Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2017

01-07-2017

The Myocyte-Damaging Effects of the BCR-ABL1-Targeted Tyrosine Kinase Inhibitors Increase with Potency and Decrease with Specificity

Authors: Brian B. Hasinoff, Daywin Patel, Xing Wu

Published in: Cardiovascular Toxicology | Issue 3/2017

Login to get access

Abstract

Five clinically approved BCR-ABL1-targeted tyrosine kinase inhibitors (bosutinib, dasatinib, imatinib, nilotinib, and ponatinib) used for treating chronic myelogenous leukemia have been studied in a neonatal rat myocyte model for their relative ability to induce myocyte damage. This was done in order to determine if kinase inhibitor-induced myocyte damage was a consequence of inhibiting ABL1 (on-target effects), or due to a lack of kinase selectivity (off-target effects) since previous studies have come up with conflicting conclusions about whether imatinib-induced cardiotoxicity results directly from inhibition of ABL1. The most specific and least potent inhibitors, imatinib and nilotinib, induced the least myocyte damage, while the least specific and most potent inhibitors, ponatinib and dasatinib, induced the most damage. Inhibitor-induced myocyte damage also correlated with clinically observed cardiovascular toxicity. Growth inhibition of the erythroleukemic K562 human cell line with a constitutively active BCR-ABL1 kinase was negatively correlated with inhibitor-induced myocyte damage, which suggests that inhibition of ABL1 causes myocyte damage. Myocyte damage was also negatively correlated with inhibitor dissociation binding constants and with inhibition of enzymatic ABL1 kinase activity. Myocyte damage was also positively correlated with two measures of inhibitor selectivity, which suggests that a lack of inhibitor selectivity is responsible for myocyte damage. In conclusion, myocyte damage, and thus the cardiovascular toxicity of the BCR-ABL1-targeted tyrosine kinase inhibitors, is due to direct inhibition of ABL1 and/or their lack of inhibitor selectivity.
Literature
1.
go back to reference An, X., Tiwari, A. K., Sun, Y., Ding, P. R., Ashby, C. R., Jr., & Chen, Z. S. (2010). BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leukemia Research, 34, 1255–1268.CrossRefPubMed An, X., Tiwari, A. K., Sun, Y., Ding, P. R., Ashby, C. R., Jr., & Chen, Z. S. (2010). BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leukemia Research, 34, 1255–1268.CrossRefPubMed
2.
go back to reference Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 12, 908–916.CrossRefPubMed Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., et al. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 12, 908–916.CrossRefPubMed
3.
go back to reference Chen, M. H., Kerkela, R., & Force, T. (2008). Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation, 118, 84–95.CrossRefPubMedPubMedCentral Chen, M. H., Kerkela, R., & Force, T. (2008). Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation, 118, 84–95.CrossRefPubMedPubMedCentral
4.
go back to reference Yeh, E. T., & Bickford, C. L. (2009). Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. Journal of the American College of Cardiology, 53, 2231–2247.CrossRefPubMed Yeh, E. T., & Bickford, C. L. (2009). Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. Journal of the American College of Cardiology, 53, 2231–2247.CrossRefPubMed
5.
go back to reference Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 10, 111–126.CrossRefPubMed Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 10, 111–126.CrossRefPubMed
6.
go back to reference Mouhayar, E., Durand, J. B., & Cortes, J. (2013). Cardiovascular toxicity of tyrosine kinase inhibitors. Expert Opinion in Drug Safety, 12, 687–696.CrossRef Mouhayar, E., Durand, J. B., & Cortes, J. (2013). Cardiovascular toxicity of tyrosine kinase inhibitors. Expert Opinion in Drug Safety, 12, 687–696.CrossRef
7.
go back to reference Ewer, M. S., & Ewer, S. M. (2015). Cardiotoxicity of anticancer treatments. Nature Reviews Cardiology, 12, 547–558.CrossRefPubMed Ewer, M. S., & Ewer, S. M. (2015). Cardiotoxicity of anticancer treatments. Nature Reviews Cardiology, 12, 547–558.CrossRefPubMed
8.
