Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5/2013

01-10-2013

Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

Author: Alexander L. Klibanov

Published in: Journal of Cardiovascular Translational Research | Issue 5/2013

Login to get access

Abstract

Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in the USA, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, and carbohydrates) that ensure firm binding to the molecular markers of disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gramiak, R., & Shah, P. M. (1968). Echocardiography of the aortic root. Investigative Radiology, 3(5), 356–366.PubMedCrossRef Gramiak, R., & Shah, P. M. (1968). Echocardiography of the aortic root. Investigative Radiology, 3(5), 356–366.PubMedCrossRef
2.
go back to reference Gramiak, R., & Shah, P. M. (1971). Detection of intracardiac blood flow by pulsed echo-ranging ultrasound. Radiology, 100(2), 415–418.PubMed Gramiak, R., & Shah, P. M. (1971). Detection of intracardiac blood flow by pulsed echo-ranging ultrasound. Radiology, 100(2), 415–418.PubMed
3.
go back to reference Schurmann, R., & Schlief, R. (1994). Saccharide-based contrast agents. Characteristics and diagnostic potential. La Radiologia Medica, 87(5 Suppl 1), 15–23.PubMed Schurmann, R., & Schlief, R. (1994). Saccharide-based contrast agents. Characteristics and diagnostic potential. La Radiologia Medica, 87(5 Suppl 1), 15–23.PubMed
4.
go back to reference Keller, M. W., Glasheen, W., & Kaul, S. (1989). Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. Journal of the American Society of Echocardiography, 2(1), 48–52.PubMed Keller, M. W., Glasheen, W., & Kaul, S. (1989). Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. Journal of the American Society of Echocardiography, 2(1), 48–52.PubMed
5.
go back to reference Skyba, D. M., Camarano, G., Goodman, N. C., Price, R. J., Skalak, T. C., & Kaul, S. (1996). Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a second-generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. Journal of the American College of Cardiology, 28(5), 1292–1300.PubMedCrossRef Skyba, D. M., Camarano, G., Goodman, N. C., Price, R. J., Skalak, T. C., & Kaul, S. (1996). Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a second-generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. Journal of the American College of Cardiology, 28(5), 1292–1300.PubMedCrossRef
6.
go back to reference Schneider, M., Arditi, M., Barrau, M. B., Brochot, J., Broillet, A., Ventrone, R., et al. (1995). BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Investigative Radiology, 30(8), 451–457.PubMedCrossRef Schneider, M., Arditi, M., Barrau, M. B., Brochot, J., Broillet, A., Ventrone, R., et al. (1995). BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Investigative Radiology, 30(8), 451–457.PubMedCrossRef
7.
go back to reference Grauer, S. E., Pantely, G. A., Xu, J., Ge, S., Giraud, G. D., Shiota, T., et al. (1996). Myocardial imaging with a new transpulmonary lipid-fluorocarbon echo contrast agent: experimental studies in pigs. American Heart Journal, 132(5), 938–945.PubMedCrossRef Grauer, S. E., Pantely, G. A., Xu, J., Ge, S., Giraud, G. D., Shiota, T., et al. (1996). Myocardial imaging with a new transpulmonary lipid-fluorocarbon echo contrast agent: experimental studies in pigs. American Heart Journal, 132(5), 938–945.PubMedCrossRef
8.
go back to reference Wijkstra H., Smeenge M., Rosette Jdl. , Pochon S., Tardy-Cantalupi I., Tranquart F. (2012) Targeted microbubble prostate cancer imagign with BR55. In: Cate Ft, Jong Nd, Leen E (eds) The 17th European Symposium on Ultrasound Contrast Imaging., Rotterdam, p 6. Wijkstra H., Smeenge M., Rosette Jdl. , Pochon S., Tardy-Cantalupi I., Tranquart F. (2012) Targeted microbubble prostate cancer imagign with BR55. In: Cate Ft, Jong Nd, Leen E (eds) The 17th European Symposium on Ultrasound Contrast Imaging., Rotterdam, p 6.
