Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2017

01-07-2017

Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib

Published in: Cardiovascular Toxicology | Issue 3/2017

Login to get access

Abstract

Bortezomib and carfilzomib are anticancer drugs that target the proteasome. However, these agents have been shown to exhibit some specific cardiac toxicities by as yet unknown mechanisms. Bortezomib and carfilzomib are also being used clinically in combination with doxorubicin, which is also cardiotoxic. A primary neonatal rat myocyte model was used to study these cardiotoxic mechanisms. Exposure to submicromolar concentrations of bortezomib and carfilzomib resulted in significant myocyte damage and induced apoptosis. Both bortezomib and carfilzomib inhibited the chymotrypsin-like proteasomal activity of myocyte lysate in the low nanomolar concentration range and exhibited time-dependent inhibition kinetics. The high sensitivity of myocytes, which were determined to contain high specific levels of chymotrypsin-like proteasomal activity, to the damaging effects of bortezomib and carfilzomib was likely due to the inhibition of proteasomal-dependent ongoing sarcomeric protein turnover. A brief preexposure of myocytes to non-toxic nanomolar concentrations of bortezomib or carfilzomib greatly increased doxorubicin-mediated damage, which suggests that the combination of doxorubicin with either bortezomib or carfilzomib may produce more than additive cardiotoxicity. The doxorubicin cardioprotective agent dexrazoxane partially protected myocytes from doxorubicin plus bortezomib or carfilzomib treatment, in spite of the fact that bortezomib and carfilzomib inhibited the dexrazoxane-induced decreases in topoisomerase IIβ protein levels in myocytes. These latter results suggest that the doxorubicin cardioprotective effects of dexrazoxane and the doxorubicin-mediated cardiotoxicity were not exclusively due to targeting of topoisomerase IIβ.
Literature
1.
go back to reference Zhou, H. J., Aujay, M. A., Bennett, M. K., Dajee, M., Demo, S. D., Fang, Y., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.CrossRefPubMed Zhou, H. J., Aujay, M. A., Bennett, M. K., Dajee, M., Demo, S. D., Fang, Y., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.CrossRefPubMed
2.
go back to reference Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., et al. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67, 6383–6391.CrossRefPubMed Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., et al. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67, 6383–6391.CrossRefPubMed
3.
go back to reference Reece, D. E., Sullivan, D., Lonial, S., Mohrbacher, A. F., Chatta, G., Shustik, C., et al. (2011). Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemotherapy and Pharmacology, 67, 57–67.CrossRefPubMed Reece, D. E., Sullivan, D., Lonial, S., Mohrbacher, A. F., Chatta, G., Shustik, C., et al. (2011). Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemotherapy and Pharmacology, 67, 57–67.CrossRefPubMed
4.
go back to reference Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., et al. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70, 1970–1980.CrossRefPubMed Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., et al. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70, 1970–1980.CrossRefPubMed
5.
go back to reference Huber, E. M., Heinemeyer, W., Li, X., Arendt, C. S., Hochstrasser, M., & Groll, M. (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature Communications. doi:10.1038/ncomms10900. Huber, E. M., Heinemeyer, W., Li, X., Arendt, C. S., Hochstrasser, M., & Groll, M. (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature Communications. doi:10.​1038/​ncomms10900.
6.
go back to reference Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.CrossRefPubMed Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.CrossRefPubMed
7.
go back to reference Danhof, S., Schreder, M., Rasche, L., Strifler, S., Einsele, H., & Knop, S. (2016). ‘Real-life’ experience of preapproval carfilzomib-based therapy in myeloma—analysis of cardiac toxicity and predisposing factors. European Journal of Haematology, 97, 25–32.CrossRefPubMed Danhof, S., Schreder, M., Rasche, L., Strifler, S., Einsele, H., & Knop, S. (2016). ‘Real-life’ experience of preapproval carfilzomib-based therapy in myeloma—analysis of cardiac toxicity and predisposing factors. European Journal of Haematology, 97, 25–32.CrossRefPubMed
8.
go back to reference Siegel, D., Martin, T., Nooka, A., Harvey, R. D., Vij, R., Niesvizky, R., et al. (2013). Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica, 98, 1753–1761.CrossRefPubMedPubMedCentral Siegel, D., Martin, T., Nooka, A., Harvey, R. D., Vij, R., Niesvizky, R., et al. (2013). Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica, 98, 1753–1761.CrossRefPubMedPubMedCentral
9.
