Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 1/2017

01-02-2017

Review on Toll-Like Receptor Activation in Myasthenia Gravis: Application to the Development of New Experimental Models

Authors: Marieke Robinet, Solène Maillard, Mélanie A. Cron, Sonia Berrih-Aknin, Rozen Le Panse

Published in: Clinical Reviews in Allergy & Immunology | Issue 1/2017

Login to get access

Abstract

Abnormal toll-like receptor (TLR) activation and uncontrolled resolution of inflammation are suspected to play a key role in the development of autoimmune diseases. Acquired myasthenia gravis (MG) is an invalidating neuromuscular disease leading to muscle weaknesses. MG is mainly mediated by anti-acetylcholine receptor (AChR) autoantibodies, and thymic hyperplasia characterized by ectopic germinal centers is a common feature in MG. An abnormal expression of certain TLRs is observed in the thymus of MG patients associated with the overexpression of interferon (IFN)-β, the orchestrator of thymic changes in MG. Experimental models have been developed for numerous autoimmune diseases. These models are induced by animal immunization with a purified antigen solubilized in complete Freund’s adjuvant (CFA) containing heat-inactivated mycobacterium tuberculosis (MTB). Sensitization against the antigen is mainly due to the activation of TLR signaling pathways by the pathogen motifs displayed by MTB, and attempts have been made to substitute the use of CFA by TLR agonists. AChR emulsified in CFA is used to induce the classical experimental autoimmune MG model (EAMG). However, the TLR4 activator lipopolysaccharide (LPS) has proved to be efficient to replace MTB and induce a sensitization against purified AChR. Poly(I:C), the well-known TLR3 agonist, is also able by itself to induce MG symptoms in mice associated with early thymic changes as observed in human MG. In this review, we discuss the abnormal expression of TLRs in MG patients and we describe the use of TLR agonists to induce EAMG in comparison with other autoimmune experimental models.
Literature
1.
go back to reference Berrih-Aknin S, Le Panse R (2014) Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 52:90–100PubMedCrossRef Berrih-Aknin S, Le Panse R (2014) Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 52:90–100PubMedCrossRef
2.
go back to reference Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A et al (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368PubMedCrossRef Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A et al (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368PubMedCrossRef
3.
go back to reference Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418–422PubMedCrossRef Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418–422PubMedCrossRef
6.
go back to reference Berrih-Aknin S, Morel E, Raimond F, Safar D, Gaud C et al (1987) The role of the thymus in myasthenia gravis: immunohistological and immunological studies in 115 cases. Ann N Y Acad Sci 505:50–70PubMedCrossRef Berrih-Aknin S, Morel E, Raimond F, Safar D, Gaud C et al (1987) The role of the thymus in myasthenia gravis: immunohistological and immunological studies in 115 cases. Ann N Y Acad Sci 505:50–70PubMedCrossRef
7.
go back to reference Levinson AI, Wheatley LM (1996) The thymus and the pathogenesis of myasthenia gravis. Clin Immunol Immunopathol 78:1–5PubMedCrossRef Levinson AI, Wheatley LM (1996) The thymus and the pathogenesis of myasthenia gravis. Clin Immunol Immunopathol 78:1–5PubMedCrossRef
8.
go back to reference Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F et al (2003) Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 126:2304–2311PubMedCrossRef Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F et al (2003) Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 126:2304–2311PubMedCrossRef
9.
go back to reference Ponseti JM, Caritg N, Gamez J, Lopez-Cano M, Vilallonga R et al (2009) A comparison of long-term post-thymectomy outcome of anti-AChR-positive, anti-AChR-negative and anti-MuSK-positive patients with non-thymomatous myasthenia gravis. Expert Opin Biol Ther 9:1–8PubMedCrossRef Ponseti JM, Caritg N, Gamez J, Lopez-Cano M, Vilallonga R et al (2009) A comparison of long-term post-thymectomy outcome of anti-AChR-positive, anti-AChR-negative and anti-MuSK-positive patients with non-thymomatous myasthenia gravis. Expert Opin Biol Ther 9:1–8PubMedCrossRef
10.
go back to reference Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33:256–263PubMedCrossRef Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33:256–263PubMedCrossRef
12.
go back to reference Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S et al (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202:33–45PubMedPubMedCentralCrossRef Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S et al (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202:33–45PubMedPubMedCentralCrossRef
13.
go back to reference Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E et al (2009) CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol 66:521–531PubMedCrossRef Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E et al (2009) CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol 66:521–531PubMedCrossRef
14.
go back to reference Le Panse R, Bismuth J, Cizeron-Clairac G, Weiss JM, Cufi P et al (2010) Thymic remodeling associated with hyperplasia in myasthenia gravis. Autoimmunity 43:1–12CrossRef Le Panse R, Bismuth J, Cizeron-Clairac G, Weiss JM, Cufi P et al (2010) Thymic remodeling associated with hyperplasia in myasthenia gravis. Autoimmunity 43:1–12CrossRef
15.
go back to reference Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E et al (2013) SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology 218:373–381PubMedCrossRef Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E et al (2013) SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology 218:373–381PubMedCrossRef
16.
go back to reference Weiss JM, Cufi P, Le Panse R, Berrih-Aknin S (2013) The thymus in autoimmune myasthenia gravis: paradigm for a tertiary lymphoid organ. Rev Neurol (Paris) 169:640–649CrossRef Weiss JM, Cufi P, Le Panse R, Berrih-Aknin S (2013) The thymus in autoimmune myasthenia gravis: paradigm for a tertiary lymphoid organ. Rev Neurol (Paris) 169:640–649CrossRef
18.
go back to reference Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S et al (1996) Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J Immunol 157:3752–3760PubMed Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S et al (1996) Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J Immunol 157:3752–3760PubMed
19.
go back to reference Safar D, Berrih-Aknin S, Morel E (1987) In vitro anti-acetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: correlations with thymic histology and thymic epithelial-cell interactions. J Clin Immunol 7:225–234PubMedCrossRef Safar D, Berrih-Aknin S, Morel E (1987) In vitro anti-acetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: correlations with thymic histology and thymic epithelial-cell interactions. J Clin Immunol 7:225–234PubMedCrossRef
20.