9.
go back to reference Leighton, T. G. (1994). The acoustic bubble. London: Academic Press. Leighton, T. G. (1994). The acoustic bubble. London: Academic Press.
10.
go back to reference de Jong, N., Emmer, M., van Wamel, A., & Versluis, M. (2009). Ultrasonic characterization of ultrasound contrast agents. Medical and Biological Engineering and Computing, 47(8), 861–873.PubMedCrossRef de Jong, N., Emmer, M., van Wamel, A., & Versluis, M. (2009). Ultrasonic characterization of ultrasound contrast agents. Medical and Biological Engineering and Computing, 47(8), 861–873.PubMedCrossRef
11.
go back to reference Bouakaz, A., Versluis, M., & de Jong, N. (2005). High-speed optical observations of contrast agent destruction. Ultrasound in Medicine and Biology, 31(3), 391–399.PubMedCrossRef Bouakaz, A., Versluis, M., & de Jong, N. (2005). High-speed optical observations of contrast agent destruction. Ultrasound in Medicine and Biology, 31(3), 391–399.PubMedCrossRef
12.
go back to reference Phillips, P., & Gardner, E. (2004). Contrast-agent detection and quantification. European Radiology, 14(Suppl 8), P4–P10.PubMed Phillips, P., & Gardner, E. (2004). Contrast-agent detection and quantification. European Radiology, 14(Suppl 8), P4–P10.PubMed
13.
go back to reference Klibanov, A. L., Rasche, P. T., Hughes, M. S., Wojdyla, J. K., Galen, K. P., Wible, J. H., Jr., et al. (2004). Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Investigative Radiology, 39(3), 187–195.PubMedCrossRef Klibanov, A. L., Rasche, P. T., Hughes, M. S., Wojdyla, J. K., Galen, K. P., Wible, J. H., Jr., et al. (2004). Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Investigative Radiology, 39(3), 187–195.PubMedCrossRef
14.
go back to reference Senior, R., Lepper, W., Pasquet, A., Chung, G., Hoffman, R., Vanoverschelde, J. L., et al. (2004). Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc single-photon emission computed tomography. American Heart Journal, 147(6), 1100–1105.PubMedCrossRef Senior, R., Lepper, W., Pasquet, A., Chung, G., Hoffman, R., Vanoverschelde, J. L., et al. (2004). Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc single-photon emission computed tomography. American Heart Journal, 147(6), 1100–1105.PubMedCrossRef
15.
go back to reference Dijkmans, P. A., Knaapen, P., Sieswerda, G. T., Aiazian, E., Visser, C. A., Lammertsma, A. A., et al. (2006). Quantification of myocardial perfusion using intravenous myocardial contrast echocardiography in healthy volunteers: comparison with positron emission tomography. Journal of the American Society of Echocardiography, 19(3), 285–293.PubMedCrossRef Dijkmans, P. A., Knaapen, P., Sieswerda, G. T., Aiazian, E., Visser, C. A., Lammertsma, A. A., et al. (2006). Quantification of myocardial perfusion using intravenous myocardial contrast echocardiography in healthy volunteers: comparison with positron emission tomography. Journal of the American Society of Echocardiography, 19(3), 285–293.PubMedCrossRef
16.
go back to reference Wei, K., Jayaweera, A. R., Firoozan, S., Linka, A., Skyba, D. M., & Kaul, S. (1998). Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation, 97(5), 473–483.PubMedCrossRef Wei, K., Jayaweera, A. R., Firoozan, S., Linka, A., Skyba, D. M., & Kaul, S. (1998). Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation, 97(5), 473–483.PubMedCrossRef
17.
go back to reference Senior, R., Monaghan, M., Main, M. L., Zamorano, J. L., Tiemann, K., Agati, L., et al. (2009). Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging. European Journal of Echocardiography, 10(1), 26–35.PubMedCrossRef Senior, R., Monaghan, M., Main, M. L., Zamorano, J. L., Tiemann, K., Agati, L., et al. (2009). Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging. European Journal of Echocardiography, 10(1), 26–35.PubMedCrossRef
18.
