Skip to main content
Top
Published in: Cardiovascular Toxicology 7/2022

14-05-2022 | Trastuzumab

Protective Effect of Curcumin, Chrysin and Thymoquinone Injection on Trastuzumab-Induced Cardiotoxicity via Mitochondrial Protection

Authors: Leila Rezaie Shirmard, Mohammad Shabani, Amin Ashena Moghadam, Nasim Zamani, Hadi Ghanbari, Ahmad Salimi

Published in: Cardiovascular Toxicology | Issue 7/2022

Login to get access

Abstract

Mitochondrial dysfunction may lead to cardiomyocyte death in trastuzumab (TZM)-induced cardiotoxicity. Accordingly, this study was designed to evaluate the mitochondrial protective effects of curcumin, chrysin and thymoquinone alone in TZM-induced cardiotoxicity in the rats. Forty-eight male adult Wistar rats were divided into eight groups: control group (normal saline), TZM group (2.5 mg/kg I.P. injection, daily), TZM + curcumin group (10 mg/kg, I.P. injection, daily), TZM + chrysin (10 mg/kg, I.P. injection, daily), TZM + thymoquinone (0.5 mg/kg, I.P. injection, daily), curcumin group (10 mg/kg, I.P. injection, daily), chrysin group (10 mg/kg, I.P. injection, daily) and thymoquinone group (10 mg/kg, I.P. injection, daily). Blood and tissue were collected on day 11 and used for assessment of creatine phosphokinase, lactate dehydrogenase (LDH), troponin, malondialdehyde (MDA) amount, glutathione levels and mitochondrial toxicity parameters. TZM increased mitochondrial impairments (reactive oxygen species formation, mitochondrial swelling, mitochondrial membrane potential collapse and decline in succinate dehydrogenase activity) and histopathological alterations (hypertrophy, enlarged cell, disarrangement, myocytes degeneration, infiltration of fat in some areas, hemorrhage and focal vascular thrombosis) in rat heart. As well as TZM produced a significant increase in the level of CK, LDH, troponin, MDA, glutathione disulfide. In most experiments, the co-injection of curcumin, chrysin and thymoquinone with TZM restored the level of CK, LDH, troponin, MDA, GSH, mitochondrial impairments and histopathological alterations. The study revealed the cardioprotective effects of curcumin, chrysin and thymoquinone against TZM-induced cardiotoxicity which could be attributed to their antioxidant and mitochondrial protection activities.
Literature
1.
go back to reference Spector, N. L., & Blackwell, K. L. (2009). Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2–positive breast cancer. Journal of Clinical Oncology, 27, 5838–5847.PubMedCrossRef Spector, N. L., & Blackwell, K. L. (2009). Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2–positive breast cancer. Journal of Clinical Oncology, 27, 5838–5847.PubMedCrossRef
2.
go back to reference Nami, B., Maadi, H., & Wang, Z. (2018). Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers, 10, 342.PubMedCentralCrossRef Nami, B., Maadi, H., & Wang, Z. (2018). Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers, 10, 342.PubMedCentralCrossRef
3.
go back to reference Moilanen, T., Jokimäki, A., Tenhunen, O., & Koivunen, J. P. (2018). Trastuzumab-induced cardiotoxicity and its risk factors in real-world setting of breast cancer patients. Journal of Cancer Research and Clinical Oncology, 144, 1613–1621.PubMedCrossRef Moilanen, T., Jokimäki, A., Tenhunen, O., & Koivunen, J. P. (2018). Trastuzumab-induced cardiotoxicity and its risk factors in real-world setting of breast cancer patients. Journal of Cancer Research and Clinical Oncology, 144, 1613–1621.PubMedCrossRef
4.
go back to reference Nowsheen, S., Aziz, K., Park, J. Y., Lerman, A., Villarraga, H. R., Ruddy, K. J., et al. (2018). Trastuzumab in female breast cancer patients with reduced left ventricular ejection fraction. Journal of the American Heart Association, 7, e008637.PubMedPubMedCentralCrossRef Nowsheen, S., Aziz, K., Park, J. Y., Lerman, A., Villarraga, H. R., Ruddy, K. J., et al. (2018). Trastuzumab in female breast cancer patients with reduced left ventricular ejection fraction. Journal of the American Heart Association, 7, e008637.PubMedPubMedCentralCrossRef
5.
