Skip to main content
Top
Published in: Cardiovascular Toxicology 8/2022

14-06-2022 | Myocardial Infarction

Bone Marrow Mesenchymal Stem Cell-Derived Exosomal microRNA-29b-3p Promotes Angiogenesis and Ventricular Remodeling in Rats with Myocardial Infarction by Targeting ADAMTS16

Authors: Jialin Zheng, Xinjin Zhang, Wenfeng Cai, Yawei Yang, Tao Guo, Jianmei Li, Hualei Dai

Published in: Cardiovascular Toxicology | Issue 8/2022

Login to get access

Abstract

An increasing amount of evidence has suggested that microRNA (miR) plays a role in myocardial infarction (MI). Our study aimed to discuss the impact of exosomal miR-29b-3p in MI by regulating A Disintegrin and Metalloproteinase with Thrombospondin Motifs 16 (ADAMTS16). Exosomes were extracted from bone marrow mesenchymal stem cells (BMSCs). In a rat model of MI, myocardial angiogenesis and ventricular remodeling-related factors, as well as myocardial fibrosis, collagen volume fraction (CVF), capillary density, level of vascular endothelial growth factor (VEGF), and apoptosis of cardiomyocytes, were tested. ADAMTS16 and miR-29b-3p levels in the myocardial tissue of MI rats were tested. miR-29b-3p expression was decreased and ADAMTS16 expression was increased in the myocardial tissue of MI rats. ADAMTS16 was a target gene of miR-29b-3p. Upregulated miR-29b-3p delivered by BMSC-derived exosomes improved myocardial angiogenesis and ventricular remodeling, reduced myocardial fibrosis and CVF, increased capillary density and VEGF expression, and suppressed apoptosis of cardiomyocytes in MI rats. ADAMTS16 overexpression accelerated MI in rats, and ADAMTS16 upregulation reversed the protective effects of miR-29b-3p upregulation on MI rats. Our study provides evidence that upregulated miR-29b-3p delivered by BMSC-secreted exosomes can improve myocardial angiogenesis and ventricular remodeling in rats with MI by targeting ADAMTS16.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ghartavol, M. M., Aziz, S.G.-G., Babaei, G., Farjah, G. H., & Ansari, M. H. K. (2019). The protective impact of betaine on the tissue structure and renal function in isoproterenol-induced myocardial infarction in rat. Molecular Genetics and Genomics, 7(4), e00579.CrossRef Ghartavol, M. M., Aziz, S.G.-G., Babaei, G., Farjah, G. H., & Ansari, M. H. K. (2019). The protective impact of betaine on the tissue structure and renal function in isoproterenol-induced myocardial infarction in rat. Molecular Genetics and Genomics, 7(4), e00579.CrossRef
2.
go back to reference Yang, S., Fan, T., Hu, Q., Xu, W., Yang, J., Xu, C., Zhang, B., Chen, J., & Jiang, H. (2018). Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Molecular Genetics and Genomics, 293(4), 883–894.CrossRef Yang, S., Fan, T., Hu, Q., Xu, W., Yang, J., Xu, C., Zhang, B., Chen, J., & Jiang, H. (2018). Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Molecular Genetics and Genomics, 293(4), 883–894.CrossRef
3.
go back to reference Yang, J., Brown, M. E., Zhang, H., Martinez, M., Zhao, Z., Bhutani, S., Yin, S., Trac, D., Xi, J. J., & Davis, M. E. (2017). High-throughput screening identifies microRNAs that target Nox2 and improve function after acute myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 312(5), H1002–H1012.CrossRef Yang, J., Brown, M. E., Zhang, H., Martinez, M., Zhao, Z., Bhutani, S., Yin, S., Trac, D., Xi, J. J., & Davis, M. E. (2017). High-throughput screening identifies microRNAs that target Nox2 and improve function after acute myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 312(5), H1002–H1012.CrossRef
4.
go back to reference Stromback, U., Engstrom, A., & Walivaara, B. M. (2019). Realising the seriousness—The experience of suffering a second myocardial infarction: A qualitative study. Intensive and Critical Care Nursing, 51, 1–6.CrossRef Stromback, U., Engstrom, A., & Walivaara, B. M. (2019). Realising the seriousness—The experience of suffering a second myocardial infarction: A qualitative study. Intensive and Critical Care Nursing, 51, 1–6.CrossRef
5.
