Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2024

21-03-2024 | Myocardial Infarction

BMSCs-derived Exosome CISH Alleviates Myocardial Infarction by Inactivating the NF-κB Pathway to Stimulate Macrophage M2 Polarization

Authors: Minzhi Ouyang, Yang Yang, Guolong Yu, Jiling Zhao, Yi Peng

Published in: Cardiovascular Toxicology | Issue 4/2024

Login to get access

Abstract

Current myocardial infarction (MI) treatments are suboptimal, necessitating deeper pathogenesis understanding of MI. This research explored how exosomes (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) contribute to MI mitigation and their therapeutic potential. Isolated BMSCs was identified by microscope, flow cytometry, alizarin red and oil red O staining. Exo were identified by TEM, NTA and western blot. HE staining, masson staining, and cardiac function parameters were used to assess the cardiac function in MI mice. TUNEL staining, western blot and qRT-PCR were used to detect apoptosis, inflammatory factors and M1/M2 markers. The NF-κB pathway activation was detected through western blot assays. Immunofluorescence, qRT-PCR, western blot, and flow cytometry were employed to evaluate macrophage polarization. MI mice showed cardiac injury, increased apoptosis and inflammation, while BMSCs-Exo treatment alleviated these effects. In MI mice, the macrophage M1 polarization was increased and the NF-κB pathway was activated, whereas BMSCs-Exo treatment reversed these changes. Furthermore, CISH expression was reduced in MI mice, but was elevated with BMSCs-Exo treatment. In vitro, LPS shifted RAW264.7 cells to M1 phenotype and activated the NF-κB pathway, yet BMSCs-Exo shifted them to M2 phenotype and inhibited the NF-κB pathway. Mechanistically, BMSCs-Exo induced macrophage M2 polarization by transmitting CISH to inhibit NF-κB activation. BMSCs-Exo mitigates MI by transmitting CISH to inhibit the NF-κB pathway, promoting macrophages to M2 type. This implies BMSCs-Exo could be a useful treatment for MI, and CISH could be a potential therapy target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thygesen, K., Alpert, J. S., Jaffe, A. S., Chaitman, B. R., Bax, J. J., Morrow, D. A., & White, H. D. (2018). Fourth Universal Definition of Myocardial Infarction. Circulation, 138, e618–e651.PubMedCrossRef Thygesen, K., Alpert, J. S., Jaffe, A. S., Chaitman, B. R., Bax, J. J., Morrow, D. A., & White, H. D. (2018). Fourth Universal Definition of Myocardial Infarction. Circulation, 138, e618–e651.PubMedCrossRef
2.
go back to reference Reed, G. W., & Menon, V. (2022). Reducing the incidence and mortality from myocardial infarction. Lancet Public Health, 7, e202–e203.PubMedCrossRef Reed, G. W., & Menon, V. (2022). Reducing the incidence and mortality from myocardial infarction. Lancet Public Health, 7, e202–e203.PubMedCrossRef
3.
go back to reference Pan, Q., Xu, J., Wen, C. J., Xiong, Y. Y., Gong, Z. T., & Yang, Y. J. (2021). Nanoparticles: promising tools for the treatment and prevention of myocardial infarction. International Journal of Nanomedicine, 16, 6719–6747.PubMedPubMedCentralCrossRef Pan, Q., Xu, J., Wen, C. J., Xiong, Y. Y., Gong, Z. T., & Yang, Y. J. (2021). Nanoparticles: promising tools for the treatment and prevention of myocardial infarction. International Journal of Nanomedicine, 16, 6719–6747.PubMedPubMedCentralCrossRef
4.
go back to reference O’Rourke, S. A., Dunne, A., & Monaghan, M. G. (2019). The role of macrophages in the infarcted myocardium: orchestrators of ecm remodeling. Frontiers in cardiovascular medicine, 6, 101.PubMedPubMedCentralCrossRef O’Rourke, S. A., Dunne, A., & Monaghan, M. G. (2019). The role of macrophages in the infarcted myocardium: orchestrators of ecm remodeling. Frontiers in cardiovascular medicine, 6, 101.PubMedPubMedCentralCrossRef
5.