go back to reference Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D et al (1990) Thymic B cells from myasthenia gravis patients are activated B cells phenotypic and functional analysis. J Immunol 145:2115–2122PubMed Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D et al (1990) Thymic B cells from myasthenia gravis patients are activated B cells phenotypic and functional analysis. J Immunol 145:2115–2122PubMed
21.
go back to reference Melms A, Schalke BC, Kirchner T, Muller-Hermelink HK, Albert E et al (1988) Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest 81:902–908PubMedPubMedCentralCrossRef Melms A, Schalke BC, Kirchner T, Muller-Hermelink HK, Albert E et al (1988) Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest 81:902–908PubMedPubMedCentralCrossRef
22.
go back to reference Kuks JB, Oosterhuis HJ, Limburg PC, The TH (1991) Anti-acetylcholine receptor antibodies decrease after thymectomy in patients with myasthenia gravis clinical correlations. J Autoimmun 4:197–211PubMedCrossRef Kuks JB, Oosterhuis HJ, Limburg PC, The TH (1991) Anti-acetylcholine receptor antibodies decrease after thymectomy in patients with myasthenia gravis clinical correlations. J Autoimmun 4:197–211PubMedCrossRef
23.
go back to reference Papatestas AE, Alpert LI, Osserman KE, Osserman RS, Kark AE (1971) Studies in myasthenia gravis: effects of thymectomy. Results on 185 patients with nonthymomatous and thymomatous myasthenia gravis, 1941–1969. Am J Med 50:465–474PubMedCrossRef Papatestas AE, Alpert LI, Osserman KE, Osserman RS, Kark AE (1971) Studies in myasthenia gravis: effects of thymectomy. Results on 185 patients with nonthymomatous and thymomatous myasthenia gravis, 1941–1969. Am J Med 50:465–474PubMedCrossRef
24.
go back to reference Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J et al (2005) Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis. J Immunol 174:5324–5331PubMedCrossRef Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J et al (2005) Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis. J Immunol 174:5324–5331PubMedCrossRef
25.
go back to reference Cordiglieri C, Marolda R, Franzi S, Cappelletti C, Giardina C et al (2014) Innate immunity in myasthenia gravis thymus: pathogenic effects of Toll-like receptor 4 signaling on autoimmunity. J Autoimmun 52:74–89PubMedCrossRef Cordiglieri C, Marolda R, Franzi S, Cappelletti C, Giardina C et al (2014) Innate immunity in myasthenia gravis thymus: pathogenic effects of Toll-like receptor 4 signaling on autoimmunity. J Autoimmun 52:74–89PubMedCrossRef
26.
go back to reference Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M et al (1998) B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 187:655–660PubMedPubMedCentralCrossRef Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M et al (1998) B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 187:655–660PubMedPubMedCentralCrossRef
27.
go back to reference Barone F, Bombardieri M, Manzo A, Blades MC, Morgan PR et al (2005) Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren’s syndrome. Arthritis Rheum 52:1773–1784PubMedCrossRef Barone F, Bombardieri M, Manzo A, Blades MC, Morgan PR et al (2005) Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren’s syndrome. Arthritis Rheum 52:1773–1784PubMedCrossRef
28.
go back to reference Méraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F et al (2006) The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 108:432–440PubMedPubMedCentralCrossRef Méraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F et al (2006) The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 108:432–440PubMedPubMedCentralCrossRef
29.
go back to reference Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S (2006) Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 177:7868–7879PubMedPubMedCentralCrossRef Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S (2006) Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 177:7868–7879PubMedPubMedCentralCrossRef
30.
go back to reference Shiao YM, Lee CC, Hsu YH, Huang SF, Lin CY et al (2010) Ectopic and high CXCL13 chemokine expression in myasthenia gravis with thymic lymphoid hyperplasia. J Neuroimmunol 221:101–106PubMedCrossRef Shiao YM, Lee CC, Hsu YH, Huang SF, Lin CY et al (2010) Ectopic and high CXCL13 chemokine expression in myasthenia gravis with thymic lymphoid hyperplasia. J Neuroimmunol 221:101–106PubMedCrossRef
31.
go back to reference Zhang M, Guo J, Li H, Zhou Y, Tian F et al (2013) Expression of immune molecules CD25 and CXCL13 correlated with clinical severity of myasthenia gravis. J Mol Neurosci 50:317–323PubMedCrossRef Zhang M, Guo J, Li H, Zhou Y, Tian F et al (2013) Expression of immune molecules CD25 and CXCL13 correlated with clinical severity of myasthenia gravis. J Mol Neurosci 50:317–323PubMedCrossRef
32.
33.
go back to reference Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R et al (2003) Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol 132:128–136PubMedPubMedCentralCrossRef Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R et al (2003) Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol 132:128–136PubMedPubMedCentralCrossRef
34.
go back to reference Meloni A, Furcas M, Cetani F, Marcocci C, Falorni A et al (2008) Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 93:4389–4397PubMedCrossRef Meloni A, Furcas M, Cetani F, Marcocci C, Falorni A et al (2008) Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 93:4389–4397PubMedCrossRef
35.
go back to reference Poea-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M et al (2005) Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 174:5941–5949PubMedCrossRef Poea-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M et al (2005) Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 174:5941–5949PubMedCrossRef
36.
go back to reference Le Panse R, Cizeron-Clairac G, Cuvelier M, Truffault F, Bismuth J et al (2008) Regulatory and pathogenic mechanisms in human autoimmune myasthenia gravis. Ann N Y Acad Sci 1132:135–142PubMedCrossRef Le Panse R, Cizeron-Clairac G, Cuvelier M, Truffault F, Bismuth J et al (2008) Regulatory and pathogenic mechanisms in human autoimmune myasthenia gravis. Ann N Y Acad Sci 1132:135–142PubMedCrossRef
37.
go back to reference Golding A, Rosen A, Petri M, Akhter E, Andrade F (2010) Interferon-alpha regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responses. Immunology 131:107–117PubMedPubMedCentral Golding A, Rosen A, Petri M, Akhter E, Andrade F (2010) Interferon-alpha regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responses. Immunology 131:107–117PubMedPubMedCentral
38.
