Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5/2013

01-10-2013

Hypertrophy Signaling Pathways in Experimental Chronic Aortic Regurgitation

Authors: Niels Thue Olsen, Veronica L. Dimaano, Thomas Fritz-Hansen, Peter Sogaard, Khalid Chakir, Kristian Eskesen, Charles Steenbergen, David A. Kass, Theodore P. Abraham

Published in: Journal of Cardiovascular Translational Research | Issue 5/2013

Login to get access

Abstract

The development of left ventricular hypertrophy and dysfunction in aortic regurgitation (AR) has only been sparsely studied experimentally. In a new model of chronic AR in rats, we examined activation of molecular pathways involved in myocardial hypertrophy. Chronic AR was produced by damaging one or two valve cusps, resulting in eccentric remodeling and left ventricular dysfunction, with no increase in overall fibrosis. Western blotting showed increased activation of Akt and p38 at 12 weeks and of c-Jun amino-terminal kinase at 2 weeks, decreased activation of extracellular regulated kinase 5 at both 2 and 12 weeks, while activation of calcium/calmodulin-dependent protein kinase II and extracellular regulated kinase 1/2 was unchanged. Expression of calcineurin and ANF was also unchanged. Eccentric hypertrophy and early cardiac dysfunction in experimental AR are associated with a pattern of activation of intracellular pathways different from that seen with pathological hypertrophy in pressure overload, and more similar to that associated with benign physiological hypertrophy.
Literature
1.
go back to reference Mudd, J. O., & Kass, D. A. (2008). Tackling heart failure in the twenty-first century. Nature, 451(7181), 919–928.PubMedCrossRef Mudd, J. O., & Kass, D. A. (2008). Tackling heart failure in the twenty-first century. Nature, 451(7181), 919–928.PubMedCrossRef
2.
go back to reference Bernardo, B. C., Weeks, K. L., Pretorius, L., & McMullen, J. R. (2010). Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacology & Therapeutics, 128(1), 191–227.CrossRef Bernardo, B. C., Weeks, K. L., Pretorius, L., & McMullen, J. R. (2010). Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacology & Therapeutics, 128(1), 191–227.CrossRef
3.
go back to reference Plante, E., Gaudreau, M., Lachance, D., Drolet, M. C., Roussel, E., Gauthier, C., et al. (2004). Angiotensin-converting enzyme inhibitor captopril prevents volume overload cardiomyopathy in experimental chronic aortic valve regurgitation. Canadian Journal of Physiology and Pharmacology, 82(3), 191–199.PubMedCrossRef Plante, E., Gaudreau, M., Lachance, D., Drolet, M. C., Roussel, E., Gauthier, C., et al. (2004). Angiotensin-converting enzyme inhibitor captopril prevents volume overload cardiomyopathy in experimental chronic aortic valve regurgitation. Canadian Journal of Physiology and Pharmacology, 82(3), 191–199.PubMedCrossRef
4.
go back to reference Plante, E., Lachance, D., Gaudreau, M., Drolet, M. C., Roussel, E., Arsenault, M., et al. (2004). Effectiveness of beta-blockade in experimental chronic aortic regurgitation. Circulation, 110(11), 1477–1483.PubMedCrossRef Plante, E., Lachance, D., Gaudreau, M., Drolet, M. C., Roussel, E., Arsenault, M., et al. (2004). Effectiveness of beta-blockade in experimental chronic aortic regurgitation. Circulation, 110(11), 1477–1483.PubMedCrossRef
5.