go back to reference Quintas-Cardama, A., Kantarjian, H., & Cortes, J. (2007). Flying under the radar: The new wave of BCR-ABL inhibitors. Nature Reviews Drug Discovery, 6, 834–848.CrossRefPubMed Quintas-Cardama, A., Kantarjian, H., & Cortes, J. (2007). Flying under the radar: The new wave of BCR-ABL inhibitors. Nature Reviews Drug Discovery, 6, 834–848.CrossRefPubMed
9.
go back to reference Moslehi, J. J., & Deininger, M. (2015). Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. Journal of Clinical Oncology, 33, 4210–4218.CrossRefPubMedPubMedCentral Moslehi, J. J., & Deininger, M. (2015). Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. Journal of Clinical Oncology, 33, 4210–4218.CrossRefPubMedPubMedCentral
10.
go back to reference Shah, R. R., & Morganroth, J. (2015). Update on cardiovascular safety of tyrosine kinase inhibitors: With a special focus on QT Interval, left ventricular dysfunction and overall risk/benefit. Drug Safety, 38, 693–710.CrossRefPubMed Shah, R. R., & Morganroth, J. (2015). Update on cardiovascular safety of tyrosine kinase inhibitors: With a special focus on QT Interval, left ventricular dysfunction and overall risk/benefit. Drug Safety, 38, 693–710.CrossRefPubMed
11.
go back to reference Salvatorelli, E., Menna, P., Cantalupo, E., Chello, M., Covino, E., Wolf, F. I., et al. (2015). The concomitant management of cancer therapy and cardiac therapy. Biochimica et Biophysica Acta, 2015, 2727–2737.CrossRef Salvatorelli, E., Menna, P., Cantalupo, E., Chello, M., Covino, E., Wolf, F. I., et al. (2015). The concomitant management of cancer therapy and cardiac therapy. Biochimica et Biophysica Acta, 2015, 2727–2737.CrossRef
12.
go back to reference Pasvolsky, O., Leader, A., Iakobishvili, Z., Wasserstrum, Y., Kornowski, R., & Raanani, P. (2015). Tyrosine kinase inhibitor associated vascular toxicity in chronic myeloid leukemia. Cardio-Oncology,. doi:10.1186/s40959-015-0008-5. Pasvolsky, O., Leader, A., Iakobishvili, Z., Wasserstrum, Y., Kornowski, R., & Raanani, P. (2015). Tyrosine kinase inhibitor associated vascular toxicity in chronic myeloid leukemia. Cardio-Oncology,. doi:10.​1186/​s40959-015-0008-5.
13.
go back to reference Wolf, A., Couttet, P., Dong, M., Grenet, O., Heron, M., Junker, U., et al. (2010). Imatinib does not induce cardiotoxicity at clinically relevant concentrations in preclinical studies. Leukemia Research, 34, 1180–1188.CrossRefPubMed Wolf, A., Couttet, P., Dong, M., Grenet, O., Heron, M., Junker, U., et al. (2010). Imatinib does not induce cardiotoxicity at clinically relevant concentrations in preclinical studies. Leukemia Research, 34, 1180–1188.CrossRefPubMed
14.
go back to reference Hu, W., Lu, S., McAlpine, I., Jamieson, J. D., Lee, D. U., Marroquin, L. D., et al. (2012). Mechanistic investigation of imatinib-induced cardiac toxicity and the involvement of c-Abl kinase. Toxicological Sciences, 129, 188–199.CrossRefPubMed Hu, W., Lu, S., McAlpine, I., Jamieson, J. D., Lee, D. U., Marroquin, L. D., et al. (2012). Mechanistic investigation of imatinib-induced cardiac toxicity and the involvement of c-Abl kinase. Toxicological Sciences, 129, 188–199.CrossRefPubMed
15.
go back to reference Barr, L. A., Makarewich, C. A., Berretta, R. M., Gao, H., Troupes, C. D., Woitek, F., et al. (2014). Imatinib activates pathological hypertrophy by altering myocyte calcium regulation. Clinical and Translational Science, 7, 360–367.CrossRefPubMedPubMedCentral Barr, L. A., Makarewich, C. A., Berretta, R. M., Gao, H., Troupes, C. D., Woitek, F., et al. (2014). Imatinib activates pathological hypertrophy by altering myocyte calcium regulation. Clinical and Translational Science, 7, 360–367.CrossRefPubMedPubMedCentral
16.
go back to reference Rix, U., Hantschel, O., Durnberger, G., Remsing Rix, L. L., Planyavsky, M., Fernbach, N. V., et al. (2007). Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood, 110, 4055–4063.CrossRefPubMed Rix, U., Hantschel, O., Durnberger, G., Remsing Rix, L. L., Planyavsky, M., Fernbach, N. V., et al. (2007). Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood, 110, 4055–4063.CrossRefPubMed
17.
go back to reference Herman, E. H., Knapton, A., Rosen, E., Thompson, K., Rosenzweig, B., Estis, J., et al. (2011). A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicologic Pathology, 39, 1091–1106.CrossRefPubMed Herman, E. H., Knapton, A., Rosen, E., Thompson, K., Rosenzweig, B., Estis, J., et al. (2011). A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicologic Pathology, 39, 1091–1106.CrossRefPubMed
