Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2018

01-06-2018

The Role of Soluble Epoxide Hydrolase Enzyme on Daunorubicin-Mediated Cardiotoxicity

Authors: Zaid H. Maayah, Ghada Abdelhamid, Osama H. Elshenawy, Ahmed A. El-Sherbeni, Hassan N. Althurwi, Erica McGinn, Doaa Dawood, Ahmad H. Alammari, Ayman O. S. El-Kadi

Published in: Cardiovascular Toxicology | Issue 3/2018

Login to get access

Abstract

Several studies have demonstrated the role of cytochrome P450 (CYP) and its associated arachidonic acid (AA) metabolites in the anthracyclines-induced cardiac toxicity. However, the ability of daunorubicin (DNR) to induce cardiotoxicity through the modulation of CYP and its associated AA metabolites has not been investigated yet. Therefore, we hypothesized that DNR-induced cardiotoxicity is mediated through the induction of cardiotoxic hydroxyeicosatetraenoic acids and/or the inhibition of cardioprotctive epoxyeicosatrienoic acids (EETs). To test our hypothesis, Sprague–Dawley rats were treated with DNR (5 mg/kg i.p.) for 24 h, whereas human ventricular cardiomyocytes RL-14 cells were exposed to DNR in the presence and absence of 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (tAUCB), a soluble epoxide hydrolase (sEH) inhibitor. Thereafter, real-time PCR, Western blot analysis and liquid chromatography-electron spray ionization mass spectroscopy were used to determine the level of gene expression, protein expression and AA metabolites, respectively. Our results showed that DNR-induced cardiotoxicity in vivo and in vitro as evidenced by the induction of hypertrophic and fibrotic markers. Moreover, the DNR-induced cardiotoxicity was associated with a dramatic increase in the formation of cardiac DHET/EET metabolites both in vivo and in RL-14 cells suggesting a sEH enzyme dependent mechanism. Interestingly, inhibition of sEH using tAUCB, a selective sEH inhibitor, significantly protects against DNR-induced cardiotoxicity. Mechanistically, the protective effect tAUCB was mediated through the induction of P50 nuclear factor-κB and the inhibition of phosphorylated p38. In conclusion, our study provides the first evidence that DNR induces cardiotoxicity through a sEH-mediated EETs degradation-dependent mechanism.
Literature
1.
go back to reference Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.CrossRefPubMed Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.CrossRefPubMed
2.
go back to reference Cernecka, H., Doka, G., Srankova, J., Pivackova, L., Malikova, E., Galkova, K., et al. (2016). Ramipril restores PPARbeta/delta and PPARgamma expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat. European Journal of Pharmacology, 791, 244–253.CrossRefPubMed Cernecka, H., Doka, G., Srankova, J., Pivackova, L., Malikova, E., Galkova, K., et al. (2016). Ramipril restores PPARbeta/delta and PPARgamma expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat. European Journal of Pharmacology, 791, 244–253.CrossRefPubMed
3.
go back to reference Takemura, G., & Fujiwara, H. (2007). Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Progress in Cardiovascular Diseases, 49, 330–352.CrossRefPubMed Takemura, G., & Fujiwara, H. (2007). Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Progress in Cardiovascular Diseases, 49, 330–352.CrossRefPubMed
4.
go back to reference Deng, S., Yan, T., Jendrny, C., Nemecek, A., Vincetic, M., Godtel-Armbrust, U., et al. (2014). Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer, 14, 842.CrossRefPubMedPubMedCentral Deng, S., Yan, T., Jendrny, C., Nemecek, A., Vincetic, M., Godtel-Armbrust, U., et al. (2014). Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer, 14, 842.CrossRefPubMedPubMedCentral
5.
go back to reference Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiological Reviews, 82, 131–185.CrossRefPubMed Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiological Reviews, 82, 131–185.CrossRefPubMed
6.
