Skip to main content
Top
Published in: Cardiovascular Toxicology 6/2018

01-12-2018

Myocyte-Damaging Effects and Binding Kinetics of Boronic Acid and Epoxyketone Proteasomal-Targeted Drugs

Authors: Brian B. Hasinoff, Daywin Patel

Published in: Cardiovascular Toxicology | Issue 6/2018

Login to get access

Abstract

The proteasome inhibitors bortezomib, carfilzomib, and ixazomib, which are used in the treatment of multiple myeloma have greatly improved response rates. Several other proteasome inhibitors, including delanzomib and oprozomib, are in clinical trials. Carfilzomib and oprozomib are epoxyketones that form an irreversible bond with the 20S proteasome, whereas bortezomib, ixazomib, and delanzomib are boronic acids that form slowly reversible adducts. Several of the proteasome inhibitors have been shown to exhibit specific cardiac toxicities. A primary neonatal rat myocyte model was used to study the relative myocyte-damaging effects of five proteasome inhibitors with a view to identifying potential class differences and the effect of inhibitor binding kinetics. Bortezomib was shown to induce the most myocyte damage followed by delanzomib, ixazomib, oprozomib, and carfilzomib. The sensitivity of myocytes to proteasome inhibitors, which contain high levels of chymotrypsin-like proteasomal activity, may be due to inhibition of proteasomal-dependent ongoing sarcomeric protein turnover. All inhibitors inhibited the chymotrypsin-like proteasomal activity of myocyte lysate in the low nanomolar concentration range and exhibited time-dependent inhibition kinetics characteristic of slow-binding inhibitors. Progress curve analysis of the inhibitor concentration dependence of the slow-binding kinetics was used to measure second-order “on” rate constants for binding. The second-order rate constants varied by 90-fold, with ixazomib reacting the fastest, and oprozomib the slowest. As a group, the boronic acid drugs were more damaging to myocytes than the epoxyketone drugs. Overall, inhibitor-induced myocyte damage was positively, but not significantly, correlated with their second-order rate constants.
Literature
1.
go back to reference Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., et al. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70, 1970–1980.CrossRefPubMed Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., et al. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70, 1970–1980.CrossRefPubMed
2.
go back to reference Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., et al. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67, 6383–6391.CrossRefPubMed Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., et al. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67, 6383–6391.CrossRefPubMed
3.
go back to reference Zhou, H. J., Aujay, M. A., Bennett, M. K., Dajee, M., Demo, S. D., Fang, Y., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.CrossRefPubMed Zhou, H. J., Aujay, M. A., Bennett, M. K., Dajee, M., Demo, S. D., Fang, Y., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.CrossRefPubMed
5.
go back to reference Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.CrossRefPubMed Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.CrossRefPubMed
6.
go back to reference Gavazzoni, M., Vizzardi, E., Gorga, E., Bonadei, I., Rossi, L., Belotti, A., et al. (2018). Mechanism of cardiovascular toxicity by proteasome inhibitors: New paradigm derived from clinical and pre-clinical evidence. European Journal of Pharmacology, 828, 80–88.CrossRefPubMed Gavazzoni, M., Vizzardi, E., Gorga, E., Bonadei, I., Rossi, L., Belotti, A., et al. (2018). Mechanism of cardiovascular toxicity by proteasome inhibitors: New paradigm derived from clinical and pre-clinical evidence. European Journal of Pharmacology, 828, 80–88.CrossRefPubMed
7.
go back to reference Lee, D. H., & Fradley, M. G. (2018). Cardiovascular complications of multiple myeloma treatment: Evaluation, management, and prevention. Current Treatment Options in Cardiovascular Medicine, 20, 19.CrossRefPubMed Lee, D. H., & Fradley, M. G. (2018). Cardiovascular complications of multiple myeloma treatment: Evaluation, management, and prevention. Current Treatment Options in Cardiovascular Medicine, 20, 19.CrossRefPubMed
8.
go back to reference Li, W., Garcia, D., Cornell, R. F., Gailani, D., Laubach, J., Maglio, M. E., et al. (2017). Cardiovascular and thrombotic complications of novel multiple myeloma therapies: A review. JAMA Oncology, 3, 980–988.CrossRefPubMed Li, W., Garcia, D., Cornell, R. F., Gailani, D., Laubach, J., Maglio, M. E., et al. (2017). Cardiovascular and thrombotic complications of novel multiple myeloma therapies: A review. JAMA Oncology, 3, 980–988.CrossRefPubMed