go back to reference Subedi, A., Sharma, L. R., & Shah, B. K. (2014). Bortezomib-induced acute congestive heart failure: A case report and review of literature. Annals of Hematology, 93, 1797–1799.CrossRefPubMed Subedi, A., Sharma, L. R., & Shah, B. K. (2014). Bortezomib-induced acute congestive heart failure: A case report and review of literature. Annals of Hematology, 93, 1797–1799.CrossRefPubMed
10.
go back to reference Manickam, P., Shenoy, M., Woldie, I., Hari, P., Tuliani, T., & Byrnes, T. (2011). Bortezomib-induced dilated cardiomyopathy—myth or reality? E-Journal of Cardiology, 1, 40–44. Manickam, P., Shenoy, M., Woldie, I., Hari, P., Tuliani, T., & Byrnes, T. (2011). Bortezomib-induced dilated cardiomyopathy—myth or reality? E-Journal of Cardiology, 1, 40–44.
11.
go back to reference Harvey, R. D. (2014). Incidence and management of adverse events in patients with relapsed and/or refractory multiple myeloma receiving single-agent carfilzomib. Clinical Pharmacology, 6, 87–96.PubMedPubMedCentral Harvey, R. D. (2014). Incidence and management of adverse events in patients with relapsed and/or refractory multiple myeloma receiving single-agent carfilzomib. Clinical Pharmacology, 6, 87–96.PubMedPubMedCentral
12.
go back to reference Xiao, Y., Yin, J., Wei, J., & Shang, Z. (2014). Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: A systematic review and meta-analysis. PLoS ONE, 9, e87671.CrossRefPubMedPubMedCentral Xiao, Y., Yin, J., Wei, J., & Shang, Z. (2014). Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: A systematic review and meta-analysis. PLoS ONE, 9, e87671.CrossRefPubMedPubMedCentral
13.
go back to reference Eble, D. M., Spragia, M. L., Ferguson, A. G., & Samarel, A. M. (1999). Sarcomeric myosin heavy chain is degraded by the proteasome. Cell and Tissue Research, 296, 541–548.CrossRefPubMed Eble, D. M., Spragia, M. L., Ferguson, A. G., & Samarel, A. M. (1999). Sarcomeric myosin heavy chain is degraded by the proteasome. Cell and Tissue Research, 296, 541–548.CrossRefPubMed
14.
go back to reference Portbury, A. L., Willis, M. S., & Patterson, C. (2011). Tearin’ up my heart: Proteolysis in the cardiac sarcomere. Journal of Biological Chemistry, 286, 9929–9934.CrossRefPubMedPubMedCentral Portbury, A. L., Willis, M. S., & Patterson, C. (2011). Tearin’ up my heart: Proteolysis in the cardiac sarcomere. Journal of Biological Chemistry, 286, 9929–9934.CrossRefPubMedPubMedCentral
15.
go back to reference Depre, C., Powell, S. R., & Wang, X. (2010). The role of the ubiquitin-proteasome pathway in cardiovascular disease. Cardiovascular Research, 85, 251–252.CrossRefPubMed Depre, C., Powell, S. R., & Wang, X. (2010). The role of the ubiquitin-proteasome pathway in cardiovascular disease. Cardiovascular Research, 85, 251–252.CrossRefPubMed
16.
go back to reference Orlowski, R. Z., Nagler, A., Sonneveld, P., Blade, J., Hajek, R., Spencer, A., et al. (2007). Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: Combination therapy improves time to progression. Journal of Clinical Oncology, 25, 3892–3901.CrossRefPubMed Orlowski, R. Z., Nagler, A., Sonneveld, P., Blade, J., Hajek, R., Spencer, A., et al. (2007). Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: Combination therapy improves time to progression. Journal of Clinical Oncology, 25, 3892–3901.CrossRefPubMed
17.
go back to reference Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21, 138–144.CrossRefPubMed Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21, 138–144.CrossRefPubMed
18.
go back to reference Raj, S., Franco, V. I., & Lipshultz, S. E. (2014). Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment. Current Treatment Options in Cardiovascular Mediciine, 16, 014–0315. Raj, S., Franco, V. I., & Lipshultz, S. E. (2014). Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment. Current Treatment Options in Cardiovascular Mediciine, 16, 014–0315.