go back to reference Mohan, N., Jiang, J., Dokmanovic, M., & Wu, W. J. (2018). Trastuzumab-mediated cardiotoxicity: Current understanding, challenges, and frontiers. Antibody therapeutics, 1, 13–17.PubMedPubMedCentralCrossRef Mohan, N., Jiang, J., Dokmanovic, M., & Wu, W. J. (2018). Trastuzumab-mediated cardiotoxicity: Current understanding, challenges, and frontiers. Antibody therapeutics, 1, 13–17.PubMedPubMedCentralCrossRef
6.
go back to reference Nowsheen, S., Viscuse, P. V., O’Sullivan, C. C., Sandhu, N. P., Haddad, T. C., Blaes, A., et al. (2017). Incidence, diagnosis, and treatment of cardiac toxicity from trastuzumab in patients with breast cancer. Current Breast Cancer Reports, 9, 173–182.PubMedPubMedCentralCrossRef Nowsheen, S., Viscuse, P. V., O’Sullivan, C. C., Sandhu, N. P., Haddad, T. C., Blaes, A., et al. (2017). Incidence, diagnosis, and treatment of cardiac toxicity from trastuzumab in patients with breast cancer. Current Breast Cancer Reports, 9, 173–182.PubMedPubMedCentralCrossRef
7.
go back to reference Gabani, M., Castañeda, D., Nguyen, Q. M., Choi, S.-K., Chen, C., Mapara, A., et al. (2021). Association of cardiotoxicity with doxorubicin and trastuzumab: A double-edged sword in chemotherapy. Cureus, 13, e18194.PubMedPubMedCentral Gabani, M., Castañeda, D., Nguyen, Q. M., Choi, S.-K., Chen, C., Mapara, A., et al. (2021). Association of cardiotoxicity with doxorubicin and trastuzumab: A double-edged sword in chemotherapy. Cureus, 13, e18194.PubMedPubMedCentral
8.
go back to reference Xu, Y., Li, X., Liu, X., & Zhou, M. (2010). Neuregulin-1/ErbB signaling and chronic heart failure. Advances in Pharmacology, 59, 31–51.PubMedCrossRef Xu, Y., Li, X., Liu, X., & Zhou, M. (2010). Neuregulin-1/ErbB signaling and chronic heart failure. Advances in Pharmacology, 59, 31–51.PubMedCrossRef
9.
go back to reference El-Gamal, M. I., Mewafi, N. H., Abdelmotteleb, N. E., Emara, M. A., Tarazi, H., Sbenati, R. M., et al. (2021). A review of HER4 (ErbB4) kinase, its impact on cancer, and its inhibitors. Molecules, 26, 7376.PubMedPubMedCentralCrossRef El-Gamal, M. I., Mewafi, N. H., Abdelmotteleb, N. E., Emara, M. A., Tarazi, H., Sbenati, R. M., et al. (2021). A review of HER4 (ErbB4) kinase, its impact on cancer, and its inhibitors. Molecules, 26, 7376.PubMedPubMedCentralCrossRef
10.
go back to reference Gorini, S., De Angelis, A., Berrino, L., Malara, N., Rosano, G., & Ferraro, E. (2018). Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxidative Medicine and Cellular Longevity, 2018, 1–15.CrossRef Gorini, S., De Angelis, A., Berrino, L., Malara, N., Rosano, G., & Ferraro, E. (2018). Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxidative Medicine and Cellular Longevity, 2018, 1–15.CrossRef
11.
go back to reference Li, A., Gao, M., Jiang, W., Qin, Y., & Gong, G. (2020). Mitochondrial dynamics in adult cardiomyocytes and heart diseases. Frontiers in Cell and Developmental Biology, 8, 1555. Li, A., Gao, M., Jiang, W., Qin, Y., & Gong, G. (2020). Mitochondrial dynamics in adult cardiomyocytes and heart diseases. Frontiers in Cell and Developmental Biology, 8, 1555.