9.
go back to reference Koulaouzidis, G., & Lyon, A. R. (2017). Proteasome inhibitors as a potential cause of heart failure. Heart Failure Clinics, 13, 289–295.CrossRefPubMed Koulaouzidis, G., & Lyon, A. R. (2017). Proteasome inhibitors as a potential cause of heart failure. Heart Failure Clinics, 13, 289–295.CrossRefPubMed
10.
go back to reference Schlafer, D., Shah, K. S., Panjic, E. H., & Lonial, S. (2017). Safety of proteasome inhibitors for treatment of multiple myeloma. Expert Opinion on Drug Safety, 16, 167–183.PubMed Schlafer, D., Shah, K. S., Panjic, E. H., & Lonial, S. (2017). Safety of proteasome inhibitors for treatment of multiple myeloma. Expert Opinion on Drug Safety, 16, 167–183.PubMed
11.
go back to reference Cole, D. C., & Frishman, W. H. (2018). Cardiovascular complications of proteasome inhibitors used in multiple myeloma. Cardiology in Review, 26, 122–129.CrossRefPubMed Cole, D. C., & Frishman, W. H. (2018). Cardiovascular complications of proteasome inhibitors used in multiple myeloma. Cardiology in Review, 26, 122–129.CrossRefPubMed
12.
go back to reference Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21, 138–144.CrossRefPubMed Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21, 138–144.CrossRefPubMed
13.
go back to reference Dimopoulos, M. A., Moreau, P., Palumbo, A., Joshua, D., Pour, L., Hajek, R., et al. (2016). Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): A randomised, phase 3, open-label, multicentre study. Lancet Oncology, 17, 27–38.CrossRefPubMed Dimopoulos, M. A., Moreau, P., Palumbo, A., Joshua, D., Pour, L., Hajek, R., et al. (2016). Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): A randomised, phase 3, open-label, multicentre study. Lancet Oncology, 17, 27–38.CrossRefPubMed
14.
go back to reference Laubach, J. P., Moslehi, J. J., Francis, S. A., San Miguel, J. F., Sonneveld, P., Orlowski, R. Z., et al. (2017). A retrospective analysis of 3954 patients in phase 2/3 trials of bortezomib for the treatment of multiple myeloma: Towards providing a benchmark for the cardiac safety profile of proteasome inhibition in multiple myeloma. British Journal of Haematology, 178, 547–560.CrossRefPubMed Laubach, J. P., Moslehi, J. J., Francis, S. A., San Miguel, J. F., Sonneveld, P., Orlowski, R. Z., et al. (2017). A retrospective analysis of 3954 patients in phase 2/3 trials of bortezomib for the treatment of multiple myeloma: Towards providing a benchmark for the cardiac safety profile of proteasome inhibition in multiple myeloma. British Journal of Haematology, 178, 547–560.CrossRefPubMed
15.
go back to reference Moreau, P., Masszi, T., Grzasko, N., Bahlis, N. J., Hansson, M., Pour, L., et al. (2016). Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. New England Journal of Medicine, 374, 1621–1634.CrossRefPubMed Moreau, P., Masszi, T., Grzasko, N., Bahlis, N. J., Hansson, M., Pour, L., et al. (2016). Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. New England Journal of Medicine, 374, 1621–1634.CrossRefPubMed
16.
go back to reference Sanchorawala, V., Palladini, G., Kukreti, V., Zonder, J. A., Cohen, A. D., Seldin, D. C., et al. (2017). A phase 1/2 study of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. Blood, 130, 597–605.CrossRefPubMed Sanchorawala, V., Palladini, G., Kukreti, V., Zonder, J. A., Cohen, A. D., Seldin, D. C., et al. (2017). A phase 1/2 study of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. Blood, 130, 597–605.CrossRefPubMed
17.
go back to reference Bonnet, A., & Moreau, P. (2017). Safety of ixazomib for the treatment of multiple myeloma. Expert Opinion on Drug Safety, 16, 973–980.CrossRefPubMed Bonnet, A., & Moreau, P. (2017). Safety of ixazomib for the treatment of multiple myeloma. Expert Opinion on Drug Safety, 16, 973–980.CrossRefPubMed
18.
go back to reference Jouni, H., Aubry, M. C., Lacy, M. Q., Vincent Rajkumar, S., Kumar, S. K., Frye, R. L., et al. (2017). Ixazomib cardiotoxicity: A possible class effect of proteasome inhibitors. American Journal of Hematology, 92, 220–221.CrossRefPubMed Jouni, H., Aubry, M. C., Lacy, M. Q., Vincent Rajkumar, S., Kumar, S. K., Frye, R. L., et al. (2017). Ixazomib cardiotoxicity: A possible class effect of proteasome inhibitors. American Journal of Hematology, 92, 220–221.CrossRefPubMed