19.
go back to reference Herman, E., Hasinoff, B. B., Steiner, R., & Lipshultz, S. E. (2014). A review of the preclinical development of dexrazoxane. Progress in Pediatric Cardiology, 36, 33–38.CrossRef Herman, E., Hasinoff, B. B., Steiner, R., & Lipshultz, S. E. (2014). A review of the preclinical development of dexrazoxane. Progress in Pediatric Cardiology, 36, 33–38.CrossRef
20.
go back to reference Hasinoff, B. B. (2008). The use of dexrazoxane for the prevention of anthracycline extravasation injury. Expert Opinion on Investigational Drugs, 17, 217–223.CrossRefPubMed Hasinoff, B. B. (2008). The use of dexrazoxane for the prevention of anthracycline extravasation injury. Expert Opinion on Investigational Drugs, 17, 217–223.CrossRefPubMed
21.
go back to reference Lyu, Y. L., Kerrigan, J. E., Lin, C. P., Azarova, A. M., Tsai, Y. C., Ban, Y., & Liu, L. F. (2007). Topoisomerase IIβ mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research, 67, 8839–8846.CrossRefPubMed Lyu, Y. L., Kerrigan, J. E., Lin, C. P., Azarova, A. M., Tsai, Y. C., Ban, Y., & Liu, L. F. (2007). Topoisomerase IIβ mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research, 67, 8839–8846.CrossRefPubMed
22.
go back to reference Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.CrossRefPubMed Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.CrossRefPubMed
23.
go back to reference Vejpongsa, P., & Yeh, E. T. (2014). Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clinical Pharmacology and Therapeutics, 95, 45–52.CrossRefPubMed Vejpongsa, P., & Yeh, E. T. (2014). Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clinical Pharmacology and Therapeutics, 95, 45–52.CrossRefPubMed
25.
go back to reference Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics, 356, 397–409.CrossRefPubMedPubMedCentral Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics, 356, 397–409.CrossRefPubMedPubMedCentral
26.
go back to reference Herman, E. H., Knapton, A., Rosen, E., Thompson, K., Rosenzweig, B., Estis, J., et al. (2011). A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicologic Pathology, 39, 1091–1106.CrossRefPubMed Herman, E. H., Knapton, A., Rosen, E., Thompson, K., Rosenzweig, B., Estis, J., et al. (2011). A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicologic Pathology, 39, 1091–1106.CrossRefPubMed
27.
go back to reference Wu, X., & Hasinoff, B. B. (2005). The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anti-Cancer Drugs, 16, 93–99.CrossRefPubMed Wu, X., & Hasinoff, B. B. (2005). The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anti-Cancer Drugs, 16, 93–99.CrossRefPubMed
28.
go back to reference Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.CrossRefPubMed Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.CrossRefPubMed
29.
go back to reference Xiong, R., Siegel, D., & Ross, D. (2013). The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chemico-Biological Interactions, 204, 116–124.CrossRefPubMedPubMedCentral Xiong, R., Siegel, D., & Ross, D. (2013). The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chemico-Biological Interactions, 204, 116–124.CrossRefPubMedPubMedCentral
30.
go back to reference Kitz, R., & Wilson, I. B. (1962). Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. Journal of Biological Chemistry, 237, 3245–3249.PubMed Kitz, R., & Wilson, I. B. (1962). Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. Journal of Biological Chemistry, 237, 3245–3249.PubMed
31.
go back to reference Copeland, R. A. (2005). Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. Hoboken, NJ: Wiley. Copeland, R. A. (2005). Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. Hoboken, NJ: Wiley.