go back to reference Cufi P, Dragin N, Weiss JM, Martinez-Martinez P, De Baets MH et al (2013) Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 73:281–293PubMedCrossRef Cufi P, Dragin N, Weiss JM, Martinez-Martinez P, De Baets MH et al (2013) Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 73:281–293PubMedCrossRef
39.
go back to reference Cufi P, Dragin N, Ruhlmann N, Weiss JM, Fadel E et al (2014) Central role of interferon-beta in thymic events leading to myasthenia gravis. J Autoimmun 52:44–52PubMedCrossRef Cufi P, Dragin N, Ruhlmann N, Weiss JM, Fadel E et al (2014) Central role of interferon-beta in thymic events leading to myasthenia gravis. J Autoimmun 52:44–52PubMedCrossRef
40.
go back to reference Weiss JM, Robinet M, Aricha R, Cufi P, Villeret B et al (2016) Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis., Oncotarget Weiss JM, Robinet M, Aricha R, Cufi P, Villeret B et al (2016) Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis., Oncotarget
41.
go back to reference Cufi P, Soussan P, Truffault F, Fetouchi R, Robinet M et al (2014) Thymoma-associated myasthenia gravis: on the search for a pathogen signature. J Autoimmun 52:29–35PubMedCrossRef Cufi P, Soussan P, Truffault F, Fetouchi R, Robinet M et al (2014) Thymoma-associated myasthenia gravis: on the search for a pathogen signature. J Autoimmun 52:29–35PubMedCrossRef
42.
43.
45.
go back to reference Cavalcante P, Barberis M, Cannone M, Baggi F, Antozzi C et al (2010) Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology 74:1118–1126PubMedCrossRef Cavalcante P, Barberis M, Cannone M, Baggi F, Antozzi C et al (2010) Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology 74:1118–1126PubMedCrossRef
46.
go back to reference Cavalcante P, Serafini B, Rosicarelli B, Maggi L, Barberis M et al (2010) Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus. Ann Neurol 67:726–738PubMed Cavalcante P, Serafini B, Rosicarelli B, Maggi L, Barberis M et al (2010) Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus. Ann Neurol 67:726–738PubMed
47.
go back to reference Niller HH, Wolf H, Ay E, Minarovits J (2011) Epigenetic dysregulation of Epstein-Barr virus latency and development of autoimmune disease. Adv Exp Med Biol 711:82–102PubMedCrossRef Niller HH, Wolf H, Ay E, Minarovits J (2011) Epigenetic dysregulation of Epstein-Barr virus latency and development of autoimmune disease. Adv Exp Med Biol 711:82–102PubMedCrossRef
49.
go back to reference Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384PubMedCrossRef Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384PubMedCrossRef
51.
go back to reference Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M (2015) Toll-like receptors in the pathogenesis of autoimmune diseases. Adv Pharm Bull 5:605–614PubMedPubMedCentralCrossRef Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M (2015) Toll-like receptors in the pathogenesis of autoimmune diseases. Adv Pharm Bull 5:605–614PubMedPubMedCentralCrossRef
52.
go back to reference Chen JQ, Szodoray P, Zeher M (2016) Toll-like receptor pathways in autoimmune diseases. Clin Rev Allergy Immunol 50:1–17PubMedCrossRef Chen JQ, Szodoray P, Zeher M (2016) Toll-like receptor pathways in autoimmune diseases. Clin Rev Allergy Immunol 50:1–17PubMedCrossRef
53.
go back to reference Choi YJ, Im E, Chung HK, Pothoulakis C, Rhee SH (2010) TRIF mediates toll-like receptor 5-induced signaling in intestinal epithelial cells. J Biol Chem 285:37570–37578PubMedPubMedCentralCrossRef Choi YJ, Im E, Chung HK, Pothoulakis C, Rhee SH (2010) TRIF mediates toll-like receptor 5-induced signaling in intestinal epithelial cells. J Biol Chem 285:37570–37578PubMedPubMedCentralCrossRef
54.
go back to reference Volpi C, Fallarino F, Pallotta MT, Bianchi R, Vacca C et al (2013) High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9-TRIF pathway. Nat Commun 4:1852PubMedCrossRef Volpi C, Fallarino F, Pallotta MT, Bianchi R, Vacca C et al (2013) High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9-TRIF pathway. Nat Commun 4:1852PubMedCrossRef
55.
go back to reference Nilsen NJ, Vladimer GI, Stenvik J, Orning MP, Zeid-Kilani MV et al (2015) A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. J Biol Chem 290:3209–3222PubMedCrossRef Nilsen NJ, Vladimer GI, Stenvik J, Orning MP, Zeid-Kilani MV et al (2015) A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. J Biol Chem 290:3209–3222PubMedCrossRef
56.
go back to reference Perkins DJ, Vogel SN (2015) Space and time: new considerations about the relationship between toll-like receptors (TLRs) and type I interferons (IFNs). Cytokine 74:171–174PubMedPubMedCentralCrossRef Perkins DJ, Vogel SN (2015) Space and time: new considerations about the relationship between toll-like receptors (TLRs) and type I interferons (IFNs). Cytokine 74:171–174PubMedPubMedCentralCrossRef
57.
go back to reference Pohar J, Pirher N, Bencina M, Mancek-Keber M, Jerala R (2013) The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists. J Biol Chem 288:442–454PubMedCrossRef Pohar J, Pirher N, Bencina M, Mancek-Keber M, Jerala R (2013) The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists. J Biol Chem 288:442–454PubMedCrossRef
58.
go back to reference Kanno A, Tanimura N, Ishizaki M, Ohko K, Motoi Y et al (2015) Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nat Commun 6:6119PubMedCrossRef Kanno A, Tanimura N, Ishizaki M, Ohko K, Motoi Y et al (2015) Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nat Commun 6:6119PubMedCrossRef
59.
go back to reference Itoh H, Tatematsu M, Watanabe A, Iwano K, Funami K et al (2011) UNC93B1 physically associates with human TLR8 and regulates TLR8-mediated signaling. PLoS One 6, e28500PubMedPubMedCentralCrossRef Itoh H, Tatematsu M, Watanabe A, Iwano K, Funami K et al (2011) UNC93B1 physically associates with human TLR8 and regulates TLR8-mediated signaling. PLoS One 6, e28500PubMedPubMedCentralCrossRef
60.
go back to reference Guerrier T, Pochard P, Lahiri A, Youinou P, Pers JO et al (2014) TLR9 expressed on plasma membrane acts as a negative regulator of human B cell response. J Autoimmun 51:23–29PubMedCrossRef Guerrier T, Pochard P, Lahiri A, Youinou P, Pers JO et al (2014) TLR9 expressed on plasma membrane acts as a negative regulator of human B cell response. J Autoimmun 51:23–29PubMedCrossRef
61.
