabetes. Journal of Clinical Endocrinology and Metabolism, 95(6), 2845–2850.PubMed
106.
go back to reference Kwak, B., Mulhaupt, F., Myit, S., & Mach, F. (2000). Statins as a newly recognized type of immunomodulator. Nature Medicine, 6(12), 1399–1402.PubMed Kwak, B., Mulhaupt, F., Myit, S., & Mach, F. (2000). Statins as a newly recognized type of immunomodulator. Nature Medicine, 6(12), 1399–1402.PubMed
107.
go back to reference Dunn, S. E., Youssef, S., Goldstein, M. J., Prod'homme, T., Weber, M. S., Zamvil, S. S., & Steinman, L. (2006). Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. The Journal of Experimental Medicine, 203(2), 401–412.PubMed Dunn, S. E., Youssef, S., Goldstein, M. J., Prod'homme, T., Weber, M. S., Zamvil, S. S., & Steinman, L. (2006). Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. The Journal of Experimental Medicine, 203(2), 401–412.PubMed
108.
go back to reference Aprahamian, T., Bonegio, R., Rizzo, J., Perlman, H., Lefer, D. J., Rifkin, I. R., & Walsh, K. (2006). Simvastatin treatment ameliorates autoimmune disease associated with accelerated atherosclerosis in a murine lupus model. Journal of Immunology, 177(5), 3028–3034. Aprahamian, T., Bonegio, R., Rizzo, J., Perlman, H., Lefer, D. J., Rifkin, I. R., & Walsh, K. (2006). Simvastatin treatment ameliorates autoimmune disease associated with accelerated atherosclerosis in a murine lupus model. Journal of Immunology, 177(5), 3028–3034.
109.
go back to reference Youssef, S., Stuve, O., Patarroyo, J. C., Ruiz, P. J., Radosevich, J. L., Hur, E. M., Bravo, M., Mitchell, D. J., Sobel, R. A., Steinman, L., et al. (2002). The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature, 420(6911), 78–84.PubMed Youssef, S., Stuve, O., Patarroyo, J. C., Ruiz, P. J., Radosevich, J. L., Hur, E. M., Bravo, M., Mitchell, D. J., Sobel, R. A., Steinman, L., et al. (2002). The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature, 420(6911), 78–84.PubMed
110.
go back to reference Hakamada-Taguchi, R., Uehara, Y., Kuribayashi, K., Numabe, A., Saito, K., Negoro, H., Fujita, T., Toyo-oka, T., & Kato, T. (2003). Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circulation Research, 93(10), 948–956.PubMed Hakamada-Taguchi, R., Uehara, Y., Kuribayashi, K., Numabe, A., Saito, K., Negoro, H., Fujita, T., Toyo-oka, T., & Kato, T. (2003). Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circulation Research, 93(10), 948–956.PubMed
111.
go back to reference Kinlay, S., Schwartz, G. G., Olsson, A. G., Rifai, N., Leslie, S. J., Sasiela, W. J., Szarek, M., Libby, P., & Ganz, P. (2003). High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation, 108(13), 1560–1566.PubMed Kinlay, S., Schwartz, G. G., Olsson, A. G., Rifai, N., Leslie, S. J., Sasiela, W. J., Szarek, M., Libby, P., & Ganz, P. (2003). High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation, 108(13), 1560–1566.PubMed
112.
go back to reference Link, A., Ayadhi, T., Bohm, M., & Nickenig, G. (2006). Rapid immunomodulation by rosuvastatin in patients with acute coronary syndrome. European Heart Journal, 27(24), 2945–2955.PubMed Link, A., Ayadhi, T., Bohm, M., & Nickenig, G. (2006). Rapid immunomodulation by rosuvastatin in patients with acute coronary syndrome. European Heart Journal, 27(24), 2945–2955.PubMed
113.
go back to reference Cheng, X., Ding, Y., Xia, C., Tang, T., Yu, X., Xie, J., Liao, M., Yao, R., Chen, Y., Wang, M., et al. (2009). Atorvastatin modulates Th1/Th2 response in patients with chronic heart failure. Journal of Cardiac Failure, 15(2), 158–162.PubMed Cheng, X., Ding, Y., Xia, C., Tang, T., Yu, X., Xie, J., Liao, M., Yao, R., Chen, Y., Wang, M., et al. (2009). Atorvastatin modulates Th1/Th2 response in patients with chronic heart failure. Journal of Cardiac Failure, 15(2), 158–162.PubMed
114.
go back to reference Sallam, R., Bernstein, I., & Tracy, R. P. (2008). The cellular epidemiology of inflammation: the biochemical indices of T helper cells are stable phenotypes related to plasma markers of inflammation, adiposity, and hormonal status. EJBMB, 26(Supplement), 453–472. Sallam, R., Bernstein, I., & Tracy, R. P. (2008). The cellular epidemiology of inflammation: the biochemical indices of T helper cells are stable phenotypes related to plasma markers of inflammation, adiposity, and hormonal status. EJBMB, 26(Supplement), 453–472.
Metadata
Title
T Helper Cell Polarization in Healthy People: Implications for Cardiovascular Disease
Authors
Nels C. Olson
Reem Sallam
Margaret F. Doyle
Russell P. Tracy
Sally A. Huber
Publication date
01-10-2013
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5/2013
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-013-9496-6

Other articles of this Issue 5/2013

Journal of Cardiovascular Translational Research 5/2013 Go to the issue