go back to reference Jung, M., Dodsworth, M., & Thum, T. (2018). Inflammatory cells and their non-coding RNAs as targets for treating myocardial infarction. Basic Research in Cardiology, 114, 4.PubMedPubMedCentralCrossRef Jung, M., Dodsworth, M., & Thum, T. (2018). Inflammatory cells and their non-coding RNAs as targets for treating myocardial infarction. Basic Research in Cardiology, 114, 4.PubMedPubMedCentralCrossRef
6.
go back to reference Hume, R. D., & Chong, J. J. H. (2020). The cardiac injury immune response as a target for regenerative and cellular therapies. Clinical Therapeutics, 42, 1923–1943.PubMedCrossRef Hume, R. D., & Chong, J. J. H. (2020). The cardiac injury immune response as a target for regenerative and cellular therapies. Clinical Therapeutics, 42, 1923–1943.PubMedCrossRef
7.
go back to reference Heidt, T., Courties, G., Dutta, P., Sager, H. B., Sebas, M., Iwamoto, Y., Sun, Y., Da Silva, N., Panizzi, P., van der Laan, A. M., Swirski, F. K., Weissleder, R., & Nahrendorf, M. (2014). Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circulation Research, 115, 284–295.PubMedPubMedCentralCrossRef Heidt, T., Courties, G., Dutta, P., Sager, H. B., Sebas, M., Iwamoto, Y., Sun, Y., Da Silva, N., Panizzi, P., van der Laan, A. M., Swirski, F. K., Weissleder, R., & Nahrendorf, M. (2014). Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circulation Research, 115, 284–295.PubMedPubMedCentralCrossRef
8.
go back to reference Ma, Y., Mouton, A. J., & Lindsey, M. L. (2018). Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Translational Research, 191, 15–28.PubMedCrossRef Ma, Y., Mouton, A. J., & Lindsey, M. L. (2018). Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Translational Research, 191, 15–28.PubMedCrossRef
9.
go back to reference Zhang, J., Huang, F., Chen, L., Li, G., Lei, W., Zhao, J., Liao, Y., Li, Y., Li, C., & Chen, M. (2021). Sodium lactate accelerates m2 macrophage polarization and improves cardiac function after myocardial infarction in mice. Cardiovascular Therapeutics, 2021, 5530541.PubMedPubMedCentralCrossRef Zhang, J., Huang, F., Chen, L., Li, G., Lei, W., Zhao, J., Liao, Y., Li, Y., Li, C., & Chen, M. (2021). Sodium lactate accelerates m2 macrophage polarization and improves cardiac function after myocardial infarction in mice. Cardiovascular Therapeutics, 2021, 5530541.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Wu, X., Iroegbu, C. D., Peng, J., Guo, J., Yang, J., & Fan, C. (2021). Cell death and exosomes regulation after myocardial infarction and ischemia-reperfusion. Frontiers in Cell and Developmental Biology, 9, 673677.PubMedPubMedCentralCrossRef Wu, X., Iroegbu, C. D., Peng, J., Guo, J., Yang, J., & Fan, C. (2021). Cell death and exosomes regulation after myocardial infarction and ischemia-reperfusion. Frontiers in Cell and Developmental Biology, 9, 673677.PubMedPubMedCentralCrossRef
12.
go back to reference Wu, Z., Cheng, S., Wang, S., Li, W., & Liu, J. (2021). BMSCs-derived exosomal microRNA-150-5p attenuates myocardial infarction in mice. International Immunopharmacology, 93, 107389.PubMedCrossRef Wu, Z., Cheng, S., Wang, S., Li, W., & Liu, J. (2021). BMSCs-derived exosomal microRNA-150-5p attenuates myocardial infarction in mice. International Immunopharmacology, 93, 107389.PubMedCrossRef
13.
go back to reference Deng, S., Zhou, X., Ge, Z., Song, Y., Wang, H., Liu, X., & Zhang, D. (2019). Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. International Journal of Biochemistry & Cell Biology, 114, 105564.CrossRef Deng, S., Zhou, X., Ge, Z., Song, Y., Wang, H., Liu, X., & Zhang, D. (2019). Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. International Journal of Biochemistry & Cell Biology, 114, 105564.CrossRef
14.