62.
go back to reference Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196PubMedCrossRef Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196PubMedCrossRef
63.
65.
go back to reference Green NM, Moody KS, Debatis M, Marshak-Rothstein A (2012) Activation of autoreactive B cells by endogenous TLR7 and TLR3 RNA ligands., J Biol Chem Green NM, Moody KS, Debatis M, Marshak-Rothstein A (2012) Activation of autoreactive B cells by endogenous TLR7 and TLR3 RNA ligands., J Biol Chem
67.
68.
go back to reference Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q et al (2013) Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation 36:121–130PubMedCrossRef Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q et al (2013) Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation 36:121–130PubMedCrossRef
69.
go back to reference Lu J, Yan M, Wang Y, Zhang J, Yang H et al (2013) Altered expression of miR-146a in myasthenia gravis. Neurosci Lett 555:85–90PubMedCrossRef Lu J, Yan M, Wang Y, Zhang J, Yang H et al (2013) Altered expression of miR-146a in myasthenia gravis. Neurosci Lett 555:85–90PubMedCrossRef
70.
go back to reference Zarember KA, Godowski PJ (2002) Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168:554–561PubMedCrossRef Zarember KA, Godowski PJ (2002) Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168:554–561PubMedCrossRef
71.
go back to reference Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M et al (2005) Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol 167:129–139PubMedPubMedCentralCrossRef Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M et al (2005) Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol 167:129–139PubMedPubMedCentralCrossRef
72.
go back to reference Cavalcante P, Galbardi B, Franzi S, Marcuzzo S, Barzago C et al (2016) Increased expression of toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology 221:516–527PubMedCrossRef Cavalcante P, Galbardi B, Franzi S, Marcuzzo S, Barzago C et al (2016) Increased expression of toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology 221:516–527PubMedCrossRef
73.
go back to reference Quan TE, Roman RM, Rudenga BJ, Holers VM, Craft JE (2010) Epstein-Barr virus promotes interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum 62:1693–1701PubMedPubMedCentralCrossRef Quan TE, Roman RM, Rudenga BJ, Holers VM, Craft JE (2010) Epstein-Barr virus promotes interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum 62:1693–1701PubMedPubMedCentralCrossRef
74.
go back to reference Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T et al (2009) Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. J Exp Med 206:2091–2099PubMedPubMedCentralCrossRef Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T et al (2009) Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. J Exp Med 206:2091–2099PubMedPubMedCentralCrossRef
75.
76.
go back to reference Valente RM, Ehlers E, Xu D, Ahmad H, Steadman A et al (2012) Toll-like receptor 7 stimulates the expression of Epstein-Barr virus latent membrane protein 1. PLoS One 7, e43317PubMedPubMedCentralCrossRef Valente RM, Ehlers E, Xu D, Ahmad H, Steadman A et al (2012) Toll-like receptor 7 stimulates the expression of Epstein-Barr virus latent membrane protein 1. PLoS One 7, e43317PubMedPubMedCentralCrossRef
77.
go back to reference Fuchs S, Aricha R, Reuveni D, Souroujon MC (2014) Experimental autoimmune myasthenia gravis (EAMG): from immunochemical characterization to therapeutic approaches. J Autoimmun 54:51–59PubMedCrossRef Fuchs S, Aricha R, Reuveni D, Souroujon MC (2014) Experimental autoimmune myasthenia gravis (EAMG): from immunochemical characterization to therapeutic approaches. J Autoimmun 54:51–59PubMedCrossRef
78.
go back to reference Tuzun E, Berrih-Aknin S, Brenner T, Kusner LL, Le Panse R et al (2015) Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization., Exp Neurol Tuzun E, Berrih-Aknin S, Brenner T, Kusner LL, Le Panse R et al (2015) Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization., Exp Neurol
79.
go back to reference Wu B, Goluszko E, Huda R, Tuzun E, Christadoss P (2013) Experimental autoimmune myasthenia gravis in the mouse. Curr Protoc Immunol Chapter 15: Unit 15 18. Wu B, Goluszko E, Huda R, Tuzun E, Christadoss P (2013) Experimental autoimmune myasthenia gravis in the mouse. Curr Protoc Immunol Chapter 15: Unit 15 18.
80.
go back to reference Losen M, Martinez-Martinez P, Molenaar PC, Lazaridis K, Tzartos S et al (2015) Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors—recommendations for methods and experimental designs. Exp Neurol 270:18–28PubMedPubMedCentralCrossRef Losen M, Martinez-Martinez P, Molenaar PC, Lazaridis K, Tzartos S et al (2015) Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors—recommendations for methods and experimental designs. Exp Neurol 270:18–28PubMedPubMedCentralCrossRef
81.
go back to reference Billiau A, Matthys P (2001) Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70:849–860PubMed Billiau A, Matthys P (2001) Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70:849–860PubMed
82.
go back to reference Milani M, Ostlie N, Wu H, Wang W, Conti-Fine BM (2006) CD4+ T and B cells cooperate in the immunoregulation of experimental autoimmune myasthenia gravis. J Neuroimmunol 179:152–162PubMedCrossRef Milani M, Ostlie N, Wu H, Wang W, Conti-Fine BM (2006) CD4+ T and B cells cooperate in the immunoregulation of experimental autoimmune myasthenia gravis. J Neuroimmunol 179:152–162PubMedCrossRef
83.