32.
go back to reference Hasinoff, B. B., & Patel, D. (2010). Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovascular Toxicology, 10, 1–8.CrossRefPubMed Hasinoff, B. B., & Patel, D. (2010). Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovascular Toxicology, 10, 1–8.CrossRefPubMed
33.
go back to reference Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods in Enzymology, 260, 406–417.CrossRefPubMed Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods in Enzymology, 260, 406–417.CrossRefPubMed
34.
go back to reference Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.CrossRefPubMed Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.CrossRefPubMed
35.
go back to reference Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 7, 19–27.CrossRefPubMed Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 7, 19–27.CrossRefPubMed
36.
go back to reference Williamson, M. J., Blank, J. L., Bruzzese, F. J., Cao, Y., Daniels, J. S., Dick, L. R., et al. (2006). Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib. Molecular Cancer Therapeutics, 5, 3052–3061.CrossRefPubMed Williamson, M. J., Blank, J. L., Bruzzese, F. J., Cao, Y., Daniels, J. S., Dick, L. R., et al. (2006). Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib. Molecular Cancer Therapeutics, 5, 3052–3061.CrossRefPubMed
37.
go back to reference Hasinoff, B. B. (2010). The pharmacology of dexrazoxane: Iron chelating prodrug and topoisomerase II inhibitor. In K. Hellmann & W. Rhomberg (Eds.), Razoxane and Dexrazoxane—Two multifunctional agents (pp. 158–167). Dordrecht: Springer. Hasinoff, B. B. (2010). The pharmacology of dexrazoxane: Iron chelating prodrug and topoisomerase II inhibitor. In K. Hellmann & W. Rhomberg (Eds.), Razoxane and Dexrazoxane—Two multifunctional agents (pp. 158–167). Dordrecht: Springer.
38.
go back to reference Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7, 140–144.CrossRefPubMed Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7, 140–144.CrossRefPubMed
39.
go back to reference Engur, S., Dikmen, M., & Ozturk, Y. (2016). Comparison of antiproliferative and apoptotic effects of a novel proteasome inhibitor MLN2238 with bortezomib on K562 chronic myeloid leukemia cells. Immunopharmacology and Immunotoxicology, 38, 87–97.CrossRefPubMed Engur, S., Dikmen, M., & Ozturk, Y. (2016). Comparison of antiproliferative and apoptotic effects of a novel proteasome inhibitor MLN2238 with bortezomib on K562 chronic myeloid leukemia cells. Immunopharmacology and Immunotoxicology, 38, 87–97.CrossRefPubMed
40.
go back to reference Lipchick, B. C., Fink, E. E., & Nikiforov, M. A. (2016). Oxidative stress and proteasome inhibitors in multiple myeloma. Pharmacological Research, 105, 210–215.CrossRefPubMedPubMedCentral Lipchick, B. C., Fink, E. E., & Nikiforov, M. A. (2016). Oxidative stress and proteasome inhibitors in multiple myeloma. Pharmacological Research, 105, 210–215.CrossRefPubMedPubMedCentral
41.
go back to reference Maharjan, S., Oku, M., Tsuda, M., Hoseki, J., & Sakai, Y. (2014). Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Science Reports, 4, 5896.CrossRef Maharjan, S., Oku, M., Tsuda, M., Hoseki, J., & Sakai, Y. (2014). Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Science Reports, 4, 5896.CrossRef
42.
go back to reference Wang, Z., Yang, J., Kirk, C., Fang, Y., Alsina, M., Badros, A., et al. (2013). Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metabolism and Disposition, 41, 230–237.CrossRefPubMed Wang, Z., Yang, J., Kirk, C., Fang, Y., Alsina, M., Badros, A., et al. (2013). Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metabolism and Disposition, 41, 230–237.CrossRefPubMed
43.
go back to reference Hochster, H., Liebes, L., Wadler, S., Oratz, R., Wernz, J. C., Meyers, M., et al. (1992). Pharmacokinetics of the cardioprotector ADR-529 (ICRF-187) in escalating doses combined with fixed-dose doxorubicin. Journal of the National Cancer Institute, 84, 1725–1730.CrossRefPubMed Hochster, H., Liebes, L., Wadler, S., Oratz, R., Wernz, J. C., Meyers, M., et al. (1992). Pharmacokinetics of the cardioprotector ADR-529 (ICRF-187) in escalating doses combined with fixed-dose doxorubicin. Journal of the National Cancer Institute, 84, 1725–1730.CrossRefPubMed
44.
go back to reference Wang, X., Ibrahim, Y. F., Das, D., Zungu-Edmondson, M., Shults, N. V., & Suzuki, Y. J. (2016). Carfilzomib reverses pulmonary arterial hypertension. Cardiovascular Research, 110, 188–199.CrossRefPubMedPubMedCentral Wang, X., Ibrahim, Y. F., Das, D., Zungu-Edmondson, M., Shults, N. V., & Suzuki, Y. J. (2016). Carfilzomib reverses pulmonary arterial hypertension. Cardiovascular Research, 110, 188–199.CrossRefPubMedPubMedCentral
45.