go back to reference Evangelista, A., Tornos, P., Sambola, A., Permanyer-Miralda, G., & Soler-Soler, J. (2005). Long-term vasodilator therapy in patients with severe aortic regurgitation. The New England Journal of Medicine, 353(13), 1342–1349.PubMedCrossRef Evangelista, A., Tornos, P., Sambola, A., Permanyer-Miralda, G., & Soler-Soler, J. (2005). Long-term vasodilator therapy in patients with severe aortic regurgitation. The New England Journal of Medicine, 353(13), 1342–1349.PubMedCrossRef
6.
go back to reference Miyamoto, T., Takeishi, Y., Takahashi, H., Shishido, T., Arimoto, T., Tomoike, H., et al. (2004). Activation of distinct signal transduction pathways in hypertrophied hearts by pressure and volume overload. Basic Research in Cardiology, 99(5), 328–337.PubMedCrossRef Miyamoto, T., Takeishi, Y., Takahashi, H., Shishido, T., Arimoto, T., Tomoike, H., et al. (2004). Activation of distinct signal transduction pathways in hypertrophied hearts by pressure and volume overload. Basic Research in Cardiology, 99(5), 328–337.PubMedCrossRef
7.
go back to reference Toischer, K., Rokita, A. G., Unsold, B., Zhu, W., Kararigas, G., Sossalla, S., et al. (2010). Differential cardiac remodeling in preload versus afterload. Circulation, 122(10), 993–1003.PubMedCrossRef Toischer, K., Rokita, A. G., Unsold, B., Zhu, W., Kararigas, G., Sossalla, S., et al. (2010). Differential cardiac remodeling in preload versus afterload. Circulation, 122(10), 993–1003.PubMedCrossRef
8.
go back to reference Bekeredjian, R., & Grayburn, P. A. (2005). Valvular heart disease: aortic regurgitation. Circulation, 112(1), 125–134.PubMedCrossRef Bekeredjian, R., & Grayburn, P. A. (2005). Valvular heart disease: aortic regurgitation. Circulation, 112(1), 125–134.PubMedCrossRef
9.
go back to reference Arsenault, M., Plante, E., Drolet, M. C., & Couet, J. (2002). Experimental aortic regurgitation in rats under echocardiographic guidance. The Journal of Heart Valve Disease, 11(1), 128–134.PubMed Arsenault, M., Plante, E., Drolet, M. C., & Couet, J. (2002). Experimental aortic regurgitation in rats under echocardiographic guidance. The Journal of Heart Valve Disease, 11(1), 128–134.PubMed
12.
go back to reference Abassi, Z., Goltsman, I., Karram, T., Winaver, J., & Hoffman, A. (2011). Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Journal of Biomedicine and Biotechnology, 2011, 729497.PubMedCrossRef Abassi, Z., Goltsman, I., Karram, T., Winaver, J., & Hoffman, A. (2011). Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Journal of Biomedicine and Biotechnology, 2011, 729497.PubMedCrossRef
13.
go back to reference Uematsu, T., Yamazaki, T., Matsuno, H., Hayashi, Y., & Nakashima, M. (1989). A simple method for producing graded aortic insufficiencies in rats and subsequent development of cardiac hypertrophy. Journal of Pharmacological Methods, 22(4), 249–257.PubMedCrossRef Uematsu, T., Yamazaki, T., Matsuno, H., Hayashi, Y., & Nakashima, M. (1989). A simple method for producing graded aortic insufficiencies in rats and subsequent development of cardiac hypertrophy. Journal of Pharmacological Methods, 22(4), 249–257.PubMedCrossRef
14.
go back to reference Magid, N. M., Opio, G., Wallerson, D. C., Young, M. S., & Borer, J. S. (1994). Heart failure due to chronic experimental aortic regurgitation. The American Journal of Physiology, 267(2 Pt 2), H556–H562.PubMed Magid, N. M., Opio, G., Wallerson, D. C., Young, M. S., & Borer, J. S. (1994). Heart failure due to chronic experimental aortic regurgitation. The American Journal of Physiology, 267(2 Pt 2), H556–H562.PubMed
15.