go back to reference Chen, P., Pan, J., Zhang, X., Shi, Z., & Yang, X. (2018). The role of microRNA-181a in myocardial fibrosis following myocardial infarction in a rat model. Medical Science Monitor, 24, 4121–4127.CrossRef Chen, P., Pan, J., Zhang, X., Shi, Z., & Yang, X. (2018). The role of microRNA-181a in myocardial fibrosis following myocardial infarction in a rat model. Medical Science Monitor, 24, 4121–4127.CrossRef
6.
go back to reference Gao, L., Liu, Y., Guo, S., Yao, R., Wu, L., Xiao, L., Wang, Z., Liu, Y., & Zhang, Y. (2017). Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cellular Physiology and Biochemistry, 44(4), 1497–1508.CrossRef Gao, L., Liu, Y., Guo, S., Yao, R., Wu, L., Xiao, L., Wang, Z., Liu, Y., & Zhang, Y. (2017). Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cellular Physiology and Biochemistry, 44(4), 1497–1508.CrossRef
7.
go back to reference He, J. G., Li, H. R., Li, B. B., Xie, Q. L., Yan, D., & Wang, X. J. (2019). Bone marrow mesenchymal stem cells overexpressing GATA-4 improve cardiac function following myocardial infarction. Perfusion, 34(8), 696–704.CrossRef He, J. G., Li, H. R., Li, B. B., Xie, Q. L., Yan, D., & Wang, X. J. (2019). Bone marrow mesenchymal stem cells overexpressing GATA-4 improve cardiac function following myocardial infarction. Perfusion, 34(8), 696–704.CrossRef
8.
go back to reference Yu, X., Odenthal, M., & Fries, J. W. (2016). Exosomes as miRNA carriers: Formation-function-future. International Journal of Molecular Sciences, 17(12), 2028.CrossRef Yu, X., Odenthal, M., & Fries, J. W. (2016). Exosomes as miRNA carriers: Formation-function-future. International Journal of Molecular Sciences, 17(12), 2028.CrossRef
9.
go back to reference Zhang, C. S., Shao, K., Liu, C. W., Li, C. J., & Yu, B. T. (2019). Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24. European Review for Medical and Pharmacological Sciences, 23(15), 6691–6699.PubMed Zhang, C. S., Shao, K., Liu, C. W., Li, C. J., & Yu, B. T. (2019). Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24. European Review for Medical and Pharmacological Sciences, 23(15), 6691–6699.PubMed
10.
go back to reference Li, Q., Du, X., Liu, L., Pan, Z., Cao, S., & Li, Q. (2019). MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene, 711, 143953.CrossRef Li, Q., Du, X., Liu, L., Pan, Z., Cao, S., & Li, Q. (2019). MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene, 711, 143953.CrossRef
11.
go back to reference Rong, W., Yang, L., Li, C. Y., Wu, X. T., Zhou, Z. D., Zhu, W. L., & Yan, Y. (2020). MiR-29 inhibits neuronal apoptosis in rats with cerebral infarction through regulating Akt signaling pathway. European Review for Medical and Pharmacological Sciences, 24(2), 843–850.PubMed Rong, W., Yang, L., Li, C. Y., Wu, X. T., Zhou, Z. D., Zhu, W. L., & Yan, Y. (2020). MiR-29 inhibits neuronal apoptosis in rats with cerebral infarction through regulating Akt signaling pathway. European Review for Medical and Pharmacological Sciences, 24(2), 843–850.PubMed
12.
go back to reference Liu, X., Wang, M., Li, Q., Liu, W., Song, Q., & Jiang, H. (2022). CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Medica, 113(1), 128–134.PubMed Liu, X., Wang, M., Li, Q., Liu, W., Song, Q., & Jiang, H. (2022). CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Medica, 113(1), 128–134.PubMed
13.
go back to reference Khanna, S., Rink, C., Ghoorkhanian, R., Gnyawali, S., Heigel, M., Wijesinghe, D. S., Chalfant, C. E., Chan, Y. C., Banerjee, J., Huang, Y., Roy, S., & Sen, C. K. (2013). Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. Journal of Cerebral Blood Flow & Metabolism, 33(8), 1197–1206.CrossRef Khanna, S., Rink, C., Ghoorkhanian, R., Gnyawali, S., Heigel, M., Wijesinghe, D. S., Chalfant, C. E., Chan, Y. C., Banerjee, J., Huang, Y., Roy, S., & Sen, C. K. (2013). Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. Journal of Cerebral Blood Flow & Metabolism, 33(8), 1197–1206.CrossRef
14.
go back to reference Ni, H., Li, W., Zhuge, Y., Xu, S., Wang, Y., Chen, Y., Shen, G., & Wang, F. (2019). Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. International Journal of Cardiology, 292, 188–196.CrossRef Ni, H., Li, W., Zhuge, Y., Xu, S., Wang, Y., Chen, Y., Shen, G., & Wang, F. (2019). Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. International Journal of Cardiology, 292, 188–196.CrossRef