19.
go back to reference Hasinoff, B. B., Patel, D., & Wu, X. (2017). Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib. Cardiovascular Toxicology, 17, 237–250.CrossRefPubMed Hasinoff, B. B., Patel, D., & Wu, X. (2017). Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib. Cardiovascular Toxicology, 17, 237–250.CrossRefPubMed
20.
go back to reference Stein, R. L. (2011). Kinetics of enzyme action: Essential principles for drug hunters. Hoboken, NJ: Wiley.CrossRef Stein, R. L. (2011). Kinetics of enzyme action: Essential principles for drug hunters. Hoboken, NJ: Wiley.CrossRef
21.
go back to reference Copeland, R. A. (2013). Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. Hoboken, NJ: Wiley.CrossRef Copeland, R. A. (2013). Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. Hoboken, NJ: Wiley.CrossRef
22.
go back to reference Hasinoff, B. B. (2018). Progress curve analysis of the kinetics of slow-binding anticancer drug inhibitors of the 20S proteasome. Archives of Biochemistry and Biophysics, 639, 52–58.CrossRefPubMed Hasinoff, B. B. (2018). Progress curve analysis of the kinetics of slow-binding anticancer drug inhibitors of the 20S proteasome. Archives of Biochemistry and Biophysics, 639, 52–58.CrossRefPubMed
23.
go back to reference Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.CrossRefPubMed Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.CrossRefPubMed
24.
go back to reference Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics, 356, 397–409.CrossRefPubMed Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics, 356, 397–409.CrossRefPubMed
25.
go back to reference Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.CrossRefPubMed Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.CrossRefPubMed
26.
go back to reference Hasinoff, B. B., Wu, X., Yadav, A. A., Patel, D., Zhang, H., Wang, D.-S., et al. (2015). Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). Biochemical Pharmacology, 93, 266–276.CrossRefPubMed Hasinoff, B. B., Wu, X., Yadav, A. A., Patel, D., Zhang, H., Wang, D.-S., et al. (2015). Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). Biochemical Pharmacology, 93, 266–276.CrossRefPubMed
27.
go back to reference Hasinoff, B. B., & Patel, D. (2017). Disulfiram is a slow-binding partial noncompetitive inhibitor of 20S proteasome activity. Archives of Biochemistry and Biophysics, 633, 23–28.CrossRefPubMed Hasinoff, B. B., & Patel, D. (2017). Disulfiram is a slow-binding partial noncompetitive inhibitor of 20S proteasome activity. Archives of Biochemistry and Biophysics, 633, 23–28.CrossRefPubMed
28.
go back to reference Xiong, R., Siegel, D., & Ross, D. (2013). The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chemico-Biological Interactions, 204, 116–124.CrossRefPubMedPubMedCentral Xiong, R., Siegel, D., & Ross, D. (2013). The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chemico-Biological Interactions, 204, 116–124.CrossRefPubMedPubMedCentral
29.
go back to reference Hasinoff, B. B. (2010). The pharmacology of dexrazoxane: Iron chelating prodrug and topoisomerase II inhibitor. In K. Hellmann & W. Rhomberg (Eds.), Razoxane and dexrazoxane—Two multifunctional agents (pp. 158–167). Dordrecht: Springer. Hasinoff, B. B. (2010). The pharmacology of dexrazoxane: Iron chelating prodrug and topoisomerase II inhibitor. In K. Hellmann & W. Rhomberg (Eds.), Razoxane and dexrazoxane—Two multifunctional agents (pp. 158–167). Dordrecht: Springer.
30.
go back to reference Herman, E., Hasinoff, B. B., Steiner, R., & Lipshultz, S. E. (2014). A review of the preclinical development of dexrazoxane. Progress in Pediatric Cardiology, 36, 33–38.CrossRef Herman, E., Hasinoff, B. B., Steiner, R., & Lipshultz, S. E. (2014). A review of the preclinical development of dexrazoxane. Progress in Pediatric Cardiology, 36, 33–38.CrossRef
31.
go back to reference Hasinoff, B. B., Patel, D., & Wu, X. (2017). The myocyte-damaging effects of the BCR-ABL1-targeted tyrosine kinase inhibitors increase with potency and decrease with specificity. Cardiovascular Toxicology, 17, 297–306.CrossRefPubMed Hasinoff, B. B., Patel, D., & Wu, X. (2017). The myocyte-damaging effects of the BCR-ABL1-targeted tyrosine kinase inhibitors increase with potency and decrease with specificity. Cardiovascular Toxicology, 17, 297–306.CrossRefPubMed
32.