go back to reference Wilson, S. R., Jang, H. J., Kim, T. K., Iijima, H., Kamiyama, N., & Burns, P. N. (2008). Real-time temporal maximum-intensity-projection imaging of hepatic lesions with contrast-enhanced sonography. AJR. American Journal of Roentgenology, 190(3), 691–695.PubMedCrossRef Wilson, S. R., Jang, H. J., Kim, T. K., Iijima, H., Kamiyama, N., & Burns, P. N. (2008). Real-time temporal maximum-intensity-projection imaging of hepatic lesions with contrast-enhanced sonography. AJR. American Journal of Roentgenology, 190(3), 691–695.PubMedCrossRef
19.
go back to reference Kalantarinia, K., Belcik, J. T., Patrie, J. T., & Wei, K. (2009). Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. American Journal of Physiology. Renal Physiology, 297(4), F1129–F1134.PubMedCrossRef Kalantarinia, K., Belcik, J. T., Patrie, J. T., & Wei, K. (2009). Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. American Journal of Physiology. Renal Physiology, 297(4), F1129–F1134.PubMedCrossRef
20.
go back to reference Staub, D., Patel, M. B., Tibrewala, A., Ludden, D., Johnson, M., Espinosa, P., et al. (2011). Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke, 41(1), 41–47.CrossRef Staub, D., Patel, M. B., Tibrewala, A., Ludden, D., Johnson, M., Espinosa, P., et al. (2011). Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke, 41(1), 41–47.CrossRef
21.
go back to reference Vavuranakis, M., Kakadiaris, I. A., O'Malley, S. M., Papaioannou, T. G., Sanidas, E. A., Naghavi, M., et al. (2008). A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. International Journal of Cardiology, 130(1), 23–29.PubMedCrossRef Vavuranakis, M., Kakadiaris, I. A., O'Malley, S. M., Papaioannou, T. G., Sanidas, E. A., Naghavi, M., et al. (2008). A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. International Journal of Cardiology, 130(1), 23–29.PubMedCrossRef
22.
go back to reference Klibanov, A. L., Hughes, M. S., Marsh, J. N., Hall, C. S., Miller, J. G., Wible, J. H., et al. (1997). Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiologica. Supplement, 412, 113–120. Klibanov, A. L., Hughes, M. S., Marsh, J. N., Hall, C. S., Miller, J. G., Wible, J. H., et al. (1997). Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiologica. Supplement, 412, 113–120.
23.
go back to reference Pochon, S., Tardy, I., Bussat, P., Bettinger, T., Brochot, J., von Wronski, M., et al. (2010). BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Investigative Radiology, 45(2), 89–95.PubMedCrossRef Pochon, S., Tardy, I., Bussat, P., Bettinger, T., Brochot, J., von Wronski, M., et al. (2010). BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Investigative Radiology, 45(2), 89–95.PubMedCrossRef
24.
go back to reference Pelura, T. J., & Pelura, T. J. (1998). Clinical experience with AF0150 (Imagent US), a new ultrasound contrast agent. Academic Radiology, 1(5 Suppl), S69–S71. discussion S72-64.CrossRef Pelura, T. J., & Pelura, T. J. (1998). Clinical experience with AF0150 (Imagent US), a new ultrasound contrast agent. Academic Radiology, 1(5 Suppl), S69–S71. discussion S72-64.CrossRef
25.
go back to reference Sugimoto, K., Moriyasu, F., Saito, K., Taira, J., Saguchi, T., Yoshimura, N., et al. (2012). Comparison of Kupffer-phase Sonazoid-enhanced sonography and hepatobiliary-phase gadoxetic acid-enhanced magnetic resonance imaging of hepatocellular carcinoma and correlation with histologic grading. Journal of Ultrasound in Medicine, 31(4), 529–538.PubMed Sugimoto, K., Moriyasu, F., Saito, K., Taira, J., Saguchi, T., Yoshimura, N., et al. (2012). Comparison of Kupffer-phase Sonazoid-enhanced sonography and hepatobiliary-phase gadoxetic acid-enhanced magnetic resonance imaging of hepatocellular carcinoma and correlation with histologic grading. Journal of Ultrasound in Medicine, 31(4), 529–538.PubMed
26.