go back to reference Borer, J. S., Truter, S., Herrold, E. M., Falcone, D. J., Pena, M., Carter, J. N., et al. (2002). Myocardial fibrosis in chronic aortic regurgitation: molecular and cellular responses to volume overload. Circulation, 105(15), 1837–1842.PubMedCrossRef Borer, J. S., Truter, S., Herrold, E. M., Falcone, D. J., Pena, M., Carter, J. N., et al. (2002). Myocardial fibrosis in chronic aortic regurgitation: molecular and cellular responses to volume overload. Circulation, 105(15), 1837–1842.PubMedCrossRef
16.
go back to reference Truter, S. L., Catanzaro, D. F., Supino, P. G., Gupta, A., Carter, J., Ene, A. R., et al. (2009). Fibronectin gene expression in aortic regurgitation: relative roles of mitogen-activated protein kinases. Cardiology, 113(4), 291–298.PubMedCrossRef Truter, S. L., Catanzaro, D. F., Supino, P. G., Gupta, A., Carter, J., Ene, A. R., et al. (2009). Fibronectin gene expression in aortic regurgitation: relative roles of mitogen-activated protein kinases. Cardiology, 113(4), 291–298.PubMedCrossRef
17.
go back to reference Truter, S. L., Catanzaro, D. F., Supino, P. G., Gupta, A., Carter, J., Herrold, E. M., et al. (2009). Differential expression of matrix metalloproteinases and tissue inhibitors and extracellular matrix remodeling in aortic regurgitant hearts. Cardiology, 113(3), 161–168.PubMedCrossRef Truter, S. L., Catanzaro, D. F., Supino, P. G., Gupta, A., Carter, J., Herrold, E. M., et al. (2009). Differential expression of matrix metalloproteinases and tissue inhibitors and extracellular matrix remodeling in aortic regurgitant hearts. Cardiology, 113(3), 161–168.PubMedCrossRef
18.
go back to reference Magid, N. M., Wallerson, D. C., Borer, J. S., Mukherjee, A., Young, M. S., Devereux, R. B., et al. (1992). Left ventricular diastolic and systolic performance during chronic experimental aortic regurgitation. The American Journal of Physiology, 263(1 Pt 2), H226–H233.PubMed Magid, N. M., Wallerson, D. C., Borer, J. S., Mukherjee, A., Young, M. S., Devereux, R. B., et al. (1992). Left ventricular diastolic and systolic performance during chronic experimental aortic regurgitation. The American Journal of Physiology, 263(1 Pt 2), H226–H233.PubMed
19.
go back to reference Florenzano, F., & Glantz, S. A. (1987). Left ventricular mechanical adaptation to chronic aortic regurgitation in intact dogs. The American Journal of Physiology, 252(5 Pt 2), H969–H984.PubMed Florenzano, F., & Glantz, S. A. (1987). Left ventricular mechanical adaptation to chronic aortic regurgitation in intact dogs. The American Journal of Physiology, 252(5 Pt 2), H969–H984.PubMed
20.
go back to reference Gaynor, J. W., Feneley, M. P., Gall, S. A., Jr., Savitt, M. A., Silvestry, S. C., Davis, J. W., et al. (1997). Left ventricular adaptation to aortic regurgitation in conscious dogs. The Journal of Thoracic and Cardiovascular Surgery, 113(1), 149–158.PubMedCrossRef Gaynor, J. W., Feneley, M. P., Gall, S. A., Jr., Savitt, M. A., Silvestry, S. C., Davis, J. W., et al. (1997). Left ventricular adaptation to aortic regurgitation in conscious dogs. The Journal of Thoracic and Cardiovascular Surgery, 113(1), 149–158.PubMedCrossRef
21.
go back to reference Olsen, N. T., Sogaard, P., Larsson, H. B., Goetze, J. P., Jons, C., Mogelvang, R., et al. (2011). Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery. JACC Cardiovascular Imaging, 4(3), 223–230.PubMedCrossRef Olsen, N. T., Sogaard, P., Larsson, H. B., Goetze, J. P., Jons, C., Mogelvang, R., et al. (2011). Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery. JACC Cardiovascular Imaging, 4(3), 223–230.PubMedCrossRef