go back to reference Capdevila, J., Chacos, N., Werringloer, J., Prough, R. A., & Estabrook, R. W. (1981). Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proceedings of the National Academy of Sciences of the United States of America, 78, 5362–5366.CrossRefPubMedPubMedCentral Capdevila, J., Chacos, N., Werringloer, J., Prough, R. A., & Estabrook, R. W. (1981). Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proceedings of the National Academy of Sciences of the United States of America, 78, 5362–5366.CrossRefPubMedPubMedCentral
7.
go back to reference Maayah, Z. H., & El-Kadi, A. O. (2016). The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Archives of Toxicology, 90, 119–136.CrossRefPubMed Maayah, Z. H., & El-Kadi, A. O. (2016). The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Archives of Toxicology, 90, 119–136.CrossRefPubMed
8.
go back to reference Elshenawy, O. H., Anwar-Mohamed, A., & El-Kadi, A. O. (2013). 20-Hydroxyeicosatetraenoic acid is a potential therapeutic target in cardiovascular diseases. Current Drug Metabolism, 14, 706–719.CrossRefPubMed Elshenawy, O. H., Anwar-Mohamed, A., & El-Kadi, A. O. (2013). 20-Hydroxyeicosatetraenoic acid is a potential therapeutic target in cardiovascular diseases. Current Drug Metabolism, 14, 706–719.CrossRefPubMed
10.
go back to reference Maayah, Z. H., & El-Kadi, A. O. (2016). 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-kappaB-dependent mechanism. Archives of Toxicology, 90, 359–373.CrossRefPubMed Maayah, Z. H., & El-Kadi, A. O. (2016). 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-kappaB-dependent mechanism. Archives of Toxicology, 90, 359–373.CrossRefPubMed
11.
go back to reference Maayah, Z. H., Abdelhamid, G., & El-Kadi, A. O. (2015). Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-kappaB. Cell Biology and Toxicology, 31, 241–259.CrossRefPubMed Maayah, Z. H., Abdelhamid, G., & El-Kadi, A. O. (2015). Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-kappaB. Cell Biology and Toxicology, 31, 241–259.CrossRefPubMed
12.
go back to reference Elshenawy, O. H., Anwar-Mohamed, A., Abdelhamid, G., & El-Kadi, A. O. (2013). Murine atrial HL-1 cell line is a reliable model to study drug metabolizing enzymes in the heart. Vascular Pharmacology, 58, 326–333.CrossRefPubMed Elshenawy, O. H., Anwar-Mohamed, A., Abdelhamid, G., & El-Kadi, A. O. (2013). Murine atrial HL-1 cell line is a reliable model to study drug metabolizing enzymes in the heart. Vascular Pharmacology, 58, 326–333.CrossRefPubMed
13.
go back to reference Maayah, Z. H., Althurwi, H. N., El-Sherbeni, A. A., Abdelhamid, G., Siraki, A. G., & El-Kadi, A. O. (2017). The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Molecular and Cellular Biochemistry, 429, 151–165.CrossRefPubMed Maayah, Z. H., Althurwi, H. N., El-Sherbeni, A. A., Abdelhamid, G., Siraki, A. G., & El-Kadi, A. O. (2017). The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Molecular and Cellular Biochemistry, 429, 151–165.CrossRefPubMed
14.
go back to reference Althurwi, H. N., Elshenawy, O. H., & El-Kadi, A. O. (2014). Fenofibrate modulates cytochrome P450 and arachidonic acid metabolism in the heart and protects against isoproterenol-induced cardiac hypertrophy. Journal of Cardiovascular Pharmacology, 63, 167–177.CrossRefPubMed Althurwi, H. N., Elshenawy, O. H., & El-Kadi, A. O. (2014). Fenofibrate modulates cytochrome P450 and arachidonic acid metabolism in the heart and protects against isoproterenol-induced cardiac hypertrophy. Journal of Cardiovascular Pharmacology, 63, 167–177.CrossRefPubMed
15.