go back to reference Wible, J. H., Jr., Wojdyla, J. K., Bales, G. L., McMullen, W. N., Geiser, E. A., & Buss, D. D. (1996). Inhaled gases affect the ultrasound contrast produced by Albunex in anesthetized dogs. Journal of the American Society of Echocardiography, 9(4), 442–451.PubMedCrossRef Wible, J. H., Jr., Wojdyla, J. K., Bales, G. L., McMullen, W. N., Geiser, E. A., & Buss, D. D. (1996). Inhaled gases affect the ultrasound contrast produced by Albunex in anesthetized dogs. Journal of the American Society of Echocardiography, 9(4), 442–451.PubMedCrossRef
27.
go back to reference Klibanov, A. L., Hughes, M. S., Villanueva, F. S., Jankowski, R. J., Wagner, W. R., Wojdyla, J. K., et al. (1999). Targeting and ultrasound imaging of microbubble-based contrast agents. Magma, 8(3), 177–184.PubMed Klibanov, A. L., Hughes, M. S., Villanueva, F. S., Jankowski, R. J., Wagner, W. R., Wojdyla, J. K., et al. (1999). Targeting and ultrasound imaging of microbubble-based contrast agents. Magma, 8(3), 177–184.PubMed
28.
go back to reference Takalkar, A. M., Klibanov, A. L., Rychak, J. J., Lindner, J. R., & Ley, K. (2004). Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. Journal of Controlled Release, 96(3), 473–482.PubMedCrossRef Takalkar, A. M., Klibanov, A. L., Rychak, J. J., Lindner, J. R., & Ley, K. (2004). Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. Journal of Controlled Release, 96(3), 473–482.PubMedCrossRef
29.
go back to reference Klibanov, A. L., Rychak, J. J., Yang, W. C., Alikhani, S., Li, B., Acton, S., et al. (2006). Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow. Contrast Media & Molecular Imaging, 1(6), 259–266.CrossRef Klibanov, A. L., Rychak, J. J., Yang, W. C., Alikhani, S., Li, B., Acton, S., et al. (2006). Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow. Contrast Media & Molecular Imaging, 1(6), 259–266.CrossRef
30.
go back to reference Guenther, F., von zur Muhlen, C., Ferrante, E. A., Grundmann, S., Bode, C., & Klibanov, A. L. (2010). An ultrasound contrast agent targeted to P-selectin detects activated platelets at supra-arterial shear flow conditions. Investigative Radiology, 45(10), 586–591.PubMedCrossRef Guenther, F., von zur Muhlen, C., Ferrante, E. A., Grundmann, S., Bode, C., & Klibanov, A. L. (2010). An ultrasound contrast agent targeted to P-selectin detects activated platelets at supra-arterial shear flow conditions. Investigative Radiology, 45(10), 586–591.PubMedCrossRef
31.
go back to reference Rychak, J. J., Li, B., Acton, S. T., Leppanen, A., Cummings, R. D., Ley, K., et al. (2006). Selectin ligands promote ultrasound contrast agent adhesion under shear flow. Molecular Pharmaceutics, 3(5), 516–524.PubMedCrossRef Rychak, J. J., Li, B., Acton, S. T., Leppanen, A., Cummings, R. D., Ley, K., et al. (2006). Selectin ligands promote ultrasound contrast agent adhesion under shear flow. Molecular Pharmaceutics, 3(5), 516–524.PubMedCrossRef
32.
go back to reference Kim, D. H., Klibanov, A. L., & Needham, D. (2000). The influence of tiered layers of surface-grafted poly(ethylene glycol) on receptor–ligand-mediated adhesion between phospholipid monolayer-stabilized microbubbles and coated glass beads. Langmuir, 16(6), 2808–2817.CrossRef Kim, D. H., Klibanov, A. L., & Needham, D. (2000). The influence of tiered layers of surface-grafted poly(ethylene glycol) on receptor–ligand-mediated adhesion between phospholipid monolayer-stabilized microbubbles and coated glass beads. Langmuir, 16(6), 2808–2817.CrossRef
33.