22.
go back to reference Shioi, T., McMullen, J. R., Kang, P. M., Douglas, P. S., Obata, T., Franke, T. F., et al. (2002). Akt/protein kinase B promotes organ growth in transgenic mice. Molecular and Cellular Biology, 22(8), 2799–2809.PubMedCrossRef Shioi, T., McMullen, J. R., Kang, P. M., Douglas, P. S., Obata, T., Franke, T. F., et al. (2002). Akt/protein kinase B promotes organ growth in transgenic mice. Molecular and Cellular Biology, 22(8), 2799–2809.PubMedCrossRef
23.
go back to reference McMullen, J. R., Shioi, T., Huang, W. Y., Zhang, L., Tarnavski, O., Bisping, E., et al. (2004). The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. The Journal of Biological Chemistry, 279(6), 4782–4793.PubMedCrossRef McMullen, J. R., Shioi, T., Huang, W. Y., Zhang, L., Tarnavski, O., Bisping, E., et al. (2004). The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. The Journal of Biological Chemistry, 279(6), 4782–4793.PubMedCrossRef
24.
go back to reference McMullen, J. R., Shioi, T., Zhang, L., Tarnavski, O., Sherwood, M. C., Kang, P. M., et al. (2003). Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12355–12360.PubMedCrossRef McMullen, J. R., Shioi, T., Zhang, L., Tarnavski, O., Sherwood, M. C., Kang, P. M., et al. (2003). Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12355–12360.PubMedCrossRef
25.
go back to reference DeBosch, B., Treskov, I., Lupu, T. S., Weinheimer, C., Kovacs, A., Courtois, M., et al. (2006). Akt1 is required for physiological cardiac growth. Circulation, 113(17), 2097–2104.PubMedCrossRef DeBosch, B., Treskov, I., Lupu, T. S., Weinheimer, C., Kovacs, A., Courtois, M., et al. (2006). Akt1 is required for physiological cardiac growth. Circulation, 113(17), 2097–2104.PubMedCrossRef
26.
go back to reference McMullen, J. R., Amirahmadi, F., Woodcock, E. A., Schinke-Braun, M., Bouwman, R. D., Hewitt, K. A., et al. (2007). Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 612–617.PubMedCrossRef McMullen, J. R., Amirahmadi, F., Woodcock, E. A., Schinke-Braun, M., Bouwman, R. D., Hewitt, K. A., et al. (2007). Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 612–617.PubMedCrossRef
27.
go back to reference Bouchard-Thomassin, A. A., Lachance, D., Drolet, M. C., Couet, J., & Arsenault, M. (2011). A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload. American Journal of Physiology. Heart and Circulatory Physiology, 300(1), H125–H134.PubMedCrossRef Bouchard-Thomassin, A. A., Lachance, D., Drolet, M. C., Couet, J., & Arsenault, M. (2011). A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload. American Journal of Physiology. Heart and Circulatory Physiology, 300(1), H125–H134.PubMedCrossRef
28.
go back to reference Shimoyama, M., Hayashi, D., Takimoto, E., Zou, Y., Oka, T., Uozumi, H., et al. (1999). Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. Circulation, 100(24), 2449–2454.PubMedCrossRef Shimoyama, M., Hayashi, D., Takimoto, E., Zou, Y., Oka, T., Uozumi, H., et al. (1999). Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. Circulation, 100(24), 2449–2454.PubMedCrossRef
29.
go back to reference Lim, H. W., De Windt, L. J., Steinberg, L., Taigen, T., Witt, S. A., Kimball, T. R., et al. (2000). Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation, 101(20), 2431–2437.PubMedCrossRef Lim, H. W., De Windt, L. J., Steinberg, L., Taigen, T., Witt, S. A., Kimball, T. R., et al. (2000). Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation, 101(20), 2431–2437.PubMedCrossRef