go back to reference Shibaki A, Katz SI (2002) Induction of skewed Th1/Th2 T-cell differentiation via subcutaneous immunization with Freund’s adjuvant. Exp Dermatol 11:126–134PubMedCrossRef Shibaki A, Katz SI (2002) Induction of skewed Th1/Th2 T-cell differentiation via subcutaneous immunization with Freund’s adjuvant. Exp Dermatol 11:126–134PubMedCrossRef
84.
go back to reference Balasa B, Deng C, Lee J, Bradley LM, Dalton DK et al (1997) Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med 186:385–391PubMedPubMedCentralCrossRef Balasa B, Deng C, Lee J, Bradley LM, Dalton DK et al (1997) Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med 186:385–391PubMedPubMedCentralCrossRef
85.
go back to reference Zhang GX, Xiao BG, Bai XF, van der Meide PH, Orn A et al (1999) Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. J Immunol 162:3775–3781PubMed Zhang GX, Xiao BG, Bai XF, van der Meide PH, Orn A et al (1999) Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. J Immunol 162:3775–3781PubMed
86.
go back to reference Schaffert H, Pelz A, Saxena A, Losen M, Meisel A et al (2015) IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol 45:1339–1347PubMedCrossRef Schaffert H, Pelz A, Saxena A, Losen M, Meisel A et al (2015) IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol 45:1339–1347PubMedCrossRef
87.
go back to reference Gavin AL, Hoebe K, Duong B, Ota T, Martin C et al (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938PubMedPubMedCentralCrossRef Gavin AL, Hoebe K, Duong B, Ota T, Martin C et al (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938PubMedPubMedCentralCrossRef
88.
go back to reference Su SB, Silver PB, Grajewski RS, Agarwal RK, Tang J et al (2005) Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J Immunol 175:6303–6310PubMedCrossRef Su SB, Silver PB, Grajewski RS, Agarwal RK, Tang J et al (2005) Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J Immunol 175:6303–6310PubMedCrossRef
89.
go back to reference Marty RR, Dirnhofer S, Mauermann N, Schweikert S, Akira S et al (2006) MyD88 signaling controls autoimmune myocarditis induction. Circulation 113:258–265PubMedCrossRef Marty RR, Dirnhofer S, Mauermann N, Schweikert S, Akira S et al (2006) MyD88 signaling controls autoimmune myocarditis induction. Circulation 113:258–265PubMedCrossRef
90.
go back to reference Sadanaga A, Nakashima H, Akahoshi M, Masutani K, Miyake K et al (2007) Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice. Arthritis Rheum 56:1618–1628PubMedCrossRef Sadanaga A, Nakashima H, Akahoshi M, Masutani K, Miyake K et al (2007) Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice. Arthritis Rheum 56:1618–1628PubMedCrossRef
91.
go back to reference Fang J, Fang D, Silver PB, Wen F, Li B et al (2010) The role of TLR2, TRL3, TRL4, and TRL9 signaling in the pathogenesis of autoimmune disease in a retinal autoimmunity model. Invest Ophthalmol Vis Sci 51:3092–3099PubMedPubMedCentralCrossRef Fang J, Fang D, Silver PB, Wen F, Li B et al (2010) The role of TLR2, TRL3, TRL4, and TRL9 signaling in the pathogenesis of autoimmune disease in a retinal autoimmunity model. Invest Ophthalmol Vis Sci 51:3092–3099PubMedPubMedCentralCrossRef
92.
go back to reference Scadding GK, Calder L, Vincent A, Prior C, Wray D et al (1986) Anti-acetylcholine receptor antibodies induced in mice by syngeneic receptor without adjuvants. Immunology 58:151–155PubMedPubMedCentral Scadding GK, Calder L, Vincent A, Prior C, Wray D et al (1986) Anti-acetylcholine receptor antibodies induced in mice by syngeneic receptor without adjuvants. Immunology 58:151–155PubMedPubMedCentral
93.
go back to reference Jermy A, Beeson D, Vincent A (1993) Pathogenic autoimmunity to affinity-purified mouse acetylcholine receptor induced without adjuvant in BALB/c mice. Eur J Immunol 23:973–976PubMedCrossRef Jermy A, Beeson D, Vincent A (1993) Pathogenic autoimmunity to affinity-purified mouse acetylcholine receptor induced without adjuvant in BALB/c mice. Eur J Immunol 23:973–976PubMedCrossRef
94.
go back to reference Kool M, Soullie T, van Nimwegen M, Willart MA, Muskens F et al (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205:869–882PubMedPubMedCentralCrossRef Kool M, Soullie T, van Nimwegen M, Willart MA, Muskens F et al (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205:869–882PubMedPubMedCentralCrossRef
95.
go back to reference Oshima M, Maruta T, Ohtani M, Deitiker PR, Mosier D et al (2006) Vaccination with a MHC class II peptide in alum and inactive pertussis strongly ameliorates clinical MG in C57BL/6 mice. J Neuroimmunol 171:8–16PubMedCrossRef Oshima M, Maruta T, Ohtani M, Deitiker PR, Mosier D et al (2006) Vaccination with a MHC class II peptide in alum and inactive pertussis strongly ameliorates clinical MG in C57BL/6 mice. J Neuroimmunol 171:8–16PubMedCrossRef
96.
go back to reference Bennett B, Check IJ, Olsen MR, Hunter RL (1992) A comparison of commercially available adjuvants for use in research. J Immunol Methods 153:31–40PubMedCrossRef Bennett B, Check IJ, Olsen MR, Hunter RL (1992) A comparison of commercially available adjuvants for use in research. J Immunol Methods 153:31–40PubMedCrossRef
97.
go back to reference Shenoy M, Christadoss P (1993) Induction of experimental autoimmune myasthenia gravis with acetylcholine receptors using a nonionic block copolymer as adjuvant. Immunol Investig 22:267–282CrossRef Shenoy M, Christadoss P (1993) Induction of experimental autoimmune myasthenia gravis with acetylcholine receptors using a nonionic block copolymer as adjuvant. Immunol Investig 22:267–282CrossRef
98.