go back to reference Ham, A. S., Klibanov, A. L., & Lawrence, M. B. (2009). Action at a distance: lengthening adhesion bonds with poly(ethylene glycol) spacers enhances mechanically stressed affinity for improved vascular targeting of microparticles. Langmuir, 25(17), 10038–10044.PubMedCrossRef Ham, A. S., Klibanov, A. L., & Lawrence, M. B. (2009). Action at a distance: lengthening adhesion bonds with poly(ethylene glycol) spacers enhances mechanically stressed affinity for improved vascular targeting of microparticles. Langmuir, 25(17), 10038–10044.PubMedCrossRef
34.
go back to reference Rychak, J. J., Lindner, J. R., Ley, K., & Klibanov, A. L. (2006). Deformable gas-filled microbubbles targeted to P-selectin. Journal of Controlled Release, 114(3), 288–299.PubMedCrossRef Rychak, J. J., Lindner, J. R., Ley, K., & Klibanov, A. L. (2006). Deformable gas-filled microbubbles targeted to P-selectin. Journal of Controlled Release, 114(3), 288–299.PubMedCrossRef
35.
go back to reference Ferrante, E. A., Pickard, J. E., Rychak, J., Klibanov, A., & Ley, K. (2009). Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. Journal of Controlled Release, 140(2), 100–107.PubMedCrossRef Ferrante, E. A., Pickard, J. E., Rychak, J., Klibanov, A., & Ley, K. (2009). Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. Journal of Controlled Release, 140(2), 100–107.PubMedCrossRef
36.
go back to reference Maul, T. M., Dudgeon, D. D., Beste, M. T., Hammer, D. A., Lazo, J. S., Villanueva, F. S., et al. (2010). Optimization of ultrasound contrast agents with computational models to improve selection of ligands and binding strength. Biotechnology and Bioengineering, 107(5), 854–864.PubMedCrossRef Maul, T. M., Dudgeon, D. D., Beste, M. T., Hammer, D. A., Lazo, J. S., Villanueva, F. S., et al. (2010). Optimization of ultrasound contrast agents with computational models to improve selection of ligands and binding strength. Biotechnology and Bioengineering, 107(5), 854–864.PubMedCrossRef
37.
go back to reference Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M., & Bratton, D. L. (2001). Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. The Journal of Biological Chemistry, 276(2), 1071–1077.PubMedCrossRef Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M., & Bratton, D. L. (2001). Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. The Journal of Biological Chemistry, 276(2), 1071–1077.PubMedCrossRef
38.
go back to reference Yanagisawa, K., Moriyasu, F., Miyahara, T., Yuki, M., & Iijima, H. (2007). Phagocytosis of ultrasound contrast agent microbubbles by Kupffer cells. Ultrasound in Medicine and Biology, 33(2), 318–325.PubMedCrossRef Yanagisawa, K., Moriyasu, F., Miyahara, T., Yuki, M., & Iijima, H. (2007). Phagocytosis of ultrasound contrast agent microbubbles by Kupffer cells. Ultrasound in Medicine and Biology, 33(2), 318–325.PubMedCrossRef
39.
go back to reference Lindner, J. R., Song, J., Xu, F., Klibanov, A. L., Singbartl, K., Ley, K., et al. (2000). Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation, 102(22), 2745–2750.PubMedCrossRef Lindner, J. R., Song, J., Xu, F., Klibanov, A. L., Singbartl, K., Ley, K., et al. (2000). Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation, 102(22), 2745–2750.PubMedCrossRef
40.