go back to reference Naser, W., Maymand, S., Rivera, L. R., Connor, T., Liongue, C., Smith, C. M., Aston-Mourney, K., McCulloch, D. R., McGee, S. L., & Ward, A. C. (2022). Cytokine-inducible SH2 domain containing protein contributes to regulation of adiposity, food intake, and glucose metabolism. The FASEB Journal, 36, e22320.PubMedCrossRef Naser, W., Maymand, S., Rivera, L. R., Connor, T., Liongue, C., Smith, C. M., Aston-Mourney, K., McCulloch, D. R., McGee, S. L., & Ward, A. C. (2022). Cytokine-inducible SH2 domain containing protein contributes to regulation of adiposity, food intake, and glucose metabolism. The FASEB Journal, 36, e22320.PubMedCrossRef
15.
go back to reference Mujalli, A., Banaganapalli, B., Alrayes, N. M., Shaik, N. A., Elango, R., & Al-Aama, J. Y. (2020). Myocardial infarction biomarker discovery with integrated gene expression, pathways and biological networks analysis. Genomics, 112, 5072–5085.PubMedCrossRef Mujalli, A., Banaganapalli, B., Alrayes, N. M., Shaik, N. A., Elango, R., & Al-Aama, J. Y. (2020). Myocardial infarction biomarker discovery with integrated gene expression, pathways and biological networks analysis. Genomics, 112, 5072–5085.PubMedCrossRef
16.
go back to reference Lachtermacher, S., Esporcatte, B. L., Montalvao, F., Costa, P. C., Rodrigues, D. C., Belem, L., Rabischoffisky, A., Faria Neto, H. C., Vasconcellos, R., Iacobas, S., Iacobas, D. A., Dohmann, H. F., Spray, D. C., Goldenberg, R. C., & Campos-de-Carvalho, A. C. (2010). Cardiac gene expression and systemic cytokine profile are complementary in a murine model of post-ischemic heart failure. Brazilian Journal of Medical and Biological Research, 43, 377–389.PubMedCrossRef Lachtermacher, S., Esporcatte, B. L., Montalvao, F., Costa, P. C., Rodrigues, D. C., Belem, L., Rabischoffisky, A., Faria Neto, H. C., Vasconcellos, R., Iacobas, S., Iacobas, D. A., Dohmann, H. F., Spray, D. C., Goldenberg, R. C., & Campos-de-Carvalho, A. C. (2010). Cardiac gene expression and systemic cytokine profile are complementary in a murine model of post-ischemic heart failure. Brazilian Journal of Medical and Biological Research, 43, 377–389.PubMedCrossRef
17.
go back to reference Zhang, S., Rautela, J., Bediaga, N. G., Kolesnik, T. B., You, Y., Nie, J., Dagley, L. F., Bedo, J., Wang, H., Sun, L., Sutherland, R., Surgenor, E., Iannarella, N., Allan, R., Souza-Fonseca-Guimaraes, F., Xie, Y., Wang, Q., Zhang, Y., Xu, Y., … Zhan, Y. (2023). CIS controls the functional polarization of GM-CSF-derived macrophages. Cellular & Molecular Immunology, 20, 65–79.CrossRef Zhang, S., Rautela, J., Bediaga, N. G., Kolesnik, T. B., You, Y., Nie, J., Dagley, L. F., Bedo, J., Wang, H., Sun, L., Sutherland, R., Surgenor, E., Iannarella, N., Allan, R., Souza-Fonseca-Guimaraes, F., Xie, Y., Wang, Q., Zhang, Y., Xu, Y., … Zhan, Y. (2023). CIS controls the functional polarization of GM-CSF-derived macrophages. Cellular & Molecular Immunology, 20, 65–79.CrossRef
18.
go back to reference Hu, G., Zhou, R., Liu, J., Gong, A. Y., Eischeid, A. N., Dittman, J. W., & Chen, X. M. (2009). MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. The Journal of Immunology, 183, 1617–1624.PubMedCrossRef Hu, G., Zhou, R., Liu, J., Gong, A. Y., Eischeid, A. N., Dittman, J. W., & Chen, X. M. (2009). MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. The Journal of Immunology, 183, 1617–1624.PubMedCrossRef
19.