go back to reference Willis, M. S., Schisler, J. C., Portbury, A. L., & Patterson, C. (2009). Build it up-Tear it down: Protein quality control in the cardiac sarcomere. Cardiovascular Research, 81, 439–448.CrossRefPubMed Willis, M. S., Schisler, J. C., Portbury, A. L., & Patterson, C. (2009). Build it up-Tear it down: Protein quality control in the cardiac sarcomere. Cardiovascular Research, 81, 439–448.CrossRefPubMed
33.
go back to reference Taylor, R. G., Tassy, C., Briand, M., Robert, N., Briand, Y., & Ouali, A. (1995). Proteolytic activity of proteasome on myofibrillar structures. Molecular Biology Reports, 21, 71–73.CrossRefPubMed Taylor, R. G., Tassy, C., Briand, M., Robert, N., Briand, Y., & Ouali, A. (1995). Proteolytic activity of proteasome on myofibrillar structures. Molecular Biology Reports, 21, 71–73.CrossRefPubMed
34.
go back to reference Portbury, A. L., Willis, M. S., & Patterson, C. (2011). Tearin’ up my heart: Proteolysis in the cardiac sarcomere. Journal of Biological Chemistry, 286, 9929–9934.CrossRefPubMed Portbury, A. L., Willis, M. S., & Patterson, C. (2011). Tearin’ up my heart: Proteolysis in the cardiac sarcomere. Journal of Biological Chemistry, 286, 9929–9934.CrossRefPubMed
35.
go back to reference Eble, D. M., Spragia, M. L., Ferguson, A. G., & Samarel, A. M. (1999). Sarcomeric myosin heavy chain is degraded by the proteasome. Cell and Tissue Research, 296, 541–548.CrossRefPubMed Eble, D. M., Spragia, M. L., Ferguson, A. G., & Samarel, A. M. (1999). Sarcomeric myosin heavy chain is degraded by the proteasome. Cell and Tissue Research, 296, 541–548.CrossRefPubMed
36.
go back to reference Reece, D. E., Sullivan, D., Lonial, S., Mohrbacher, A. F., Chatta, G., Shustik, C., et al. (2011). Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemotherapy and Pharmacology, 67, 57–67.CrossRefPubMed Reece, D. E., Sullivan, D., Lonial, S., Mohrbacher, A. F., Chatta, G., Shustik, C., et al. (2011). Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemotherapy and Pharmacology, 67, 57–67.CrossRefPubMed
37.
go back to reference Salvini, M., Troia, R., Giudice, D., Pautasso, C., Boccadoro, M., & Larocca, A. (2018). Pharmacokinetic drug evaluation of ixazomib citrate for the treatment of multiple myeloma. Expert Opinion on Drug Metabolism and Toxicology, 14, 91–99.CrossRefPubMed Salvini, M., Troia, R., Giudice, D., Pautasso, C., Boccadoro, M., & Larocca, A. (2018). Pharmacokinetic drug evaluation of ixazomib citrate for the treatment of multiple myeloma. Expert Opinion on Drug Metabolism and Toxicology, 14, 91–99.CrossRefPubMed
38.
go back to reference Gallerani, E., Zucchetti, M., Brunelli, D., Marangon, E., Noberasco, C., Hess, D., et al. (2013). A first in human phase I study of the proteasome inhibitor CEP-18770 in patients with advanced solid tumours and multiple myeloma. European Journal of Cancer, 49, 290–296.CrossRefPubMed Gallerani, E., Zucchetti, M., Brunelli, D., Marangon, E., Noberasco, C., Hess, D., et al. (2013). A first in human phase I study of the proteasome inhibitor CEP-18770 in patients with advanced solid tumours and multiple myeloma. European Journal of Cancer, 49, 290–296.CrossRefPubMed
39.
go back to reference Wang, Z., Yang, J., Kirk, C., Fang, Y., Alsina, M., Badros, A., et al. (2013). Clinical pharmacokinetics, metabolism, and drug–drug interaction of carfilzomib. Drug Metabolism and Disposition, 41, 230–237.CrossRefPubMed Wang, Z., Yang, J., Kirk, C., Fang, Y., Alsina, M., Badros, A., et al. (2013). Clinical pharmacokinetics, metabolism, and drug–drug interaction of carfilzomib. Drug Metabolism and Disposition, 41, 230–237.CrossRefPubMed
40.
go back to reference Infante, J. R., Mendelson, D. S., Burris III, H. A., Bendell, J. C., Tolcher, A. W., Gordon, M. S., et al. (2016). A first-in-human dose-escalation study of the oral proteasome inhibitor oprozomib in patients with advanced solid tumors. Investigational New Drugs, 34, 216–224.CrossRefPubMed Infante, J. R., Mendelson, D. S., Burris III, H. A., Bendell, J. C., Tolcher, A. W., Gordon, M. S., et al. (2016). A first-in-human dose-escalation study of the oral proteasome inhibitor oprozomib in patients with advanced solid tumors. Investigational New Drugs, 34, 216–224.CrossRefPubMed
Metadata
Title
Myocyte-Damaging Effects and Binding Kinetics of Boronic Acid and Epoxyketone Proteasomal-Targeted Drugs
Authors
Brian B. Hasinoff
Daywin Patel
Publication date
01-12-2018
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 6/2018
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9468-9

Other articles of this Issue 6/2018

Cardiovascular Toxicology 6/2018 Go to the issue