go back to reference Imig, J. D., Zhao, X., Capdevila, J. H., Morisseau, C., & Hammock, B. D. (2002). Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension, 39, 690–694.CrossRefPubMed Imig, J. D., Zhao, X., Capdevila, J. H., Morisseau, C., & Hammock, B. D. (2002). Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension, 39, 690–694.CrossRefPubMed
16.
go back to reference Althurwi, H. N., Tse, M. M., Abdelhamid, G., Zordoky, B. N., Hammock, B. D., & El-Kadi, A. O. (2013). Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. British Journal of Pharmacology, 168, 1794–1807.CrossRefPubMedPubMedCentral Althurwi, H. N., Tse, M. M., Abdelhamid, G., Zordoky, B. N., Hammock, B. D., & El-Kadi, A. O. (2013). Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. British Journal of Pharmacology, 168, 1794–1807.CrossRefPubMedPubMedCentral
17.
go back to reference Althurwi, H. N., Maayah, Z. H., Elshenawy, O. H., & El-Kadi, A. O. (2015). Early changes in cytochrome P450 s and their associated arachidonic acid metabolites play a crucial role in the initiation of cardiac hypertrophy induced by isoproterenol. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 43, 1254–1266.CrossRef Althurwi, H. N., Maayah, Z. H., Elshenawy, O. H., & El-Kadi, A. O. (2015). Early changes in cytochrome P450 s and their associated arachidonic acid metabolites play a crucial role in the initiation of cardiac hypertrophy induced by isoproterenol. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 43, 1254–1266.CrossRef
18.
go back to reference Maayah, Z. H., Althurwi, H. N., Abdelhamid, G., Lesyk, G., Jurasz, P., & El-Kadi, A. O. (2016). CYP1B1 inhibition attenuates doxorubicin-induced cardiotoxicity through a mid-chain HETEs-dependent mechanism. Pharmacological Research, 105, 28–43.CrossRefPubMed Maayah, Z. H., Althurwi, H. N., Abdelhamid, G., Lesyk, G., Jurasz, P., & El-Kadi, A. O. (2016). CYP1B1 inhibition attenuates doxorubicin-induced cardiotoxicity through a mid-chain HETEs-dependent mechanism. Pharmacological Research, 105, 28–43.CrossRefPubMed
19.
go back to reference Alsaad, A. M., Zordoky, B. N., El-Sherbeni, A. A., & El-Kadi, A. O. (2012). Chronic doxorubicin cardiotoxicity modulates cardiac cytochrome P450-mediated arachidonic acid metabolism in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 40, 2126–2135.CrossRef Alsaad, A. M., Zordoky, B. N., El-Sherbeni, A. A., & El-Kadi, A. O. (2012). Chronic doxorubicin cardiotoxicity modulates cardiac cytochrome P450-mediated arachidonic acid metabolism in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 40, 2126–2135.CrossRef
20.
go back to reference Zordoky, B. N., Anwar-Mohamed, A., Aboutabl, M. E., & El-Kadi, A. O. (2010). Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicology and Applied Pharmacology, 242, 38–46.CrossRefPubMed Zordoky, B. N., Anwar-Mohamed, A., Aboutabl, M. E., & El-Kadi, A. O. (2010). Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicology and Applied Pharmacology, 242, 38–46.CrossRefPubMed
21.
go back to reference Zordoky, B. N., Aboutabl, M. E., & El-Kadi, A. O. (2008). Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36, 2277–2286.CrossRef Zordoky, B. N., Aboutabl, M. E., & El-Kadi, A. O. (2008). Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36, 2277–2286.CrossRef
22.
go back to reference Maayah, Z. H., Ansari, M. A., El Gendy, M. A., Al-Arifi, M. N., & Korashy, H. M. (2014). Development of cardiac hypertrophy by sunitinib in vivo and in vitro rat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Archives of Toxicology, 88, 725–738.PubMed Maayah, Z. H., Ansari, M. A., El Gendy, M. A., Al-Arifi, M. N., & Korashy, H. M. (2014). Development of cardiac hypertrophy by sunitinib in vivo and in vitro rat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Archives of Toxicology, 88, 725–738.PubMed
23.