30.
go back to reference Braun, M. U., LaRosée, P., Simonis, G., Borst, M. M., & Strasser, R. H. (2004). Regulation of protein kinase C isozymes in volume overload cardiac hypertrophy. Molecular and Cellular Biochemistry, 262(1), 135–143.PubMedCrossRef Braun, M. U., LaRosée, P., Simonis, G., Borst, M. M., & Strasser, R. H. (2004). Regulation of protein kinase C isozymes in volume overload cardiac hypertrophy. Molecular and Cellular Biochemistry, 262(1), 135–143.PubMedCrossRef
31.
go back to reference Zhang, R., Khoo, M. S., Wu, Y., Yang, Y., Grueter, C. E., Ni, G., et al. (2005). Calmodulin kinase II inhibition protects against structural heart disease. Nature Medicine, 11(4), 409–417.PubMedCrossRef Zhang, R., Khoo, M. S., Wu, Y., Yang, Y., Grueter, C. E., Ni, G., et al. (2005). Calmodulin kinase II inhibition protects against structural heart disease. Nature Medicine, 11(4), 409–417.PubMedCrossRef
32.
go back to reference Backs, J., Backs, T., Neef, S., Kreusser, M. M., Lehmann, L. H., Patrick, D. M., et al. (2009). The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2342–2347.PubMedCrossRef Backs, J., Backs, T., Neef, S., Kreusser, M. M., Lehmann, L. H., Patrick, D. M., et al. (2009). The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2342–2347.PubMedCrossRef
33.
go back to reference Rose, B. A., Force, T., & Wang, Y. (2010). Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiological Reviews, 90(4), 1507–1546.PubMedCrossRef Rose, B. A., Force, T., & Wang, Y. (2010). Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiological Reviews, 90(4), 1507–1546.PubMedCrossRef
34.
go back to reference Nicol, R. L., Frey, N., Pearson, G., Cobb, M., Richardson, J., & Olson, E. N. (2001). Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. The EMBO Journal, 20(11), 2757–2767.PubMedCrossRef Nicol, R. L., Frey, N., Pearson, G., Cobb, M., Richardson, J., & Olson, E. N. (2001). Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. The EMBO Journal, 20(11), 2757–2767.PubMedCrossRef
35.
go back to reference Lachance, D., Plante, E., Roussel, E., Drolet, M. C., Couet, J., & Arsenault, M. (2008). Early left ventricular remodeling in acute severe aortic regurgitation: insights from an animal model. The Journal of Heart Valve Disease, 17(3), 300–308.PubMed Lachance, D., Plante, E., Roussel, E., Drolet, M. C., Couet, J., & Arsenault, M. (2008). Early left ventricular remodeling in acute severe aortic regurgitation: insights from an animal model. The Journal of Heart Valve Disease, 17(3), 300–308.PubMed
36.
go back to reference Kehat, I., Davis, J., Tiburcy, M., Accornero, F., Saba-El-Leil, M. K., Maillet, M., et al. (2011). Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circulation Research, 108(2), 176–183.PubMedCrossRef Kehat, I., Davis, J., Tiburcy, M., Accornero, F., Saba-El-Leil, M. K., Maillet, M., et al. (2011). Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circulation Research, 108(2), 176–183.PubMedCrossRef
Metadata
Title
Hypertrophy Signaling Pathways in Experimental Chronic Aortic Regurgitation
Authors
Niels Thue Olsen
Veronica L. Dimaano
Thomas Fritz-Hansen
Peter Sogaard
Khalid Chakir
Kristian Eskesen
Charles Steenbergen
David A. Kass
Theodore P. Abraham
Publication date
01-10-2013
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5/2013
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-013-9503-y

Other articles of this Issue 5/2013

Journal of Cardiovascular Translational Research 5/2013 Go to the issue