go back to reference Christiansen, J. P., Leong-Poi, H., Klibanov, A. L., Kaul, S., & Lindner, J. R. (2002). Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation, 105(15), 1764–1767.PubMedCrossRef Christiansen, J. P., Leong-Poi, H., Klibanov, A. L., Kaul, S., & Lindner, J. R. (2002). Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation, 105(15), 1764–1767.PubMedCrossRef
41.
go back to reference Villanueva, F. S., Jankowski, R. J., Klibanov, S., Pina, M. L., Alber, S. M., Watkins, S. C., et al. (1998). Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation, 98(1), 1–5.PubMedCrossRef Villanueva, F. S., Jankowski, R. J., Klibanov, S., Pina, M. L., Alber, S. M., Watkins, S. C., et al. (1998). Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation, 98(1), 1–5.PubMedCrossRef
42.
go back to reference Kaufmann, B. A., Sanders, J. M., Davis, C., Xie, A., Aldred, P., Sarembock, I. J., et al. (2007). Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation, 116(3), 276–284.PubMedCrossRef Kaufmann, B. A., Sanders, J. M., Davis, C., Xie, A., Aldred, P., Sarembock, I. J., et al. (2007). Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation, 116(3), 276–284.PubMedCrossRef
43.
go back to reference Lindner, J. R., Song, J., Christiansen, J., Klibanov, A. L., Xu, F., & Ley, K. (2001). Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation, 104(17), 2107–2112.PubMedCrossRef Lindner, J. R., Song, J., Christiansen, J., Klibanov, A. L., Xu, F., & Ley, K. (2001). Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation, 104(17), 2107–2112.PubMedCrossRef
44.
go back to reference Davidson, B. P., Kaufmann, B. A., Belcik, J. T., Xie, A., Qi, Y., & Lindner, J. R. (2012). Detection of antecedent myocardial ischemia with multiselectin molecular imaging. Journal of the American College of Cardiology, 60(17), 1690–1697.PubMedCrossRef Davidson, B. P., Kaufmann, B. A., Belcik, J. T., Xie, A., Qi, Y., & Lindner, J. R. (2012). Detection of antecedent myocardial ischemia with multiselectin molecular imaging. Journal of the American College of Cardiology, 60(17), 1690–1697.PubMedCrossRef
45.
go back to reference Myrset, A. H., Fjerdingstad, H. B., Bendiksen, R., Arbo, B. E., Bjerke, R. M., Johansen, J. H., et al. (2011). Design and characterization of targeted ultrasound microbubbles for diagnostic use. Ultrasound in Medicine and Biology, 37(1), 136–150.PubMedCrossRef Myrset, A. H., Fjerdingstad, H. B., Bendiksen, R., Arbo, B. E., Bjerke, R. M., Johansen, J. H., et al. (2011). Design and characterization of targeted ultrasound microbubbles for diagnostic use. Ultrasound in Medicine and Biology, 37(1), 136–150.PubMedCrossRef
46.
go back to reference Hust, M., Frenzel, A., Meyer, T., Schirrmann, T., & Dubel, S. (2012). Construction of human naive antibody gene libraries. Methods in Molecular Biology, 907, 85–107.PubMed Hust, M., Frenzel, A., Meyer, T., Schirrmann, T., & Dubel, S. (2012). Construction of human naive antibody gene libraries. Methods in Molecular Biology, 907, 85–107.PubMed
47.
go back to reference Hernot, S., Unnikrishnan, S., Du, Z., Shevchenko, T., Cosyns, B., Broisat, A., et al. (2012). Nanobody-coupled microbubbles as novel molecular tracer. Journal of Controlled Release, 158(2), 346–353.PubMedCrossRef Hernot, S., Unnikrishnan, S., Du, Z., Shevchenko, T., Cosyns, B., Broisat, A., et al. (2012). Nanobody-coupled microbubbles as novel molecular tracer. Journal of Controlled Release, 158(2), 346–353.PubMedCrossRef
48.
go back to reference Feldwisch, J., & Tolmachev, V. (2012). Engineering of affibody molecules for therapy and diagnostics. Methods in Molecular Biology, 899, 103–126.PubMedCrossRef Feldwisch, J., & Tolmachev, V. (2012). Engineering of affibody molecules for therapy and diagnostics. Methods in Molecular Biology, 899, 103–126.PubMedCrossRef
49.