12.
go back to reference Dorn, G. W., II. (2013). Mitochondrial dynamics in heart disease. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833, 233–241.CrossRef Dorn, G. W., II. (2013). Mitochondrial dynamics in heart disease. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833, 233–241.CrossRef
13.
go back to reference Lochner, A., Wang, H.-H., Reiter, R. J., Guo, R., & Zhou, H. (2021). Role of mitochondrial quality control in myocardial and microvascular physiology and pathophysiology. Frontiers in Physiology, 12, 1495.CrossRef Lochner, A., Wang, H.-H., Reiter, R. J., Guo, R., & Zhou, H. (2021). Role of mitochondrial quality control in myocardial and microvascular physiology and pathophysiology. Frontiers in Physiology, 12, 1495.CrossRef
14.
go back to reference Kornfeld, O. S., Hwang, S., Disatnik, M.-H., Chen, C.-H., Qvit, N., & Mochly-Rosen, D. (2015). Mitochondrial reactive oxygen species at the heart of the matter: New therapeutic approaches for cardiovascular diseases. Circulation Research, 116, 1783–1799.PubMedPubMedCentralCrossRef Kornfeld, O. S., Hwang, S., Disatnik, M.-H., Chen, C.-H., Qvit, N., & Mochly-Rosen, D. (2015). Mitochondrial reactive oxygen species at the heart of the matter: New therapeutic approaches for cardiovascular diseases. Circulation Research, 116, 1783–1799.PubMedPubMedCentralCrossRef
15.
go back to reference Sun, L., Wang, H., Yu, S., Zhang, L., Jiang, J., & Zhou, Q. (2022). Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. International Journal of Molecular Medicine, 49, 1–8.PubMed Sun, L., Wang, H., Yu, S., Zhang, L., Jiang, J., & Zhou, Q. (2022). Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. International Journal of Molecular Medicine, 49, 1–8.PubMed
16.
go back to reference Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology-Heart and Circulatory Physiology, 309, H1453–H1467.PubMedPubMedCentralCrossRef Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology-Heart and Circulatory Physiology, 309, H1453–H1467.PubMedPubMedCentralCrossRef
17.
go back to reference Barish, R., Gates, E., & Barac, A. (2019). Trastuzumab-induced cardiomyopathy. Cardiology Clinics, 37, 407–418.PubMedCrossRef Barish, R., Gates, E., & Barac, A. (2019). Trastuzumab-induced cardiomyopathy. Cardiology Clinics, 37, 407–418.PubMedCrossRef
18.
go back to reference Stéphane, F. F. Y., Jules, B. K. J., Batiha, G.E.-S., Ali, I., & Bruno, L. N. (2021). Extraction of bioactive compounds from medicinal plants and herbs. London: InTech Open. Stéphane, F. F. Y., Jules, B. K. J., Batiha, G.E.-S., Ali, I., & Bruno, L. N. (2021). Extraction of bioactive compounds from medicinal plants and herbs. London: InTech Open.
19.
go back to reference Shah, S. M. A., Akram, M., Riaz, M., Munir, N., & Rasool, G. (2019). Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose-Response, 17, 1559325819852243.PubMedPubMedCentralCrossRef Shah, S. M. A., Akram, M., Riaz, M., Munir, N., & Rasool, G. (2019). Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose-Response, 17, 1559325819852243.PubMedPubMedCentralCrossRef
20.
go back to reference Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., et al. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694.PubMedPubMedCentralCrossRef Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., et al. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694.PubMedPubMedCentralCrossRef
21.
go back to reference Farkhondeh, T., Samarghandian, S., & Bafandeh, F. (2019). The cardiovascular protective effects of chrysin: a narrative review on experimental researches. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents), 17, 17–27.CrossRef Farkhondeh, T., Samarghandian, S., & Bafandeh, F. (2019). The cardiovascular protective effects of chrysin: a narrative review on experimental researches. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents), 17, 17–27.CrossRef
22.
go back to reference Yarmohammadi, F., Hayes, A. W., & Karimi, G. (2021). Protective effects of curcumin on chemical and drug-induced cardiotoxicity: A review. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 1341–1353.PubMedCrossRef Yarmohammadi, F., Hayes, A. W., & Karimi, G. (2021). Protective effects of curcumin on chemical and drug-induced cardiotoxicity: A review. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 1341–1353.PubMedCrossRef
23.