go back to reference Yin, C., Ye, Z., Wu, J., Huang, C., Pan, L., Ding, H., Zhong, L., Guo, L., Zou, Y., Wang, X., Wang, Y., Gao, P., Jin, X., Yan, X., Zou, Y., Huang, R., & Gong, H. (2021). Elevated Wnt2 and Wnt4 activate NF-kappaB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. eBioMedicine, 74, 103745.PubMedPubMedCentralCrossRef Yin, C., Ye, Z., Wu, J., Huang, C., Pan, L., Ding, H., Zhong, L., Guo, L., Zou, Y., Wang, X., Wang, Y., Gao, P., Jin, X., Yan, X., Zou, Y., Huang, R., & Gong, H. (2021). Elevated Wnt2 and Wnt4 activate NF-kappaB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. eBioMedicine, 74, 103745.PubMedPubMedCentralCrossRef
20.
go back to reference Dan, H., Liu, S., Liu, J., Liu, D., Yin, F., Wei, Z., Wang, J., Zhou, Y., Jiang, L., Ji, N., Zeng, X., Li, J., & Chen, Q. (2020). RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF-kappaB pathway in oral squamous cell carcinoma. Molecular Oncology, 14, 795–807.PubMedPubMedCentralCrossRef Dan, H., Liu, S., Liu, J., Liu, D., Yin, F., Wei, Z., Wang, J., Zhou, Y., Jiang, L., Ji, N., Zeng, X., Li, J., & Chen, Q. (2020). RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF-kappaB pathway in oral squamous cell carcinoma. Molecular Oncology, 14, 795–807.PubMedPubMedCentralCrossRef
21.
go back to reference Ni, L., Lin, Z., Hu, S., Shi, Y., Jiang, Z., Zhao, J., Zhou, Y., Wu, Y., Tian, N., Sun, L., Wu, A., Pan, Z., Zhang, X., & Wang, X. (2022). Itaconate attenuates osteoarthritis by inhibiting STING/NF-kappaB axis in chondrocytes and promoting M2 polarization in macrophages. Biochemical Pharmacology, 198, 114935.PubMedCrossRef Ni, L., Lin, Z., Hu, S., Shi, Y., Jiang, Z., Zhao, J., Zhou, Y., Wu, Y., Tian, N., Sun, L., Wu, A., Pan, Z., Zhang, X., & Wang, X. (2022). Itaconate attenuates osteoarthritis by inhibiting STING/NF-kappaB axis in chondrocytes and promoting M2 polarization in macrophages. Biochemical Pharmacology, 198, 114935.PubMedCrossRef
22.
go back to reference Zhang, L., & Chan, C. (2010). Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. Journal of Visualized Experiments, 37, e1852. Zhang, L., & Chan, C. (2010). Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. Journal of Visualized Experiments, 37, e1852.
23.
go back to reference Zhu, Q., Tang, S., Zhu, Y., Chen, D., Huang, J., & Lin, J. (2022). Exosomes derived from CTF1-modified bone marrow stem cells promote endometrial regeneration and restore fertility. Frontiers in Bioengineering and Biotechnology, 10, 868734.PubMedPubMedCentralCrossRef Zhu, Q., Tang, S., Zhu, Y., Chen, D., Huang, J., & Lin, J. (2022). Exosomes derived from CTF1-modified bone marrow stem cells promote endometrial regeneration and restore fertility. Frontiers in Bioengineering and Biotechnology, 10, 868734.PubMedPubMedCentralCrossRef
24.
go back to reference Chen, B., Ni, Y., Liu, J., Zhang, Y., & Yan, F. (2018). Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets. Stem Cells International, 2018, 8348121.PubMedPubMedCentralCrossRef Chen, B., Ni, Y., Liu, J., Zhang, Y., & Yan, F. (2018). Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets. Stem Cells International, 2018, 8348121.PubMedPubMedCentralCrossRef
25.