go back to reference Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.CrossRefPubMed Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.CrossRefPubMed
24.
go back to reference Chun, Y. J., Kim, S., Kim, D., Lee, S. K., & Guengerich, F. P. (2001). A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Research, 61, 8164–8170.PubMed Chun, Y. J., Kim, S., Kim, D., Lee, S. K., & Guengerich, F. P. (2001). A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Research, 61, 8164–8170.PubMed
25.
go back to reference El-Sherbeni, A. A., & El-Kadi, A. O. (2014). Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: The involvement of CYP1As. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 42, 1498–1507.CrossRef El-Sherbeni, A. A., & El-Kadi, A. O. (2014). Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: The involvement of CYP1As. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 42, 1498–1507.CrossRef
26.
go back to reference Liu, Y., Peterson, D. A., Kimura, H., & Schubert, D. (1997). Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Journal of Neurochemistry, 69, 581–593.CrossRefPubMed Liu, Y., Peterson, D. A., Kimura, H., & Schubert, D. (1997). Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Journal of Neurochemistry, 69, 581–593.CrossRefPubMed
27.
go back to reference Sambrook, J., Fritsch, E. F., & Maniatatis, T. (1989). In N. Ford (Ed.), Molecular cloning. A laboratory manual. Plainview, NY: Cold Spring Harbour Laboratory Press. Sambrook, J., Fritsch, E. F., & Maniatatis, T. (1989). In N. Ford (Ed.), Molecular cloning. A laboratory manual. Plainview, NY: Cold Spring Harbour Laboratory Press.
28.
go back to reference Andrews, N. C., & Faller, D. V. (1991). A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Research, 19, 2499.CrossRefPubMedPubMedCentral Andrews, N. C., & Faller, D. V. (1991). A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Research, 19, 2499.CrossRefPubMedPubMedCentral
29.
go back to reference Bhattacharya, N., Sarno, A., Idler, I. S., Fuhrer, M., Zenz, T., Dohner, H., et al. (2010). High-throughput detection of nuclear factor-kappaB activity using a sensitive oligo-based chemiluminescent enzyme-linked immunosorbent assay. International Journal of Cancer, 127, 404–411.PubMed Bhattacharya, N., Sarno, A., Idler, I. S., Fuhrer, M., Zenz, T., Dohner, H., et al. (2010). High-throughput detection of nuclear factor-kappaB activity using a sensitive oligo-based chemiluminescent enzyme-linked immunosorbent assay. International Journal of Cancer, 127, 404–411.PubMed
30.
go back to reference Horenstein, M. S., Vander Heide, R. S., & L’Ecuyer, T. J. (2000). Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Molecular Genetics and Metabolism, 71, 436–444.CrossRefPubMed Horenstein, M. S., Vander Heide, R. S., & L’Ecuyer, T. J. (2000). Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Molecular Genetics and Metabolism, 71, 436–444.CrossRefPubMed
31.
go back to reference Cusack, B. J., Young, S. P., & Olson, R. D. (1995). Daunorubicin and daunorubicinol pharmacokinetics in plasma and tissues in the rat. Cancer Chemotherapy and Pharmacology, 35, 213–218.CrossRefPubMed Cusack, B. J., Young, S. P., & Olson, R. D. (1995). Daunorubicin and daunorubicinol pharmacokinetics in plasma and tissues in the rat. Cancer Chemotherapy and Pharmacology, 35, 213–218.CrossRefPubMed
32.
go back to reference Freireich, E. J., Gehan, E. A., Rall, D. P., Schmidt, L. H., & Skipper, H. E. (1966). Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemotherapy Reports, 50, 219–244.PubMed Freireich, E. J., Gehan, E. A., Rall, D. P., Schmidt, L. H., & Skipper, H. E. (1966). Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemotherapy Reports, 50, 219–244.PubMed
33.
go back to reference Urbanova, D., Bubanska, E., Hrebik, M., & Mladosievicova, B. (2010). Heart transplant in a childhood leukemia survivor: A case report. Experimental and Clinical Transplantation: Official Journal of the Middle East Society for Organ Transplantation, 8, 79–81. Urbanova, D., Bubanska, E., Hrebik, M., & Mladosievicova, B. (2010). Heart transplant in a childhood leukemia survivor: A case report. Experimental and Clinical Transplantation: Official Journal of the Middle East Society for Organ Transplantation, 8, 79–81.