go back to reference Liu, H., Liu, H. Y., Jiang, Y. N., & Li, N. (2016). Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Molecular Medicine Reports, 13, 2836–2842.PubMedCrossRef Liu, H., Liu, H. Y., Jiang, Y. N., & Li, N. (2016). Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Molecular Medicine Reports, 13, 2836–2842.PubMedCrossRef
24.
go back to reference Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant potential of curcumin—a Meta-analysis of randomized clinical trials. Antioxidants, 9, 1092.PubMedCentralCrossRef Jakubczyk, K., Drużga, A., Katarzyna, J., & Skonieczna-Żydecka, K. (2020). Antioxidant potential of curcumin—a Meta-analysis of randomized clinical trials. Antioxidants, 9, 1092.PubMedCentralCrossRef
25.
go back to reference Kohandel, Z., Farkhondeh, T., Aschner, M., & Samarghandian, S. (2021). Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomedicine & Pharmacotherapy, 138, 111492.CrossRef Kohandel, Z., Farkhondeh, T., Aschner, M., & Samarghandian, S. (2021). Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomedicine & Pharmacotherapy, 138, 111492.CrossRef
26.
go back to reference Khezri, S., Sabzalipour, T., Jahedsani, A., Azizian, S., Atashbar, S., & Salimi, A. (2020). Chrysin ameliorates aluminum p hosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environmental Toxicology, 35, 1114–1124.PubMedCrossRef Khezri, S., Sabzalipour, T., Jahedsani, A., Azizian, S., Atashbar, S., & Salimi, A. (2020). Chrysin ameliorates aluminum p hosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environmental Toxicology, 35, 1114–1124.PubMedCrossRef
27.
go back to reference Sahebkar, A., Serban, M.-C., Ursoniu, S., & Banach, M. (2015). Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Journal of functional foods, 18, 898–909.CrossRef Sahebkar, A., Serban, M.-C., Ursoniu, S., & Banach, M. (2015). Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Journal of functional foods, 18, 898–909.CrossRef
28.
go back to reference Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196.PubMedCrossRef Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196.PubMedCrossRef
29.
go back to reference Tabassum, S., Rosli, N., Ichwan, S. J. A., & Mishra, P. (2021). Thymoquinone and its pharmacological perspective: A review. Pharmacological Research-Modern Chinese Medicine, 1, 100020.CrossRef Tabassum, S., Rosli, N., Ichwan, S. J. A., & Mishra, P. (2021). Thymoquinone and its pharmacological perspective: A review. Pharmacological Research-Modern Chinese Medicine, 1, 100020.CrossRef
30.
go back to reference Ghareghomi, S., Rahban, M., Moosavi-Movahedi, Z., Habibi-Rezaei, M., Saso, L., & Moosavi-Movahedi, A. A. (2021). The potential role of curcumin in modulating the master antioxidant pathway in diabetic hypoxia-induced complications. Molecules, 26, 7658.PubMedPubMedCentralCrossRef Ghareghomi, S., Rahban, M., Moosavi-Movahedi, Z., Habibi-Rezaei, M., Saso, L., & Moosavi-Movahedi, A. A. (2021). The potential role of curcumin in modulating the master antioxidant pathway in diabetic hypoxia-induced complications. Molecules, 26, 7658.PubMedPubMedCentralCrossRef
31.
go back to reference Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.PubMedCentralCrossRef Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.PubMedCentralCrossRef
32.
go back to reference Sabet, N. S., Atashbar, S., Khanlou, E. M., Kahrizi, F., & Salimi, A. (2020). Curcumin attenuates bevacizumab-induced toxicity via suppressing oxidative stress and preventing mitochondrial dysfunction in heart mitochondria. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393, 1447–1457.PubMedCrossRef Sabet, N. S., Atashbar, S., Khanlou, E. M., Kahrizi, F., & Salimi, A. (2020). Curcumin attenuates bevacizumab-induced toxicity via suppressing oxidative stress and preventing mitochondrial dysfunction in heart mitochondria. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393, 1447–1457.PubMedCrossRef
33.