99.
go back to reference Demon D, Vande Walle L, Lamkanfi M (2014) Sensing the enemy within: how macrophages detect intracellular Gram-negative bacteria. Trends Biochem Sci 39:574–576PubMedPubMedCentralCrossRef Demon D, Vande Walle L, Lamkanfi M (2014) Sensing the enemy within: how macrophages detect intracellular Gram-negative bacteria. Trends Biochem Sci 39:574–576PubMedPubMedCentralCrossRef
100.
go back to reference Liu Y, Yin H, Zhao M, Lu Q (2014) TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 47:136–147PubMedCrossRef Liu Y, Yin H, Zhao M, Lu Q (2014) TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 47:136–147PubMedCrossRef
101.
go back to reference Allman W, Qi H, Saini SS, Li J, Tuzun E et al (2012) CD4 costimulation is not required in a novel LPS-enhanced model of myasthenia gravis. J Neuroimmunol 249:1–7 Allman W, Qi H, Saini SS, Li J, Tuzun E et al (2012) CD4 costimulation is not required in a novel LPS-enhanced model of myasthenia gravis. J Neuroimmunol 249:1–7
102.
go back to reference Rose NR (2008) The adjuvant effect in infection and autoimmunity. Clin Rev Allergy Immunol 34:279–282PubMedCrossRef Rose NR (2008) The adjuvant effect in infection and autoimmunity. Clin Rev Allergy Immunol 34:279–282PubMedCrossRef
103.
go back to reference Damotte D, Goulvestre C, Charreire J, Carnaud C (2003) LPS and Freund’s adjuvant initiate different inflammatory circuits in experimental autoimmune thyroiditis. Eur Cytokine Netw 14:52–59PubMed Damotte D, Goulvestre C, Charreire J, Carnaud C (2003) LPS and Freund’s adjuvant initiate different inflammatory circuits in experimental autoimmune thyroiditis. Eur Cytokine Netw 14:52–59PubMed
104.
go back to reference Deane JA, Bolland S (2006) Nucleic acid-sensing TLRs as modifiers of autoimmunity. J Immunol 177:6573–6578PubMedCrossRef Deane JA, Bolland S (2006) Nucleic acid-sensing TLRs as modifiers of autoimmunity. J Immunol 177:6573–6578PubMedCrossRef
105.
go back to reference Berman PW, Patrick J (1980) Experimental myasthenia gravis. A murine system. J Exp Med 151:204–223PubMedCrossRef Berman PW, Patrick J (1980) Experimental myasthenia gravis. A murine system. J Exp Med 151:204–223PubMedCrossRef
106.
go back to reference Fujii Y, Monden Y, Hashimoto J, Nakahara K, Kawashima Y (1985) Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis. Clin Immunol Immunopathol 34:141–146PubMedCrossRef Fujii Y, Monden Y, Hashimoto J, Nakahara K, Kawashima Y (1985) Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis. Clin Immunol Immunopathol 34:141–146PubMedCrossRef
107.
go back to reference Zare F, Bokarewa M, Nenonen N, Bergstrom T, Alexopoulou L et al (2004) Arthritogenic properties of double-stranded (viral) RNA. J Immunol 172:5656–5663PubMedCrossRef Zare F, Bokarewa M, Nenonen N, Bergstrom T, Alexopoulou L et al (2004) Arthritogenic properties of double-stranded (viral) RNA. J Immunol 172:5656–5663PubMedCrossRef
108.
go back to reference Okada C, Akbar SM, Horiike N, Onji M (2005) Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver Int 25:595–603PubMedCrossRef Okada C, Akbar SM, Horiike N, Onji M (2005) Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver Int 25:595–603PubMedCrossRef
109.
go back to reference Asada M, Nishio A, Akamatsu T, Tanaka J, Saga K et al (2010) Analysis of humoral immune response in experimental autoimmune pancreatitis in mice. Pancreas 39:224–231PubMedCrossRef Asada M, Nishio A, Akamatsu T, Tanaka J, Saga K et al (2010) Analysis of humoral immune response in experimental autoimmune pancreatitis in mice. Pancreas 39:224–231PubMedCrossRef
110.
go back to reference Patole PS, Grone HJ, Segerer S, Ciubar R, Belemezova E et al (2005) Viral double-stranded RNA aggravates lupus nephritis through toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J Am Soc Nephrol 16:1326–1338PubMedCrossRef Patole PS, Grone HJ, Segerer S, Ciubar R, Belemezova E et al (2005) Viral double-stranded RNA aggravates lupus nephritis through toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J Am Soc Nephrol 16:1326–1338PubMedCrossRef
111.
go back to reference Jorgensen TN, Thurman J, Izui S, Falta MT, Metzger TE et al (2006) Genetic susceptibility to polyI:C-induced IFNalpha/beta-dependent accelerated disease in lupus-prone mice. Genes Immun 7:555–567PubMedCrossRef Jorgensen TN, Thurman J, Izui S, Falta MT, Metzger TE et al (2006) Genetic susceptibility to polyI:C-induced IFNalpha/beta-dependent accelerated disease in lupus-prone mice. Genes Immun 7:555–567PubMedCrossRef
112.
go back to reference Nandula SR, Scindia YM, Dey P, Bagavant H, Deshmukh US (2011) Activation of innate immunity accelerates sialoadenitis in a mouse model for Sjogren’s syndrome-like disease. Oral Dis 17:801–807PubMedPubMedCentralCrossRef Nandula SR, Scindia YM, Dey P, Bagavant H, Deshmukh US (2011) Activation of innate immunity accelerates sialoadenitis in a mouse model for Sjogren’s syndrome-like disease. Oral Dis 17:801–807PubMedPubMedCentralCrossRef
113.
go back to reference Moriyama H, Wen L, Abiru N, Liu E, Yu L et al (2002) Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci U S A 99:5539–5544PubMedPubMedCentralCrossRef Moriyama H, Wen L, Abiru N, Liu E, Yu L et al (2002) Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci U S A 99:5539–5544PubMedPubMedCentralCrossRef
114.