go back to reference Hayat, S. A., & Senior, R. (2008). Myocardial contrast echocardiography in ST elevation myocardial infarction: ready for prime time? European Heart Journal, 29(3), 299–314.PubMedCrossRef Hayat, S. A., & Senior, R. (2008). Myocardial contrast echocardiography in ST elevation myocardial infarction: ready for prime time? European Heart Journal, 29(3), 299–314.PubMedCrossRef
50.
go back to reference Villanueva, F. S., Lu, E., Bowry, S., Kilic, S., Tom, E., Wang, J., et al. (2007). Myocardial ischemic memory imaging with molecular echocardiography. Circulation, 115(3), 345–352.PubMedCrossRef Villanueva, F. S., Lu, E., Bowry, S., Kilic, S., Tom, E., Wang, J., et al. (2007). Myocardial ischemic memory imaging with molecular echocardiography. Circulation, 115(3), 345–352.PubMedCrossRef
51.
go back to reference Weller, G. E., Lu, E., Csikari, M. M., Klibanov, A. L., Fischer, D., Wagner, W. R., et al. (2003). Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation, 108(2), 218–224.PubMedCrossRef Weller, G. E., Lu, E., Csikari, M. M., Klibanov, A. L., Fischer, D., Wagner, W. R., et al. (2003). Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation, 108(2), 218–224.PubMedCrossRef
52.
go back to reference Wang, X., Hagemeyer, C. E., Hohmann, J. D., Leitner, E., Armstrong, P. C., Jia, F., et al. (2012). Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation, 125(25), 3117–3126.PubMedCrossRef Wang, X., Hagemeyer, C. E., Hohmann, J. D., Leitner, E., Armstrong, P. C., Jia, F., et al. (2012). Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation, 125(25), 3117–3126.PubMedCrossRef
53.
go back to reference Unger, E. C., McCreery, T. P., Sweitzer, R. H., Shen, D., & Wu, G. (1998). In vitro studies of a new thrombus-specific ultrasound contrast agent. The American Journal of Cardiology, 81(12A), 58G–61G.PubMedCrossRef Unger, E. C., McCreery, T. P., Sweitzer, R. H., Shen, D., & Wu, G. (1998). In vitro studies of a new thrombus-specific ultrasound contrast agent. The American Journal of Cardiology, 81(12A), 58G–61G.PubMedCrossRef
54.
go back to reference Korosoglou, G., Behrens, S., Bekeredjian, R., Hardt, S., Hagenmueller, M., Dinjus, E., et al. (2006). The potential of a new stable ultrasound contrast agent for site-specific targeting. An in vitro experiment. Ultrasound Medicine Biology, 32(10), 1473–1478.CrossRef Korosoglou, G., Behrens, S., Bekeredjian, R., Hardt, S., Hagenmueller, M., Dinjus, E., et al. (2006). The potential of a new stable ultrasound contrast agent for site-specific targeting. An in vitro experiment. Ultrasound Medicine Biology, 32(10), 1473–1478.CrossRef
55.
go back to reference Lindner, J. R. (2002). Detection of inflamed plaques with contrast ultrasound. The American Journal of Cardiology, 90(10C), 32L–35L.PubMedCrossRef Lindner, J. R. (2002). Detection of inflamed plaques with contrast ultrasound. The American Journal of Cardiology, 90(10C), 32L–35L.PubMedCrossRef
56.
go back to reference Wu, J., Leong-Poi, H., Bin, J., Yang, L., Liao, Y., Liu, Y., et al. (2011). Efficacy of contrast-enhanced US and magnetic microbubbles targeted to vascular cell adhesion molecule-1 for molecular imaging of atherosclerosis. Radiology, 260(2), 463–471.PubMedCrossRef Wu, J., Leong-Poi, H., Bin, J., Yang, L., Liao, Y., Liu, Y., et al. (2011). Efficacy of contrast-enhanced US and magnetic microbubbles targeted to vascular cell adhesion molecule-1 for molecular imaging of atherosclerosis. Radiology, 260(2), 463–471.PubMedCrossRef
58.