go back to reference Fu, H. Y., Minamino, T., Tsukamoto, O., Sawada, T., Asai, M., Kato, H., et al. (2008). Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovascular Research, 79, 600–610.CrossRefPubMed Fu, H. Y., Minamino, T., Tsukamoto, O., Sawada, T., Asai, M., Kato, H., et al. (2008). Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovascular Research, 79, 600–610.CrossRefPubMed
46.
go back to reference Willis, M. S., Schisler, J. C., Portbury, A. L., & Patterson, C. (2009). Build it up-Tear it down: Protein quality control in the cardiac sarcomere. Cardiovascular Research, 81, 439–448.CrossRefPubMed Willis, M. S., Schisler, J. C., Portbury, A. L., & Patterson, C. (2009). Build it up-Tear it down: Protein quality control in the cardiac sarcomere. Cardiovascular Research, 81, 439–448.CrossRefPubMed
47.
go back to reference Taylor, R. G., Tassy, C., Briand, M., Robert, N., Briand, Y., & Ouali, A. (1995). Proteolytic activity of proteasome on myofibrillar structures. Molecular Biology Reports, 21, 71–73.CrossRefPubMed Taylor, R. G., Tassy, C., Briand, M., Robert, N., Briand, Y., & Ouali, A. (1995). Proteolytic activity of proteasome on myofibrillar structures. Molecular Biology Reports, 21, 71–73.CrossRefPubMed
48.
go back to reference Patel, M. B., & Majetschak, M. (2007). Distribution and interrelationship of ubiquitin proteasome pathway component activities and ubiquitin pools in various porcine tissues. Physiological Research, 56, 341–350.PubMed Patel, M. B., & Majetschak, M. (2007). Distribution and interrelationship of ubiquitin proteasome pathway component activities and ubiquitin pools in various porcine tissues. Physiological Research, 56, 341–350.PubMed
49.
go back to reference Spur, E.-M., Althof, N., Respondek, D., Klingel, K., Heuser, A., Overkleeft, H. S., & Voigt, A. (2016). Inhibition of chymotryptic-like standard proteasome activity exacerbates doxorubicin-induced cytotoxicity in primary cardiomyocytes. Toxicology, 353, 34–47.CrossRefPubMed Spur, E.-M., Althof, N., Respondek, D., Klingel, K., Heuser, A., Overkleeft, H. S., & Voigt, A. (2016). Inhibition of chymotryptic-like standard proteasome activity exacerbates doxorubicin-induced cytotoxicity in primary cardiomyocytes. Toxicology, 353, 34–47.CrossRefPubMed
50.
go back to reference Al-Harbi, N. O. (2016). Carfilzomib-induced cardiotoxicity mitigated by dexrazoxane through inhibition of hypertrophic gene expression and oxidative stress in rats. Toxicology Mechanisms and Methods, 26, 189–195.CrossRefPubMed Al-Harbi, N. O. (2016). Carfilzomib-induced cardiotoxicity mitigated by dexrazoxane through inhibition of hypertrophic gene expression and oxidative stress in rats. Toxicology Mechanisms and Methods, 26, 189–195.CrossRefPubMed
51.
go back to reference Wang, P., Calise, J., Powell, K., Divald, A., & Powell, S. R. (2014). Upregulation of proteasome activity rescues cardiomyocytes following pulse treatment with a proteasome inhibitor. American Journal of Cardiovascular Disease, 4, 6–13.PubMedPubMedCentral Wang, P., Calise, J., Powell, K., Divald, A., & Powell, S. R. (2014). Upregulation of proteasome activity rescues cardiomyocytes following pulse treatment with a proteasome inhibitor. American Journal of Cardiovascular Disease, 4, 6–13.PubMedPubMedCentral
Metadata
Title
Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib
Publication date
01-07-2017
Published in
Cardiovascular Toxicology / Issue 3/2017
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-016-9378-7

Other articles of this Issue 3/2017

Cardiovascular Toxicology 3/2017 Go to the issue