go back to reference Hafez, A. A., Jamali, Z., Khezri, S., & Salimi, A. (2021). Thymoquinone reduces mitochondrial damage and death of cardiomyocytes induced by clozapine. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 1675–1684.PubMedCrossRef Hafez, A. A., Jamali, Z., Khezri, S., & Salimi, A. (2021). Thymoquinone reduces mitochondrial damage and death of cardiomyocytes induced by clozapine. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 1675–1684.PubMedCrossRef
34.
go back to reference Olorundare, O., Adeneye, A., Akinsola, A., Soyemi, S., Mgbehoma, A., Okoye, I., et al. (2020). African vegetables (Clerodendrum volubile Leaf and Irvingia gabonensis seed extracts) effectively mitigate trastuzumab-induced cardiotoxicity in wistar rats. Oxidative Medicine and Cellular Longevity, 2020, 1–15. Olorundare, O., Adeneye, A., Akinsola, A., Soyemi, S., Mgbehoma, A., Okoye, I., et al. (2020). African vegetables (Clerodendrum volubile Leaf and Irvingia gabonensis seed extracts) effectively mitigate trastuzumab-induced cardiotoxicity in wistar rats. Oxidative Medicine and Cellular Longevity, 2020, 1–15.
35.
go back to reference Ahmadabady, S., Beheshti, F., Shahidpour, F., Khordad, E., & Hosseini, M. (2021). A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochemistry and Biophysics Reports, 25, 100908.PubMedPubMedCentralCrossRef Ahmadabady, S., Beheshti, F., Shahidpour, F., Khordad, E., & Hosseini, M. (2021). A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochemistry and Biophysics Reports, 25, 100908.PubMedPubMedCentralCrossRef
36.
go back to reference Zhai, K., Hu, L., Chen, J., Fu, C.-Y., & Chen, Q. (2008). Chrysin induces hyperalgesia via the GABAA receptor in mice. Planta Medica, 74, 1229–1234.PubMedCrossRef Zhai, K., Hu, L., Chen, J., Fu, C.-Y., & Chen, Q. (2008). Chrysin induces hyperalgesia via the GABAA receptor in mice. Planta Medica, 74, 1229–1234.PubMedCrossRef
37.
go back to reference Olorundare, O. E., Adeneye, A. A., Akinsola, A. O., Ajayi, A. M., Agede, O. A., Soyemi, S. S., et al. (2021). Therapeutic potentials of selected antihypertensive agents and their fixed-dose combinations against trastuzumab-mediated cardiotoxicity. Frontiers in Pharmacology, 11, 2160.CrossRef Olorundare, O. E., Adeneye, A. A., Akinsola, A. O., Ajayi, A. M., Agede, O. A., Soyemi, S. S., et al. (2021). Therapeutic potentials of selected antihypertensive agents and their fixed-dose combinations against trastuzumab-mediated cardiotoxicity. Frontiers in Pharmacology, 11, 2160.CrossRef
38.
go back to reference Nabofa, W. E., Alashe, O. O., Oyeyemi, O. T., Attah, A. F., Oyagbemi, A. A., Omobowale, T. O., et al. (2018). Cardioprotective effects of curcumin-nisin based poly lactic acid nanoparticle on myocardial infarction in guinea pigs. Scientific Reports, 8, 1–11.CrossRef Nabofa, W. E., Alashe, O. O., Oyeyemi, O. T., Attah, A. F., Oyagbemi, A. A., Omobowale, T. O., et al. (2018). Cardioprotective effects of curcumin-nisin based poly lactic acid nanoparticle on myocardial infarction in guinea pigs. Scientific Reports, 8, 1–11.CrossRef
39.
go back to reference Iacobellis, G., Corradi, D., & Sharma, A. M. (2005). Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular medicine, 2, 536–543.PubMedCrossRef Iacobellis, G., Corradi, D., & Sharma, A. M. (2005). Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular medicine, 2, 536–543.PubMedCrossRef
40.
go back to reference Fraga, C. G., Leibovitz, B. E., & Tappel, A. L. (1988). Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: Characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine, 4, 155–161.PubMedCrossRef Fraga, C. G., Leibovitz, B. E., & Tappel, A. L. (1988). Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: Characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine, 4, 155–161.PubMedCrossRef
41.