34.
go back to reference Urbanova, D., Urban, L., Danova, K., & Simkova, I. (2008). Natriuretic peptides: Biochemical markers of anthracycline cardiac toxicity? Oncology Research, 17, 51–58.CrossRefPubMed Urbanova, D., Urban, L., Danova, K., & Simkova, I. (2008). Natriuretic peptides: Biochemical markers of anthracycline cardiac toxicity? Oncology Research, 17, 51–58.CrossRefPubMed
35.
go back to reference Shan, K., Lincoff, A. M., & Young, J. B. (1996). Anthracycline-induced cardiotoxicity. Annals of Internal Medicine, 125, 47–58.CrossRefPubMed Shan, K., Lincoff, A. M., & Young, J. B. (1996). Anthracycline-induced cardiotoxicity. Annals of Internal Medicine, 125, 47–58.CrossRefPubMed
36.
go back to reference Bryant, J., Picot, J., Levitt, G., Sullivan, I., Baxter, L., & Clegg, A. (2007). Cardioprotection against the toxic effects of anthracyclines given to children with cancer: A systematic review. Health Technology Assessment, 11, 1–84.CrossRef Bryant, J., Picot, J., Levitt, G., Sullivan, I., Baxter, L., & Clegg, A. (2007). Cardioprotection against the toxic effects of anthracyclines given to children with cancer: A systematic review. Health Technology Assessment, 11, 1–84.CrossRef
37.
go back to reference Chen, C., Heusch, A., Donner, B., Janssen, G., Gobel, U., & Schmidt, K. G. (2009). Present risk of anthracycline or radiation-induced cardiac sequelae following therapy of malignancies in children and adolescents. Klinische Padiatrie, 221, 162–166.CrossRefPubMed Chen, C., Heusch, A., Donner, B., Janssen, G., Gobel, U., & Schmidt, K. G. (2009). Present risk of anthracycline or radiation-induced cardiac sequelae following therapy of malignancies in children and adolescents. Klinische Padiatrie, 221, 162–166.CrossRefPubMed
38.
go back to reference Lencova-Popelova, O., Jansova, H., Jirkovsky, E., Bures, J., Jirkovska-Vavrova, A., Mazurova, Y., et al. (2016). Are cardioprotective effects of NO-releasing drug molsidomine translatable to chronic anthracycline cardiotoxicity settings? Toxicology, 372, 52–63.CrossRefPubMed Lencova-Popelova, O., Jansova, H., Jirkovsky, E., Bures, J., Jirkovska-Vavrova, A., Mazurova, Y., et al. (2016). Are cardioprotective effects of NO-releasing drug molsidomine translatable to chronic anthracycline cardiotoxicity settings? Toxicology, 372, 52–63.CrossRefPubMed
39.
go back to reference Fatkin, D., McConnell, B. K., Mudd, J. O., Semsarian, C., Moskowitz, I. G., Schoen, F. J., et al. (2000). An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. The Journal of Clinical Investigation, 106, 1351–1359.CrossRefPubMedPubMedCentral Fatkin, D., McConnell, B. K., Mudd, J. O., Semsarian, C., Moskowitz, I. G., Schoen, F. J., et al. (2000). An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. The Journal of Clinical Investigation, 106, 1351–1359.CrossRefPubMedPubMedCentral
40.
go back to reference Kiriazis, H., & Kranias, E. G. (2000). Genetically engineered models with alterations in cardiac membrane calcium-handling proteins. Annual Review of Physiology, 62, 321–351.CrossRefPubMed Kiriazis, H., & Kranias, E. G. (2000). Genetically engineered models with alterations in cardiac membrane calcium-handling proteins. Annual Review of Physiology, 62, 321–351.CrossRefPubMed
41.