go back to reference Ren X, Zhou H, Li B, Su SB (2011) Toll-like receptor 3 ligand polyinosinic:polycytidylic acid enhances autoimmune disease in a retinal autoimmunity model. Int Immunopharmacol 11:769–773PubMedCrossRef Ren X, Zhou H, Li B, Su SB (2011) Toll-like receptor 3 ligand polyinosinic:polycytidylic acid enhances autoimmune disease in a retinal autoimmunity model. Int Immunopharmacol 11:769–773PubMedCrossRef
115.
go back to reference Ambrosini YM, Yang GX, Zhang W, Tsuda M, Shu S et al (2011) The multi-hit hypothesis of primary biliary cirrhosis: polyinosinic-polycytidylic acid (poly I:C) and murine autoimmune cholangitis. Clin Exp Immunol 166:110–120PubMedPubMedCentralCrossRef Ambrosini YM, Yang GX, Zhang W, Tsuda M, Shu S et al (2011) The multi-hit hypothesis of primary biliary cirrhosis: polyinosinic-polycytidylic acid (poly I:C) and murine autoimmune cholangitis. Clin Exp Immunol 166:110–120PubMedPubMedCentralCrossRef
116.
go back to reference Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B (2006) Cutting Edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 177:7505–7509PubMedCrossRef Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B (2006) Cutting Edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 177:7505–7509PubMedCrossRef
117.
go back to reference Khorooshi R, Morch MT, Holm TH, Berg CT, Dieu RT et al (2015) Induction of endogenous type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathol 130:107–118PubMedPubMedCentralCrossRef Khorooshi R, Morch MT, Holm TH, Berg CT, Dieu RT et al (2015) Induction of endogenous type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathol 130:107–118PubMedPubMedCentralCrossRef
119.
go back to reference Lennon VA, Lindstrom JM, Seybold ME (1975) Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med 141:1365–1375PubMedCrossRef Lennon VA, Lindstrom JM, Seybold ME (1975) Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med 141:1365–1375PubMedCrossRef
120.
go back to reference Fuchs S, Nevo D, Tarrab-Hazdai R, Yaar I (1976) Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature 263:329–330PubMedCrossRef Fuchs S, Nevo D, Tarrab-Hazdai R, Yaar I (1976) Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature 263:329–330PubMedCrossRef
121.
go back to reference Meinl E, Klinkert WE, Wekerle H (1991) The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol 139:995–1008PubMedPubMedCentral Meinl E, Klinkert WE, Wekerle H (1991) The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol 139:995–1008PubMedPubMedCentral
122.
go back to reference Lennon VA, Lindstrom JM, Seybold ME (1976) Experimental autoimmune myasthenia gravis: cellular and humoral immune responses. Ann N Y Acad Sci 274:283–299PubMedCrossRef Lennon VA, Lindstrom JM, Seybold ME (1976) Experimental autoimmune myasthenia gravis: cellular and humoral immune responses. Ann N Y Acad Sci 274:283–299PubMedCrossRef
123.
go back to reference Fallarino F, Volpi C, Zelante T, Vacca C, Calvitti M et al (2009) IDO mediates TLR9-driven protection from experimental autoimmune diabetes. J Immunol 183:6303–6312PubMedCrossRef Fallarino F, Volpi C, Zelante T, Vacca C, Calvitti M et al (2009) IDO mediates TLR9-driven protection from experimental autoimmune diabetes. J Immunol 183:6303–6312PubMedCrossRef
124.
go back to reference Gilboa-Geffen A, Wolf Y, Hanin G, Melamed-Book N, Pick M et al (2011) Activation of the alternative NFkappaB pathway improves disease symptoms in a model of Sjogren’s syndrome. PLoS One 6, e28727PubMedPubMedCentralCrossRef Gilboa-Geffen A, Wolf Y, Hanin G, Melamed-Book N, Pick M et al (2011) Activation of the alternative NFkappaB pathway improves disease symptoms in a model of Sjogren’s syndrome. PLoS One 6, e28727PubMedPubMedCentralCrossRef
125.
go back to reference Longhini AL, Santos MP, Pradella F, Moraes AS, Dionete AC et al (2014) In vivo administration of TLR9 agonist reduces the severity of experimental autoimmune encephalomyelitis. The role of plasmacytoid dendritic cells and B lymphocytes. CNS Neurosci Ther 20:787–790PubMedCrossRef Longhini AL, Santos MP, Pradella F, Moraes AS, Dionete AC et al (2014) In vivo administration of TLR9 agonist reduces the severity of experimental autoimmune encephalomyelitis. The role of plasmacytoid dendritic cells and B lymphocytes. CNS Neurosci Ther 20:787–790PubMedCrossRef
126.
go back to reference Farhat K, Riekenberg S, Heine H, Debarry J, Lang R et al (2008) Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol 83:692–701PubMedCrossRef Farhat K, Riekenberg S, Heine H, Debarry J, Lang R et al (2008) Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol 83:692–701PubMedCrossRef
127.
go back to reference van Bergenhenegouwen J, Plantinga TS, Joosten LA, Netea MG, Folkerts G et al (2013) TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J Leukoc Biol 94:885–902PubMedCrossRef van Bergenhenegouwen J, Plantinga TS, Joosten LA, Netea MG, Folkerts G et al (2013) TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J Leukoc Biol 94:885–902PubMedCrossRef
128.
go back to reference Nishiya T, Kajita E, Miwa S, Defranco AL (2005) TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. J Biol Chem 280:37107–37117PubMedCrossRef Nishiya T, Kajita E, Miwa S, Defranco AL (2005) TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. J Biol Chem 280:37107–37117PubMedCrossRef
129.
go back to reference Tatematsu M, Seya T, Matsumoto M (2014) Beyond dsRNA: toll-like receptor 3 signalling in RNA-induced immune responses. Biochem J 458:195–201PubMedCrossRef Tatematsu M, Seya T, Matsumoto M (2014) Beyond dsRNA: toll-like receptor 3 signalling in RNA-induced immune responses. Biochem J 458:195–201PubMedCrossRef
130.