go back to reference Ellman, G. L., & Gan, G. L. (1964). Erythrocyte glutathione-levels in patients of a mental hospital. Nature, 202, 904–904.PubMedCrossRef Ellman, G. L., & Gan, G. L. (1964). Erythrocyte glutathione-levels in patients of a mental hospital. Nature, 202, 904–904.PubMedCrossRef
42.
go back to reference Djafarzadeh, S., & Jakob, S. M. (2017). Isolation of intact mitochondria from skeletal muscle by differential centrifugation for high-resolution respirometry measurements. JoVE (Journal of Visualized Experiments). https://doi.org/10.3791/55251 Djafarzadeh, S., & Jakob, S. M. (2017). Isolation of intact mitochondria from skeletal muscle by differential centrifugation for high-resolution respirometry measurements. JoVE (Journal of Visualized Experiments). https://​doi.​org/​10.​3791/​55251
44.
go back to reference Mattiasson, G. (2004). Analysis of mitochondrial generation and release of reactive oxygen species. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 62, 89–96.CrossRef Mattiasson, G. (2004). Analysis of mitochondrial generation and release of reactive oxygen species. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 62, 89–96.CrossRef
45.
go back to reference Cottet-Rousselle, C., Ronot, X., Leverve, X., & Mayol, J. F. (2011). Cytometric assessment of mitochondria using fluorescent probes. Cytometry Part A, 79, 405–425.CrossRef Cottet-Rousselle, C., Ronot, X., Leverve, X., & Mayol, J. F. (2011). Cytometric assessment of mitochondria using fluorescent probes. Cytometry Part A, 79, 405–425.CrossRef
46.
go back to reference Pentassuglia, L., & Sawyer, D. B. (2009). The role of Neuregulin-1β/ErbB signaling in the heart. Experimental Cell Research, 315, 627–637.PubMedCrossRef Pentassuglia, L., & Sawyer, D. B. (2009). The role of Neuregulin-1β/ErbB signaling in the heart. Experimental Cell Research, 315, 627–637.PubMedCrossRef
47.
go back to reference Geissler, A., Ryzhov, S., & Sawyer, D. B. (2020). Neuregulins: Protective and reparative growth factors in multiple forms of cardiovascular disease. Clinical Science, 134, 2623–2643.PubMedCrossRef Geissler, A., Ryzhov, S., & Sawyer, D. B. (2020). Neuregulins: Protective and reparative growth factors in multiple forms of cardiovascular disease. Clinical Science, 134, 2623–2643.PubMedCrossRef
48.
go back to reference Onitilo, A. A., Engel, J. M., & Stankowski, R. V. (2014). Cardiovascular toxicity associated with adjuvant trastuzumab therapy: Prevalence, patient characteristics, and risk factors. Therapeutic Advances in Drug Safety, 5, 154–166.PubMedPubMedCentralCrossRef Onitilo, A. A., Engel, J. M., & Stankowski, R. V. (2014). Cardiovascular toxicity associated with adjuvant trastuzumab therapy: Prevalence, patient characteristics, and risk factors. Therapeutic Advances in Drug Safety, 5, 154–166.PubMedPubMedCentralCrossRef
49.
go back to reference Lai, L., & Qiu, H. (2020). The physiological and pathological roles of mitochondrial calcium uptake in heart. International Journal of Molecular Sciences, 21, 7689.PubMedCentralCrossRef Lai, L., & Qiu, H. (2020). The physiological and pathological roles of mitochondrial calcium uptake in heart. International Journal of Molecular Sciences, 21, 7689.PubMedCentralCrossRef
51.
go back to reference Zeglinski, M., Ludke, A., Jassal, D. S., & Singal, P. K. (2011). Trastuzumab-induced cardiac dysfunction: A ‘dual-hit.’ Experimental & Clinical Cardiology, 16, 70. Zeglinski, M., Ludke, A., Jassal, D. S., & Singal, P. K. (2011). Trastuzumab-induced cardiac dysfunction: A ‘dual-hit.’ Experimental & Clinical Cardiology, 16, 70.
