Skip to main content
Top
Published in: Acta Neuropathologica 1/2015

Open Access 01-07-2015 | Original Paper

Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis

Authors: Reza Khorooshi, Marlene Thorsen Mørch, Thomas Hellesøe Holm, Carsten Tue Berg, Ruthe Truong Dieu, Dina Dræby, Shohreh Issazadeh-Navikas, Siegfried Weiss, Stefan Lienenklaus, Trevor Owens

Published in: Acta Neuropathologica | Issue 1/2015

Login to get access

Abstract

The Type I interferons (IFN), beta (IFN-β) and the alpha family (IFN-α), act through a common receptor and have anti-inflammatory effects. IFN-β is used to treat multiple sclerosis (MS) and is effective against experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mice with EAE show elevated levels of Type I IFNs in the central nervous system (CNS), suggesting a role for endogenous Type I IFN during inflammation. However, the therapeutic benefit of Type I IFN produced in the CNS remains to be established. The aim of this study was to examine whether experimentally induced CNS-endogenous Type I IFN influences EAE. Using IFN-β reporter mice, we showed that direct administration of polyinosinic–polycytidylic acid (poly I:C), a potent inducer of IFN-β, into the cerebrospinal fluid induced increased leukocyte numbers and transient upregulation of IFN-β in CD45/CD11b-positive cells located in the meninges and choroid plexus, as well as enhanced IFN-β expression by parenchymal microglial cells. Intrathecal injection of poly I:C to mice showing first symptoms of EAE substantially increased the normal disease-associated expression of IFN-α, IFN-β, interferon regulatory factor-7 and IL-10 in CNS, and disease worsening was prevented for as long as IFN-α/β was expressed. In contrast, there was no therapeutic effect on EAE in poly I:C-treated IFN receptor-deficient mice. IFN-dependent microglial and astrocyte response included production of the chemokine CXCL10. These results show that Type I IFN induced within the CNS can play a protective role in EAE and highlight the role of endogenous type I IFN in mediating neuroprotection.
Appendix
Available only for authorised users
Literature
2.
go back to reference Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23:7922–7930PubMed Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23:7922–7930PubMed
4.
go back to reference Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA, Kuchroo VK (1998) IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J Immunol 161:3299–3306PubMed Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA, Kuchroo VK (1998) IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J Immunol 161:3299–3306PubMed
6.
go back to reference Chang EY, Guo B, Doyle SE, Cheng G (2007) Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J Immunol 178:6705–6709PubMedCrossRef Chang EY, Guo B, Doyle SE, Cheng G (2007) Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J Immunol 178:6705–6709PubMedCrossRef
7.
go back to reference Dann A, Poeck H, Croxford AL, Gaupp S, Kierdorf K, Knust M, Pfeifer D, Maihoefer C, Endres S, Kalinke U et al (2012) Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nat Neurosci 15:98–106. doi:10.1038/nn.2964 CrossRef Dann A, Poeck H, Croxford AL, Gaupp S, Kierdorf K, Knust M, Pfeifer D, Maihoefer C, Endres S, Kalinke U et al (2012) Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nat Neurosci 15:98–106. doi:10.​1038/​nn.​2964 CrossRef
8.
go back to reference Deonarain R, Alcami A, Alexiou M, Dallman MJ, Gewert DR, Porter AC (2000) Impaired antiviral response and alpha/beta interferon induction in mice lacking beta interferon. J Virol 74:3404–3409PubMedCentralPubMedCrossRef Deonarain R, Alcami A, Alexiou M, Dallman MJ, Gewert DR, Porter AC (2000) Impaired antiviral response and alpha/beta interferon induction in mice lacking beta interferon. J Virol 74:3404–3409PubMedCentralPubMedCrossRef
9.
go back to reference Elhofy A, Wang J, Tani M, Fife BT, Kennedy KJ, Bennett J, Huang D, Ransohoff RM, Karpus WJ (2005) Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. J Leukoc Biol 77:229–237PubMedCrossRef Elhofy A, Wang J, Tani M, Fife BT, Kennedy KJ, Bennett J, Huang D, Ransohoff RM, Karpus WJ (2005) Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. J Leukoc Biol 77:229–237PubMedCrossRef
10.
go back to reference Erlandsson L, Blumenthal R, Eloranta ML, Engel H, Alm G, Weiss S, Leanderson T (1998) Interferon-beta is required for interferon-alpha production in mouse fibroblasts. Curr Biol 8:223–226PubMedCrossRef Erlandsson L, Blumenthal R, Eloranta ML, Engel H, Alm G, Weiss S, Leanderson T (1998) Interferon-beta is required for interferon-alpha production in mouse fibroblasts. Curr Biol 8:223–226PubMedCrossRef
11.