go back to reference Li, X., Bi, T., & Yang, S. (2022). Exosomal microRNA-150-5p from bone marrow mesenchymal stromal cells mitigates cerebral ischemia/reperfusion injury via targeting toll-like receptor 5. Bioengineered, 13, 3030–3043.PubMed Li, X., Bi, T., & Yang, S. (2022). Exosomal microRNA-150-5p from bone marrow mesenchymal stromal cells mitigates cerebral ischemia/reperfusion injury via targeting toll-like receptor 5. Bioengineered, 13, 3030–3043.PubMed
26.
go back to reference Peng, Y., Chen, B., Zhao, J., Peng, Z., Xu, W., & Yu, G. (2019). Effect of intravenous transplantation of hUCB-MSCs on M1/M2 subtype conversion in monocyte/macrophages of AMI mice. Biomedicine & Pharmacotherapy, 111, 624–630.CrossRef Peng, Y., Chen, B., Zhao, J., Peng, Z., Xu, W., & Yu, G. (2019). Effect of intravenous transplantation of hUCB-MSCs on M1/M2 subtype conversion in monocyte/macrophages of AMI mice. Biomedicine & Pharmacotherapy, 111, 624–630.CrossRef
27.
go back to reference Wang, X., Guo, Z., Ding, Z., & Mehta, J. L. (2018). Inflammation, autophagy, and apoptosis after myocardial infarction. Journal of the American Heart Association, 7, e008024.PubMedPubMedCentralCrossRef Wang, X., Guo, Z., Ding, Z., & Mehta, J. L. (2018). Inflammation, autophagy, and apoptosis after myocardial infarction. Journal of the American Heart Association, 7, e008024.PubMedPubMedCentralCrossRef
28.
go back to reference Meeran, M. F. N., Azimullah, S., Adeghate, E., & Ojha, S. (2021). Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats. Phytomedicine, 84, 153405.PubMedCrossRef Meeran, M. F. N., Azimullah, S., Adeghate, E., & Ojha, S. (2021). Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats. Phytomedicine, 84, 153405.PubMedCrossRef
29.
go back to reference Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T., & Castegna, A. (2019). The metabolic signature of macrophage responses. Frontiers in Immunology, 10, 1462.PubMedPubMedCentralCrossRef Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T., & Castegna, A. (2019). The metabolic signature of macrophage responses. Frontiers in Immunology, 10, 1462.PubMedPubMedCentralCrossRef
30.
go back to reference Cheng, Y., & Rong, J. (2018). Macrophage polarization as a therapeutic target in myocardial infarction. Current Drug Targets, 19, 651–662.PubMedCrossRef Cheng, Y., & Rong, J. (2018). Macrophage polarization as a therapeutic target in myocardial infarction. Current Drug Targets, 19, 651–662.PubMedCrossRef
31.
go back to reference Zhao, J., Li, X., Hu, J., Chen, F., Qiao, S., Sun, X., Gao, L., Xie, J., & Xu, B. (2019). Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovascular Research, 115, 1205–1216.PubMedPubMedCentralCrossRef Zhao, J., Li, X., Hu, J., Chen, F., Qiao, S., Sun, X., Gao, L., Xie, J., & Xu, B. (2019). Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovascular Research, 115, 1205–1216.PubMedPubMedCentralCrossRef
32.
go back to reference Liu, L., Guo, H., Song, A., Huang, J., Zhang, Y., Jin, S., Li, S., Zhang, L., Yang, C., & Yang, P. (2020). Progranulin inhibits LPS-induced macrophage M1 polarization via NF-small ka. CyrillicB and MAPK pathways. BMC Immunol, 21, 32.CrossRef Liu, L., Guo, H., Song, A., Huang, J., Zhang, Y., Jin, S., Li, S., Zhang, L., Yang, C., & Yang, P. (2020). Progranulin inhibits LPS-induced macrophage M1 polarization via NF-small ka. CyrillicB and MAPK pathways. BMC Immunol, 21, 32.CrossRef
33.
go back to reference Kawano, S., Kubota, T., Monden, Y., Tsutsumi, T., Inoue, T., Kawamura, N., Tsutsui, H., & Sunagawa, K. (2006). Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 291, H1337-1344.PubMedCrossRef Kawano, S., Kubota, T., Monden, Y., Tsutsumi, T., Inoue, T., Kawamura, N., Tsutsui, H., & Sunagawa, K. (2006). Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 291, H1337-1344.PubMedCrossRef
34.