18.
go back to reference Hasinoff, B. B., & Patel, D. (2010). The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicology and Applied Pharmacology, 249, 132–139.CrossRefPubMed Hasinoff, B. B., & Patel, D. (2010). The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicology and Applied Pharmacology, 249, 132–139.CrossRefPubMed
19.
go back to reference Hasinoff, B. B. (2010). The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicology and Applied Pharmacology, 244, 190–195.CrossRefPubMed Hasinoff, B. B. (2010). The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicology and Applied Pharmacology, 244, 190–195.CrossRefPubMed
20.
go back to reference Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., et al. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology, 29, 1046–1051.CrossRefPubMed Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., et al. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology, 29, 1046–1051.CrossRefPubMed
21.
go back to reference Uitdehaag, J. C., de Roos, J. A., van Doornmalen, A. M., Prinsen, M. B., de Man, J., Tanizawa, Y., et al. (2014). Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS ONE, 9, e92146.CrossRefPubMedPubMedCentral Uitdehaag, J. C., de Roos, J. A., van Doornmalen, A. M., Prinsen, M. B., de Man, J., Tanizawa, Y., et al. (2014). Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS ONE, 9, e92146.CrossRefPubMedPubMedCentral
22.
go back to reference Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics, 356, 397–409.CrossRefPubMedPubMedCentral Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics, 356, 397–409.CrossRefPubMedPubMedCentral
23.
go back to reference Hasinoff, B. B., Patel, D., & Wu, X. (2016). Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib. Cardiovascular Toxicology,. doi:10.1007/s12012-016-9378-7. Hasinoff, B. B., Patel, D., & Wu, X. (2016). Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib. Cardiovascular Toxicology,. doi:10.​1007/​s12012-016-9378-7.
24.
go back to reference Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.CrossRefPubMed Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.CrossRefPubMed
25.
go back to reference O’Malley, Y. Q., Reszka, K. J., & Britigan, B. E. (2004). Direct oxidation of 2′,7′-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production. Free Radical Biology and Medicine, 36, 90–100.CrossRefPubMed O’Malley, Y. Q., Reszka, K. J., & Britigan, B. E. (2004). Direct oxidation of 2′,7′-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production. Free Radical Biology and Medicine, 36, 90–100.CrossRefPubMed
26.
go back to reference Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.CrossRefPubMed Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.CrossRefPubMed
27.
go back to reference McGahon, A., Bissonnette, R., Schmitt, M., Cotter, K. M., Green, D. R., & Cotter, T. G. (1994). BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood, 83, 1179–1187.PubMed McGahon, A., Bissonnette, R., Schmitt, M., Cotter, K. M., Green, D. R., & Cotter, T. G. (1994). BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood, 83, 1179–1187.PubMed
28.
go back to reference Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.CrossRefPubMed Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.CrossRefPubMed
29.
30.
go back to reference Cortes, J. E., Jean Khoury, H., Kantarjian, H., Brummendorf, T. H., Mauro, M. J., Matczak, E., et al. (2016). Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib. American Journal of Hematology, 91, 606–616.CrossRefPubMed Cortes, J. E., Jean Khoury, H., Kantarjian, H., Brummendorf, T. H., Mauro, M. J., Matczak, E., et al. (2016). Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib. American Journal of Hematology, 91, 606–616.CrossRefPubMed
Metadata
Title
The Myocyte-Damaging Effects of the BCR-ABL1-Targeted Tyrosine Kinase Inhibitors Increase with Potency and Decrease with Specificity
Authors
Brian B. Hasinoff
Daywin Patel
Xing Wu
Publication date
01-07-2017
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2017
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-016-9386-7

Other articles of this Issue 3/2017

Cardiovascular Toxicology 3/2017 Go to the issue