15.
go back to reference Yao, Y., Hu, C., Song, Q., Li, Y., Da, X., Yu, Y., Li, H., Clark, I. M., Chen, Q., & Wang, Q. K. (2020). ADAMTS16 activates latent TGF-beta, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovascular Research, 116(5), 956–969.CrossRef Yao, Y., Hu, C., Song, Q., Li, Y., Da, X., Yu, Y., Li, H., Clark, I. M., Chen, Q., & Wang, Q. K. (2020). ADAMTS16 activates latent TGF-beta, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovascular Research, 116(5), 956–969.CrossRef
16.
go back to reference Gopalakrishnan, K., Kumarasamy, S., Abdul-Majeed, S., Kalinoski, A. L., Morgan, E. E., Gohara, A. F., Nauli, S. M., Filipiak, W. E., Saunders, T. L., & Joe, B. (2012). Targeted disruption of Adamts16 gene in a rat genetic model of hypertension. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20555–20559.CrossRef Gopalakrishnan, K., Kumarasamy, S., Abdul-Majeed, S., Kalinoski, A. L., Morgan, E. E., Gohara, A. F., Nauli, S. M., Filipiak, W. E., Saunders, T. L., & Joe, B. (2012). Targeted disruption of Adamts16 gene in a rat genetic model of hypertension. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20555–20559.CrossRef
17.
go back to reference Thery, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 30, 3–22.CrossRef Thery, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 30, 3–22.CrossRef
18.
go back to reference Zhang, D., Wang, B., Ma, M., Yu, K., Zhang, Q., & Zhang, X. (2019). lncRNA HOTAIR protects myocardial infarction rat by sponging miR-519d-3p. Journal of Cardiovascular Translational Research, 12(3), 171–183.CrossRef Zhang, D., Wang, B., Ma, M., Yu, K., Zhang, Q., & Zhang, X. (2019). lncRNA HOTAIR protects myocardial infarction rat by sponging miR-519d-3p. Journal of Cardiovascular Translational Research, 12(3), 171–183.CrossRef
19.
go back to reference Jiang, B., Li, Z., Zhang, W., Wang, H., Zhi, X., Feng, J., Chen, Z., Zhu, Y., Yang, L., Xu, H., & Xu, Z. (2014). miR-874 inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. Journal of Gastroenterology, 49(6), 1011–1025.CrossRef Jiang, B., Li, Z., Zhang, W., Wang, H., Zhi, X., Feng, J., Chen, Z., Zhu, Y., Yang, L., Xu, H., & Xu, Z. (2014). miR-874 inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. Journal of Gastroenterology, 49(6), 1011–1025.CrossRef
20.
go back to reference Sugiyama, A., Mitsui, A., Okada, M., & Yamawaki, H. (2019). Cathepsin S degrades arresten and canstatin in infarcted area after myocardial infarction in rats. Journal of Veterinary Medical Science, 81(4), 522–531.CrossRef Sugiyama, A., Mitsui, A., Okada, M., & Yamawaki, H. (2019). Cathepsin S degrades arresten and canstatin in infarcted area after myocardial infarction in rats. Journal of Veterinary Medical Science, 81(4), 522–531.CrossRef
21.
go back to reference Mao, Q., Liang, X. L., Zhang, C. L., Pang, Y. H., & Lu, Y. X. (2019). LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138–5p/Sirt1 axis. Stem Cell Research & Therapy, 10(1), 393.CrossRef Mao, Q., Liang, X. L., Zhang, C. L., Pang, Y. H., & Lu, Y. X. (2019). LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138–5p/Sirt1 axis. Stem Cell Research & Therapy, 10(1), 393.CrossRef
22.
go back to reference Cheng, H., Chang, S., Xu, R., Chen, L., Song, X., Wu, J., Qian, J., Zou, Y., & Ma, J. (2020). Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Research & Therapy, 11(1), 224.CrossRef Cheng, H., Chang, S., Xu, R., Chen, L., Song, X., Wu, J., Qian, J., Zou, Y., & Ma, J. (2020). Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Research & Therapy, 11(1), 224.CrossRef
23.
go back to reference Huang, P., Wang, L., Li, Q., Tian, X., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., Jin, C., Yu, Y., Cheng, K., Qian, L., & Yang, Y. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116(2), 353–367.CrossRef Huang, P., Wang, L., Li, Q., Tian, X., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., Jin, C., Yu, Y., Cheng, K., Qian, L., & Yang, Y. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116(2), 353–367.CrossRef
24.