go back to reference Furlan R, Pluchino S, Marconi PC, Martino G (2003) Cytokine gene delivery into the central nervous system using intrathecally injected nonreplicative viral vectors. Methods Mol Biol 215:279–289PubMed Furlan R, Pluchino S, Marconi PC, Martino G (2003) Cytokine gene delivery into the central nervous system using intrathecally injected nonreplicative viral vectors. Methods Mol Biol 215:279–289PubMed
13.
go back to reference Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394PubMedCrossRef Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394PubMedCrossRef
14.
go back to reference Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777. doi:10.1038/nature03464 PubMedCrossRef Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777. doi:10.​1038/​nature03464 PubMedCrossRef
15.
go back to reference Huang D, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193:713–726PubMedCentralPubMedCrossRef Huang D, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193:713–726PubMedCentralPubMedCrossRef
21.
go back to reference Lienenklaus S, Cornitescu M, Zietara N, Lyszkiewicz M, Gekara N, Jablonska J, Edenhofer F, Rajewsky K, Bruder D, Hafner M et al (2009) Novel reporter mouse reveals constitutive and inflammatory expression of IFN-beta in vivo. J Immunol 183:3229–3236. doi:10.4049/jimmunol.0804277 PubMedCrossRef Lienenklaus S, Cornitescu M, Zietara N, Lyszkiewicz M, Gekara N, Jablonska J, Edenhofer F, Rajewsky K, Bruder D, Hafner M et al (2009) Novel reporter mouse reveals constitutive and inflammatory expression of IFN-beta in vivo. J Immunol 183:3229–3236. doi:10.​4049/​jimmunol.​0804277 PubMedCrossRef
22.
go back to reference Mahad DJ, Ransohoff RM (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 15:23–32PubMedCrossRef Mahad DJ, Ransohoff RM (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 15:23–32PubMedCrossRef
23.
go back to reference Martino G, Furlan R, Comi G, Adorini L (2001) The ependymal route to the CNS: an emerging gene-therapy approach for MS. Trends Immunol 22:483–490PubMedCrossRef Martino G, Furlan R, Comi G, Adorini L (2001) The ependymal route to the CNS: an emerging gene-therapy approach for MS. Trends Immunol 22:483–490PubMedCrossRef
24.
go back to reference Mills Ko E, Ma JH, Guo F, Miers L, Lee E, Bannerman P, Burns T, Ko D, Sohn J, Soulika AM et al (2014) Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J Neuroinflammation 11:105. doi:10.1186/1742-2094-11-105 PubMedCentralPubMedCrossRef Mills Ko E, Ma JH, Guo F, Miers L, Lee E, Bannerman P, Burns T, Ko D, Sohn J, Soulika AM et al (2014) Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J Neuroinflammation 11:105. doi:10.​1186/​1742-2094-11-105 PubMedCentralPubMedCrossRef
25.
26.
go back to reference Mony JT, Khorooshi R, Owens T (2014) MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE. Mult Scler 20:1312–1321. doi:10.1177/1352458514524086 PubMedCrossRef Mony JT, Khorooshi R, Owens T (2014) MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE. Mult Scler 20:1312–1321. doi:10.​1177/​1352458514524086​ PubMedCrossRef
28.
go back to reference Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921PubMedCrossRef Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921PubMedCrossRef
29.
go back to reference Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86PubMedCrossRef Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86PubMedCrossRef
31.
go back to reference Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J et al (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28:675–686. doi:10.1016/j.immuni.2008.03.011 PubMedCrossRef Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J et al (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28:675–686. doi:10.​1016/​j.​immuni.​2008.​03.​011 PubMedCrossRef
35.
go back to reference Teige I, Treschow A, Teige A, Mattsson R, Navikas V, Leanderson T, Holmdahl R, Issazadeh-Navikas S (2003) IFN-beta gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J Immunol 170:4776–4784PubMedCrossRef Teige I, Treschow A, Teige A, Mattsson R, Navikas V, Leanderson T, Holmdahl R, Issazadeh-Navikas S (2003) IFN-beta gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J Immunol 170:4776–4784PubMedCrossRef
36.
go back to reference Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B (2006) Cutting edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 177:7505–7509 (pii: 177/11/7505)PubMedCrossRef Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B (2006) Cutting edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 177:7505–7509 (pii: 177/11/7505)PubMedCrossRef
Metadata
Title
Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis
Authors
Reza Khorooshi
Marlene Thorsen Mørch
Thomas Hellesøe Holm
Carsten Tue Berg
Ruthe Truong Dieu
Dina Dræby
Shohreh Issazadeh-Navikas
Siegfried Weiss
Stefan Lienenklaus
Trevor Owens
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Acta Neuropathologica / Issue 1/2015
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-015-1418-z

Other articles of this Issue 1/2015

Acta Neuropathologica 1/2015 Go to the issue