53.
go back to reference Goszcz, K., Deakin, S. J., Duthie, G. G., Stewart, D., Leslie, S. J., & Megson, I. L. (2015). Antioxidants in cardiovascular therapy: Panacea or false hope? Frontiers in Cardiovascular Medicine, 2, 29.PubMedPubMedCentralCrossRef Goszcz, K., Deakin, S. J., Duthie, G. G., Stewart, D., Leslie, S. J., & Megson, I. L. (2015). Antioxidants in cardiovascular therapy: Panacea or false hope? Frontiers in Cardiovascular Medicine, 2, 29.PubMedPubMedCentralCrossRef
54.
go back to reference Angsutararux, P., Luanpitpong, S., & Issaragrisil, S. (2015). Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 1–13.CrossRef Angsutararux, P., Luanpitpong, S., & Issaragrisil, S. (2015). Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 1–13.CrossRef
55.
go back to reference Tang, H., Zhao, J., Feng, R., Pu, P., & Wen, L. (2022). Reducing oxidative stress may be important for treating pirarubicin-induced cardiotoxicity with schisandrin B. Experimental and Therapeutic Medicine, 23, 1–8. Tang, H., Zhao, J., Feng, R., Pu, P., & Wen, L. (2022). Reducing oxidative stress may be important for treating pirarubicin-induced cardiotoxicity with schisandrin B. Experimental and Therapeutic Medicine, 23, 1–8.
56.
go back to reference D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., et al. (2020). The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxidative Medicine and Cellular Longevity, 2020, 1–29.CrossRef D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., et al. (2020). The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxidative Medicine and Cellular Longevity, 2020, 1–29.CrossRef
58.
go back to reference Mantawy, E. M., El-Bakly, W. M., Esmat, A., Badr, A. M., & El-Demerdash, E. (2014). Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. European Journal of Pharmacology, 728, 107–118.PubMedCrossRef Mantawy, E. M., El-Bakly, W. M., Esmat, A., Badr, A. M., & El-Demerdash, E. (2014). Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. European Journal of Pharmacology, 728, 107–118.PubMedCrossRef
59.
go back to reference Naik, S. R., Thakare, V. N., & Patil, S. R. (2011). Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence of its antioxidant property. Experimental and Toxicologic Pathology, 63, 419–431.PubMedCrossRef Naik, S. R., Thakare, V. N., & Patil, S. R. (2011). Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence of its antioxidant property. Experimental and Toxicologic Pathology, 63, 419–431.PubMedCrossRef
60.
go back to reference Bahadır, A., Ceyhan, A., Gergin, Ö. Ö., Yalçın, B., Ülger, M., Özyazgan, T. M., et al. (2018). Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model. Anatolian Journal of Cardiology, 19, 213.PubMedPubMedCentral Bahadır, A., Ceyhan, A., Gergin, Ö. Ö., Yalçın, B., Ülger, M., Özyazgan, T. M., et al. (2018). Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model. Anatolian Journal of Cardiology, 19, 213.PubMedPubMedCentral
61.
go back to reference Chakraborty, M., Bhattacharjee, A., & Kamath, J. V. (2017). Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian Journal of Pharmacology, 49, 65.PubMedPubMedCentral Chakraborty, M., Bhattacharjee, A., & Kamath, J. V. (2017). Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian Journal of Pharmacology, 49, 65.PubMedPubMedCentral
62.
go back to reference Alam, M. F., Khan, G., Safhi, M. M., Alshahrani, S., Siddiqui, R., Sivagurunathan Moni, S., et al. (2018). Thymoquinone ameliorates doxorubicin-induced cardiotoxicity in Swiss Albino mice by modulating oxidative damage and cellular inflammation. Cardiology Research and Practice, 2018, 1–6.CrossRef Alam, M. F., Khan, G., Safhi, M. M., Alshahrani, S., Siddiqui, R., Sivagurunathan Moni, S., et al. (2018). Thymoquinone ameliorates doxorubicin-induced cardiotoxicity in Swiss Albino mice by modulating oxidative damage and cellular inflammation. Cardiology Research and Practice, 2018, 1–6.CrossRef
63.