go back to reference Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15, 1032–1043.PubMedPubMedCentralCrossRef Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15, 1032–1043.PubMedPubMedCentralCrossRef
35.
go back to reference Barron, C. C., Lalu, M. M., Stewart, D. J., Fergusson, D., Yang, H., Moher, D., Liu, P., Mazer, D., Devereaux, P. J., McIntyre, L., Trials, C. P. A. C., & G. (2017). Assessment of safety and efficacy of mesenchymal stromal cell therapy in preclinical models of acute myocardial infarction: A systematic review protocol. Systematic Reviews, 6, 226.PubMedPubMedCentralCrossRef Barron, C. C., Lalu, M. M., Stewart, D. J., Fergusson, D., Yang, H., Moher, D., Liu, P., Mazer, D., Devereaux, P. J., McIntyre, L., Trials, C. P. A. C., & G. (2017). Assessment of safety and efficacy of mesenchymal stromal cell therapy in preclinical models of acute myocardial infarction: A systematic review protocol. Systematic Reviews, 6, 226.PubMedPubMedCentralCrossRef
36.
go back to reference Gnecchi, M., Danieli, P., & Cervio, E. (2012). Mesenchymal stem cell therapy for heart disease. Vascular Pharmacology, 57, 48–55.PubMedCrossRef Gnecchi, M., Danieli, P., & Cervio, E. (2012). Mesenchymal stem cell therapy for heart disease. Vascular Pharmacology, 57, 48–55.PubMedCrossRef
37.
go back to reference Motavaf, M., Pakravan, K., Babashah, S., Malekvandfard, F., Masoumi, M., & Sadeghizadeh, M. (2016). Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine. Cellular and Molecular Biology, 62, 74–79.PubMed Motavaf, M., Pakravan, K., Babashah, S., Malekvandfard, F., Masoumi, M., & Sadeghizadeh, M. (2016). Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine. Cellular and Molecular Biology, 62, 74–79.PubMed
38.
go back to reference Hu, M., Guo, G., Huang, Q., Cheng, C., Xu, R., Li, A., Liu, N., & Liu, S. (2018). The harsh microenvironment in infarcted heart accelerates transplanted bone marrow mesenchymal stem cells injury: The role of injured cardiomyocytes-derived exosomes. Cell Death & Disease, 9, 357.CrossRef Hu, M., Guo, G., Huang, Q., Cheng, C., Xu, R., Li, A., Liu, N., & Liu, S. (2018). The harsh microenvironment in infarcted heart accelerates transplanted bone marrow mesenchymal stem cells injury: The role of injured cardiomyocytes-derived exosomes. Cell Death & Disease, 9, 357.CrossRef
39.
go back to reference Ju, C., Shen, Y., Ma, G., Liu, Y., Cai, J., Kim, I. M., Weintraub, N. L., Liu, N., & Tang, Y. (2018). Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes Promotes Repair in Ischemic Myocardium. Journal of Cardiovascular Translational Research, 11, 420–428.PubMedPubMedCentralCrossRef Ju, C., Shen, Y., Ma, G., Liu, Y., Cai, J., Kim, I. M., Weintraub, N. L., Liu, N., & Tang, Y. (2018). Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes Promotes Repair in Ischemic Myocardium. Journal of Cardiovascular Translational Research, 11, 420–428.PubMedPubMedCentralCrossRef
40.
go back to reference Ni, J., Sun, Y., & Liu, Z. (2019). The potential of stem cells and stem cell-derived exosomes in treating cardiovascular diseases. Journal of Cardiovascular Translational Research, 12, 51–61.PubMedCrossRef Ni, J., Sun, Y., & Liu, Z. (2019). The potential of stem cells and stem cell-derived exosomes in treating cardiovascular diseases. Journal of Cardiovascular Translational Research, 12, 51–61.PubMedCrossRef
41.