go back to reference Peng, Y., Zhao, J. L., Peng, Z. Y., Xu, W. F., & Yu, G. L. (2020). Exosomal miR-25–3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death & Disease, 11(5), 317.CrossRef Peng, Y., Zhao, J. L., Peng, Z. Y., Xu, W. F., & Yu, G. L. (2020). Exosomal miR-25–3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death & Disease, 11(5), 317.CrossRef
25.
go back to reference Xue, Y., Fan, X., Yang, R., Jiao, Y., & Li, Y. (2020). miR-29b-3p inhibits post-infarct cardiac fibrosis by targeting FOS. Bioscience Reports, 40(9). Xue, Y., Fan, X., Yang, R., Jiao, Y., & Li, Y. (2020). miR-29b-3p inhibits post-infarct cardiac fibrosis by targeting FOS. Bioscience Reports, 40(9).
26.
go back to reference Hou, K., Li, G., Zhao, J., Xu, B., Zhang, Y., Yu, J., & Xu, K. (2020). Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. Journal of Neuroinflammation, 17(1), 46.CrossRef Hou, K., Li, G., Zhao, J., Xu, B., Zhang, Y., Yu, J., & Xu, K. (2020). Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. Journal of Neuroinflammation, 17(1), 46.CrossRef
27.
go back to reference Li, Z., Yi, N., Chen, R., Meng, Y., Wang, Y., Liu, H., Cao, W., Hu, Y., Gu, Y., Tong, C., Lu, M., Li, L., & Peng, L. (2020). miR-29b-3p protects cardiomyocytes against endotoxin-induced apoptosis and inflammatory response through targeting FOXO3A. Cellular Signalling, 74, 109716.CrossRef Li, Z., Yi, N., Chen, R., Meng, Y., Wang, Y., Liu, H., Cao, W., Hu, Y., Gu, Y., Tong, C., Lu, M., Li, L., & Peng, L. (2020). miR-29b-3p protects cardiomyocytes against endotoxin-induced apoptosis and inflammatory response through targeting FOXO3A. Cellular Signalling, 74, 109716.CrossRef
28.
go back to reference Cai, Y., & Li, Y. (2019). Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5. Cellular & Molecular Biology Letters, 24, 27.CrossRef Cai, Y., & Li, Y. (2019). Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5. Cellular & Molecular Biology Letters, 24, 27.CrossRef
29.
go back to reference Liang, J. N., Zou, X., Fang, X. H., Xu, J. D., Xiao, Z., Zhu, J. N., Li, H., Yang, J., Zeng, N., Yuan, S. J., Pan, R., Fu, Y. H., Zhang, M., Luo, J. F., Wang, S., & Shan, Z. X. (2019). The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. BBA Molecular Basis of Disease, 1865(9), 2441–2450.CrossRef Liang, J. N., Zou, X., Fang, X. H., Xu, J. D., Xiao, Z., Zhu, J. N., Li, H., Yang, J., Zeng, N., Yuan, S. J., Pan, R., Fu, Y. H., Zhang, M., Luo, J. F., Wang, S., & Shan, Z. X. (2019). The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. BBA Molecular Basis of Disease, 1865(9), 2441–2450.CrossRef
30.
go back to reference Zhou, S., Lei, D., Bu, F., Han, H., Zhao, S., & Wang, Y. (2019). MicroRNA-29b-3p targets SPARC gene to protect cardiocytes against autophagy and apoptosis in hypoxic-induced H9c2 cells. Journal of Cardiovascular Translational Research, 12(4), 358–365.CrossRef Zhou, S., Lei, D., Bu, F., Han, H., Zhao, S., & Wang, Y. (2019). MicroRNA-29b-3p targets SPARC gene to protect cardiocytes against autophagy and apoptosis in hypoxic-induced H9c2 cells. Journal of Cardiovascular Translational Research, 12(4), 358–365.CrossRef
31.
go back to reference Drummond, C. A., Fan, X., Haller, S. T., Kennedy, D. J., Liu, J., & Tian, J. (2018). Na/K-ATPase signaling mediates miR-29b-3p regulation and cardiac fibrosis formation in mice with chronic kidney disease. PLoS ONE, 13(5), e0197688.CrossRef Drummond, C. A., Fan, X., Haller, S. T., Kennedy, D. J., Liu, J., & Tian, J. (2018). Na/K-ATPase signaling mediates miR-29b-3p regulation and cardiac fibrosis formation in mice with chronic kidney disease. PLoS ONE, 13(5), e0197688.CrossRef
Metadata
Title
Bone Marrow Mesenchymal Stem Cell-Derived Exosomal microRNA-29b-3p Promotes Angiogenesis and Ventricular Remodeling in Rats with Myocardial Infarction by Targeting ADAMTS16
Authors
Jialin Zheng
Xinjin Zhang
Wenfeng Cai
Yawei Yang
Tao Guo
Jianmei Li
Hualei Dai
Publication date
14-06-2022
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 8/2022
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09745-7

Other articles of this Issue 8/2022

Cardiovascular Toxicology 8/2022 Go to the issue