go back to reference Dong, Y., Chen, S., Wang, Z., Peng, N., & Yu, J. (2013). Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm. The Journal of Antimicrobial Chemotherapy, 68(4), 816–826.PubMedCrossRef Dong, Y., Chen, S., Wang, Z., Peng, N., & Yu, J. (2013). Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm. The Journal of Antimicrobial Chemotherapy, 68(4), 816–826.PubMedCrossRef
59.
go back to reference Christiansen, J. P., French, B. A., Klibanov, A. L., Kaul, S., & Lindner, J. R. (2003). Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound in Medicine and Biology, 29(12), 1759–1767.PubMedCrossRef Christiansen, J. P., French, B. A., Klibanov, A. L., Kaul, S., & Lindner, J. R. (2003). Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound in Medicine and Biology, 29(12), 1759–1767.PubMedCrossRef
60.
go back to reference Leong-Poi, H., Kuliszewski, M. A., Lekas, M., Sibbald, M., Teichert-Kuliszewska, K., Klibanov, A. L., et al. (2007). Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circulation Research, 101(3), 295–303.PubMedCrossRef Leong-Poi, H., Kuliszewski, M. A., Lekas, M., Sibbald, M., Teichert-Kuliszewska, K., Klibanov, A. L., et al. (2007). Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circulation Research, 101(3), 295–303.PubMedCrossRef
61.
go back to reference Vannan, M., McCreery, T., Li, P., Han, Z., Unger, E., Kuersten, B., et al. (2002). Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. Journal of the American Society of Echocardiography, 15(3), 214–218.PubMedCrossRef Vannan, M., McCreery, T., Li, P., Han, Z., Unger, E., Kuersten, B., et al. (2002). Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. Journal of the American Society of Echocardiography, 15(3), 214–218.PubMedCrossRef
62.
go back to reference Carson, A. R., McTiernan, C. F., Lavery, L., Grata, M., Leng, X., Wang, J., et al. (2012). Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Research, 72(23), 6191–6199.PubMedCrossRef Carson, A. R., McTiernan, C. F., Lavery, L., Grata, M., Leng, X., Wang, J., et al. (2012). Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Research, 72(23), 6191–6199.PubMedCrossRef
63.
go back to reference Wu, Y., Unger, E. C., McCreery, T. P., Sweitzer, R. H., Shen, D., Wu, G., et al. (1998). Binding and lysing of blood clots using MRX-408. Investigative Radiology, 33(12), 880–885.PubMedCrossRef Wu, Y., Unger, E. C., McCreery, T. P., Sweitzer, R. H., Shen, D., Wu, G., et al. (1998). Binding and lysing of blood clots using MRX-408. Investigative Radiology, 33(12), 880–885.PubMedCrossRef
64.
go back to reference Alexandrov, A. V. (2006). Ultrasound enhanced thrombolysis for stroke. International Journal of Stroke, 1(1), 26–29.PubMedCrossRef Alexandrov, A. V. (2006). Ultrasound enhanced thrombolysis for stroke. International Journal of Stroke, 1(1), 26–29.PubMedCrossRef
65.
go back to reference Hynynen, K., McDannold, N., Vykhodtseva, N., Raymond, S., Weissleder, R., Jolesz, F. A., et al. (2006). Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. Journal of Neurosurgery, 105(3), 445–454.PubMedCrossRef Hynynen, K., McDannold, N., Vykhodtseva, N., Raymond, S., Weissleder, R., Jolesz, F. A., et al. (2006). Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. Journal of Neurosurgery, 105(3), 445–454.PubMedCrossRef
Metadata
Title
Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging
Author
Alexander L. Klibanov
Publication date
01-10-2013
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5/2013
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-013-9501-0

Other articles of this Issue 5/2013

Journal of Cardiovascular Translational Research 5/2013 Go to the issue