go back to reference Zheng, J., Zhang, X., Cai, W., Yang, Y., Guo, T., Li, J., & Dai, H. (2022). Bone marrow mesenchymal stem cell-derived exosomal microRNA-29b-3p promotes angiogenesis and ventricular remodeling in rats with myocardial infarction by targeting ADAMTS16. Cardiovascular Toxicology, 22, 689–700.PubMedCrossRef Zheng, J., Zhang, X., Cai, W., Yang, Y., Guo, T., Li, J., & Dai, H. (2022). Bone marrow mesenchymal stem cell-derived exosomal microRNA-29b-3p promotes angiogenesis and ventricular remodeling in rats with myocardial infarction by targeting ADAMTS16. Cardiovascular Toxicology, 22, 689–700.PubMedCrossRef
42.
go back to reference Li, Y., Yang, R., Guo, B., Zhang, H., Zhang, H., Liu, S., & Li, Y. (2019). Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochemical and Biophysical Research Communications, 514, 323–328.PubMedCrossRef Li, Y., Yang, R., Guo, B., Zhang, H., Zhang, H., Liu, S., & Li, Y. (2019). Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochemical and Biophysical Research Communications, 514, 323–328.PubMedCrossRef
43.
go back to reference Zhu, W., Sun, L., Zhao, P., Liu, Y., Zhang, J., Zhang, Y., Hong, Y., Zhu, Y., Lu, Y., Zhao, W., Chen, X., & Zhang, F. (2021). Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. Journal of Nanobiotechnology, 19, 61.PubMedPubMedCentralCrossRef Zhu, W., Sun, L., Zhao, P., Liu, Y., Zhang, J., Zhang, Y., Hong, Y., Zhu, Y., Lu, Y., Zhao, W., Chen, X., & Zhang, F. (2021). Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. Journal of Nanobiotechnology, 19, 61.PubMedPubMedCentralCrossRef
44.
go back to reference Zhu, W., Wang, Q., Zhang, J., Sun, L., Hong, X., Du, W., Duan, R., Jiang, J., Ji, Y., Wang, H., & Han, B. (2023). Exosomes derived from mir-214-3p overexpressing mesenchymal stem cells promote myocardial repair. Biomaterials Research, 27, 77.PubMedPubMedCentralCrossRef Zhu, W., Wang, Q., Zhang, J., Sun, L., Hong, X., Du, W., Duan, R., Jiang, J., Ji, Y., Wang, H., & Han, B. (2023). Exosomes derived from mir-214-3p overexpressing mesenchymal stem cells promote myocardial repair. Biomaterials Research, 27, 77.PubMedPubMedCentralCrossRef
45.
go back to reference Song, Y., Zhang, C., Zhang, J., Jiao, Z., Dong, N., Wang, G., Wang, Z., & Wang, L. (2019). Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics, 9, 2346–2360.PubMedPubMedCentralCrossRef Song, Y., Zhang, C., Zhang, J., Jiao, Z., Dong, N., Wang, G., Wang, Z., & Wang, L. (2019). Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics, 9, 2346–2360.PubMedPubMedCentralCrossRef
46.
go back to reference Xiao, F., Deng, J., Jiao, F., Hu, X., Jiang, H., Yuan, F., Chen, S., Niu, Y., Jiang, X., & Guo, F. (2022). Hepatic cytokine-inducible SH2-containing protein (CISH) regulates gluconeogenesis via cAMP-responsive element binding protein (CREB). The FASEB Journal, 36, e22541.PubMedCrossRef Xiao, F., Deng, J., Jiao, F., Hu, X., Jiang, H., Yuan, F., Chen, S., Niu, Y., Jiang, X., & Guo, F. (2022). Hepatic cytokine-inducible SH2-containing protein (CISH) regulates gluconeogenesis via cAMP-responsive element binding protein (CREB). The FASEB Journal, 36, e22541.PubMedCrossRef
47.
go back to reference Zhu, H., Blum, R. H., Bernareggi, D., Ask, E. H., Wu, Z., Hoel, H. J., Meng, Z., Wu, C., Guan, K. L., Malmberg, K. J., & Kaufman, D. S. (2020). Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes In Vivo Persistence and Enhances Anti-tumor Activity. Cell Stem Cell, 27(224–237), e226. Zhu, H., Blum, R. H., Bernareggi, D., Ask, E. H., Wu, Z., Hoel, H. J., Meng, Z., Wu, C., Guan, K. L., Malmberg, K. J., & Kaufman, D. S. (2020). Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes In Vivo Persistence and Enhances Anti-tumor Activity. Cell Stem Cell, 27(224–237), e226.