go back to reference Karabulut, D., Ozturk, E., Kaymak, E., Akin, A. T., & Yakan, B. (2021). Thymoquinone attenuates doxorubicin-cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 35, e22618.PubMedCrossRef Karabulut, D., Ozturk, E., Kaymak, E., Akin, A. T., & Yakan, B. (2021). Thymoquinone attenuates doxorubicin-cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 35, e22618.PubMedCrossRef
64.
go back to reference Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors, 46, 5–20.PubMedCrossRef Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors, 46, 5–20.PubMedCrossRef
65.
go back to reference Kicinska, A., & Jarmuszkiewicz, W. (2020). Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules, 25, 3060.PubMedCentralCrossRef Kicinska, A., & Jarmuszkiewicz, W. (2020). Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules, 25, 3060.PubMedCentralCrossRef
66.
go back to reference Khalifa, A. A., Rashad, R. M., & El-Hadidy, W. F. (2021). Thymoquinone protects against cardiac mitochondrial DNA loss, oxidative stress, inflammation and apoptosis in isoproterenol-induced myocardial infarction in rats. Heliyon, 7, e07561.PubMedPubMedCentralCrossRef Khalifa, A. A., Rashad, R. M., & El-Hadidy, W. F. (2021). Thymoquinone protects against cardiac mitochondrial DNA loss, oxidative stress, inflammation and apoptosis in isoproterenol-induced myocardial infarction in rats. Heliyon, 7, e07561.PubMedPubMedCentralCrossRef
67.
go back to reference Su, X., Zhou, M., Li, Y., Zhang, J., An, N., Yang, F., et al. (2022). Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomedicine & Pharmacotherapy, 149, 112893.CrossRef Su, X., Zhou, M., Li, Y., Zhang, J., An, N., Yang, F., et al. (2022). Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomedicine & Pharmacotherapy, 149, 112893.CrossRef
68.
go back to reference Ojha, S., Al Taee, H., Goyal, S., Mahajan, U. B., Patil, C. R., Arya, D., et al. (2016). Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2016, 1–19. Ojha, S., Al Taee, H., Goyal, S., Mahajan, U. B., Patil, C. R., Arya, D., et al. (2016). Cardioprotective potentials of plant-derived small molecules against doxorubicin associated cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2016, 1–19.
69.
go back to reference Yang, Y., Wei, S., Zhang, B., & Li, W. (2021). Recent progress in environmental toxins-induced cardiotoxicity and protective potential of natural products. Frontiers in Pharmacology, 12, 1733. Yang, Y., Wei, S., Zhang, B., & Li, W. (2021). Recent progress in environmental toxins-induced cardiotoxicity and protective potential of natural products. Frontiers in Pharmacology, 12, 1733.
70.
go back to reference Swamy, A. V., Gulliaya, S., Thippeswamy, A., Koti, B. C., & Manjula, D. V. (2012). Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian Journal of Pharmacology, 44, 73.PubMedPubMedCentralCrossRef Swamy, A. V., Gulliaya, S., Thippeswamy, A., Koti, B. C., & Manjula, D. V. (2012). Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian Journal of Pharmacology, 44, 73.PubMedPubMedCentralCrossRef
71.
go back to reference Izem-Meziane, M., Djerdjouri, B., Rimbaud, S., Caffin, F., Fortin, D., Garnier, A., et al. (2012). Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: Protective effect of curcumin. American Journal of Physiology-Heart and Circulatory Physiology, 302, H665–H674.PubMedCrossRef Izem-Meziane, M., Djerdjouri, B., Rimbaud, S., Caffin, F., Fortin, D., Garnier, A., et al. (2012). Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: Protective effect of curcumin. American Journal of Physiology-Heart and Circulatory Physiology, 302, H665–H674.PubMedCrossRef
Metadata
Title
Protective Effect of Curcumin, Chrysin and Thymoquinone Injection on Trastuzumab-Induced Cardiotoxicity via Mitochondrial Protection
Authors
Leila Rezaie Shirmard
Mohammad Shabani
Amin Ashena Moghadam
Nasim Zamani
Hadi Ghanbari
Ahmad Salimi
Publication date
14-05-2022
Publisher
Springer US
Keyword
Trastuzumab
Published in
Cardiovascular Toxicology / Issue 7/2022
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09750-w

Other articles of this Issue 7/2022

Cardiovascular Toxicology 7/2022 Go to the issue