go back to reference Liaunardy-Jopeace A, Gay NJ (2014) Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands. Front Immunol 5:473PubMedPubMedCentralCrossRef Liaunardy-Jopeace A, Gay NJ (2014) Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands. Front Immunol 5:473PubMedPubMedCentralCrossRef
131.
go back to reference Miao EA, Andersen-Nissen E, Warren SE, Aderem A (2007) TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 29:275–288PubMedCrossRef Miao EA, Andersen-Nissen E, Warren SE, Aderem A (2007) TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 29:275–288PubMedCrossRef
132.
go back to reference Guiducci C, Gong M, Cepika AM, Xu Z, Tripodo C et al (2013) RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 210:2903–2919PubMedPubMedCentralCrossRef Guiducci C, Gong M, Cepika AM, Xu Z, Tripodo C et al (2013) RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 210:2903–2919PubMedPubMedCentralCrossRef
133.
134.
go back to reference Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E et al (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950PubMedCrossRef Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E et al (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950PubMedCrossRef
135.
go back to reference Lee SM, Kok KH, Jaume M, Cheung TK, Yip TF et al (2014) Toll-like receptor 10 is involved in induction of innate immune responses to influenza virus infection. Proc Natl Acad Sci U S A 111:3793–3798PubMedPubMedCentralCrossRef Lee SM, Kok KH, Jaume M, Cheung TK, Yip TF et al (2014) Toll-like receptor 10 is involved in induction of innate immune responses to influenza virus infection. Proc Natl Acad Sci U S A 111:3793–3798PubMedPubMedCentralCrossRef
136.
go back to reference Hatai H, Lepelley A, Zeng W, Hayden MS, Ghosh S (2016) Toll-like receptor 11 (TLR11) interacts with flagellin and profilin through disparate mechanisms. PLoS One 11, e0148987PubMedPubMedCentralCrossRef Hatai H, Lepelley A, Zeng W, Hayden MS, Ghosh S (2016) Toll-like receptor 11 (TLR11) interacts with flagellin and profilin through disparate mechanisms. PLoS One 11, e0148987PubMedPubMedCentralCrossRef
137.
go back to reference Cho YG, Cho ML, Min SY, Kim HY (2007) Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun Rev 7:65–70PubMedCrossRef Cho YG, Cho ML, Min SY, Kim HY (2007) Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun Rev 7:65–70PubMedCrossRef
138.
go back to reference Libbey JE, Fujinami RS (2011) Experimental autoimmune encephalomyelitis as a testing paradigm for adjuvants and vaccines. Vaccine 29:3356–3362PubMedCrossRef Libbey JE, Fujinami RS (2011) Experimental autoimmune encephalomyelitis as a testing paradigm for adjuvants and vaccines. Vaccine 29:3356–3362PubMedCrossRef
139.
go back to reference Allenbach Y, Solly S, Gregoire S, Dubourg O, Salomon B et al (2009) Role of regulatory T cells in a new mouse model of experimental autoimmune myositis. Am J Pathol 174:989–998PubMedPubMedCentralCrossRef Allenbach Y, Solly S, Gregoire S, Dubourg O, Salomon B et al (2009) Role of regulatory T cells in a new mouse model of experimental autoimmune myositis. Am J Pathol 174:989–998PubMedPubMedCentralCrossRef
140.
go back to reference Lohse AW, Manns M, Dienes HP, Buschenfelde KH M z, Cohen IR (1990) Experimental autoimmune hepatitis: disease induction, time course and T-cell reactivity. Hepatology 11:24–30PubMedCrossRef Lohse AW, Manns M, Dienes HP, Buschenfelde KH M z, Cohen IR (1990) Experimental autoimmune hepatitis: disease induction, time course and T-cell reactivity. Hepatology 11:24–30PubMedCrossRef
141.
go back to reference Jones DE, Palmer JM, Kirby JA, De Cruz DJ, McCaughan GW et al (2000) Experimental autoimmune cholangitis: a mouse model of immune-mediated cholangiopathy. Liver 20:351–356PubMedCrossRef Jones DE, Palmer JM, Kirby JA, De Cruz DJ, McCaughan GW et al (2000) Experimental autoimmune cholangitis: a mouse model of immune-mediated cholangiopathy. Liver 20:351–356PubMedCrossRef
142.
go back to reference Little MA, Smyth L, Salama AD, Mukherjee S, Smith J et al (2009) Experimental autoimmune vasculitis: an animal model of anti-neutrophil cytoplasmic autoantibody-associated systemic vasculitis. Am J Pathol 174:1212–1220PubMedPubMedCentralCrossRef Little MA, Smyth L, Salama AD, Mukherjee S, Smith J et al (2009) Experimental autoimmune vasculitis: an animal model of anti-neutrophil cytoplasmic autoantibody-associated systemic vasculitis. Am J Pathol 174:1212–1220PubMedPubMedCentralCrossRef
143.
go back to reference Tincani A, Gilburd B, Abu-Shakra M, Blank M, Allegri F et al (2002) Immunization of naive BALB/c mice with human beta2-glycoprotein I breaks tolerance to the murine molecule. Arthritis Rheum 46:1399–1404PubMedCrossRef Tincani A, Gilburd B, Abu-Shakra M, Blank M, Allegri F et al (2002) Immunization of naive BALB/c mice with human beta2-glycoprotein I breaks tolerance to the murine molecule. Arthritis Rheum 46:1399–1404PubMedCrossRef
Metadata
Title
Review on Toll-Like Receptor Activation in Myasthenia Gravis: Application to the Development of New Experimental Models
Authors
Marieke Robinet
Solène Maillard
Mélanie A. Cron
Sonia Berrih-Aknin
Rozen Le Panse
Publication date
01-02-2017
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 1/2017
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-016-8549-4

Other articles of this Issue 1/2017

Clinical Reviews in Allergy & Immunology 1/2017 Go to the issue