48.
go back to reference Sager, H. B., Hulsmans, M., Lavine, K. J., Moreira, M. B., Heidt, T., Courties, G., Sun, Y., Iwamoto, Y., Tricot, B., Khan, O. F., Dahlman, J. E., Borodovsky, A., Fitzgerald, K., Anderson, D. G., Weissleder, R., Libby, P., Swirski, F. K., & Nahrendorf, M. (2016). Proliferation and Recruitment Contribute to myocardial macrophage expansion in chronic heart failure. Circulation Research, 119, 853–864.PubMedPubMedCentralCrossRef Sager, H. B., Hulsmans, M., Lavine, K. J., Moreira, M. B., Heidt, T., Courties, G., Sun, Y., Iwamoto, Y., Tricot, B., Khan, O. F., Dahlman, J. E., Borodovsky, A., Fitzgerald, K., Anderson, D. G., Weissleder, R., Libby, P., Swirski, F. K., & Nahrendorf, M. (2016). Proliferation and Recruitment Contribute to myocardial macrophage expansion in chronic heart failure. Circulation Research, 119, 853–864.PubMedPubMedCentralCrossRef
49.
go back to reference Peng, Y., Pan, W., Ou, Y., Xu, W., Kaelber, S., Borlongan, C. V., Sun, M., & Yu, G. (2016). Extracardiac-lodged mesenchymal stromal cells propel an inflammatory response against myocardial infarction via paracrine effects. Cell Transplantation, 25, 929–935.PubMedCrossRef Peng, Y., Pan, W., Ou, Y., Xu, W., Kaelber, S., Borlongan, C. V., Sun, M., & Yu, G. (2016). Extracardiac-lodged mesenchymal stromal cells propel an inflammatory response against myocardial infarction via paracrine effects. Cell Transplantation, 25, 929–935.PubMedCrossRef
50.
go back to reference Weirather, J., Hofmann, U. D., Beyersdorf, N., Ramos, G. C., Vogel, B., Frey, A., Ertl, G., Kerkau, T., & Frantz, S. (2014). Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circulation Research, 115, 55–67.PubMedCrossRef Weirather, J., Hofmann, U. D., Beyersdorf, N., Ramos, G. C., Vogel, B., Frey, A., Ertl, G., Kerkau, T., & Frantz, S. (2014). Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circulation Research, 115, 55–67.PubMedCrossRef
52.
go back to reference Viatour, P., Merville, M. P., Bours, V., & Chariot, A. (2005). Phosphorylation of NF-kappaB and IkappaB proteins: Implications in cancer and inflammation. Trends in Biochemical Sciences, 30, 43–52.PubMedCrossRef Viatour, P., Merville, M. P., Bours, V., & Chariot, A. (2005). Phosphorylation of NF-kappaB and IkappaB proteins: Implications in cancer and inflammation. Trends in Biochemical Sciences, 30, 43–52.PubMedCrossRef
53.
go back to reference Zhang, Q., Wang, L., Wang, S., Cheng, H., Xu, L., Pei, G., Wang, Y., Fu, C., Jiang, Y., He, C., & Wei, Q. (2022). Signaling pathways and targeted therapy for myocardial infarction. Signal Transduction and Targeted Therapy, 7, 78.PubMedPubMedCentralCrossRef Zhang, Q., Wang, L., Wang, S., Cheng, H., Xu, L., Pei, G., Wang, Y., Fu, C., Jiang, Y., He, C., & Wei, Q. (2022). Signaling pathways and targeted therapy for myocardial infarction. Signal Transduction and Targeted Therapy, 7, 78.PubMedPubMedCentralCrossRef
Metadata
Title
BMSCs-derived Exosome CISH Alleviates Myocardial Infarction by Inactivating the NF-κB Pathway to Stimulate Macrophage M2 Polarization
Authors
Minzhi Ouyang
Yang Yang
Guolong Yu
Jiling Zhao
Yi Peng
Publication date
21-03-2024
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2024
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09847-4

Other articles of this Issue 4/2024

Cardiovascular Toxicology 4/2024 Go to the issue