go back to reference Locher, M. R., Razumova, M. V., Stelzer, J. E., Norman, H. S., & Moss, R. L. (2011). Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 300, H869–H878.CrossRefPubMedPubMedCentral Locher, M. R., Razumova, M. V., Stelzer, J. E., Norman, H. S., & Moss, R. L. (2011). Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 300, H869–H878.CrossRefPubMedPubMedCentral
42.
go back to reference Neckar, J., Kopkan, L., Huskova, Z., Kolar, F., Papousek, F., Kramer, H. J., et al. (2012). Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clinical Science, 122, 513–525.CrossRefPubMedPubMedCentral Neckar, J., Kopkan, L., Huskova, Z., Kolar, F., Papousek, F., Kramer, H. J., et al. (2012). Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clinical Science, 122, 513–525.CrossRefPubMedPubMedCentral
43.
go back to reference Zhang, Y., El-Sikhry, H., Chaudhary, K. R., Batchu, S. N., Shayeganpour, A., Jukar, T. O., et al. (2009). Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity. American Journal of Physiology: Heart and Circulatory Physiology, 297, H37–H46.PubMedPubMedCentral Zhang, Y., El-Sikhry, H., Chaudhary, K. R., Batchu, S. N., Shayeganpour, A., Jukar, T. O., et al. (2009). Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity. American Journal of Physiology: Heart and Circulatory Physiology, 297, H37–H46.PubMedPubMedCentral
44.
go back to reference Yang, S., Lin, L., Chen, J. X., Lee, C. R., Seubert, J. M., Wang, Y., et al. (2007). Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. American Journal of Physiology: Heart and Circulatory Physiology, 293, H142–H151.CrossRefPubMedPubMedCentral Yang, S., Lin, L., Chen, J. X., Lee, C. R., Seubert, J. M., Wang, Y., et al. (2007). Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. American Journal of Physiology: Heart and Circulatory Physiology, 293, H142–H151.CrossRefPubMedPubMedCentral
45.
go back to reference Zordoky, B. N., Anwar-Mohamed, A., Aboutabl, M. E., & El-Kadi, A. O. (2011). Acute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39, 1440–1450.CrossRef Zordoky, B. N., Anwar-Mohamed, A., Aboutabl, M. E., & El-Kadi, A. O. (2011). Acute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39, 1440–1450.CrossRef
46.
go back to reference Liu, L., Chen, C., Gong, W., Li, Y., Edin, M. L., Zeldin, D. C., et al. (2011). Epoxyeicosatrienoic acids attenuate reactive oxygen species level, mitochondrial dysfunction, caspase activation, and apoptosis in carcinoma cells treated with arsenic trioxide. The Journal of Pharmacology and Experimental Therapeutics, 339, 451–463.CrossRefPubMedPubMedCentral Liu, L., Chen, C., Gong, W., Li, Y., Edin, M. L., Zeldin, D. C., et al. (2011). Epoxyeicosatrienoic acids attenuate reactive oxygen species level, mitochondrial dysfunction, caspase activation, and apoptosis in carcinoma cells treated with arsenic trioxide. The Journal of Pharmacology and Experimental Therapeutics, 339, 451–463.CrossRefPubMedPubMedCentral
47.
go back to reference Kroetz, D. L., & Zeldin, D. C. (2002). Cytochrome P450 pathways of arachidonic acid metabolism. Current Opinion in Lipidology, 13, 273–283.CrossRefPubMed Kroetz, D. L., & Zeldin, D. C. (2002). Cytochrome P450 pathways of arachidonic acid metabolism. Current Opinion in Lipidology, 13, 273–283.CrossRefPubMed
49.
go back to reference Zhao, X., Pollock, D. M., Inscho, E. W., Zeldin, D. C., & Imig, J. D. (2003). Decreased renal cytochrome P450 2C enzymes and impaired vasodilation are associated with angiotensin salt-sensitive hypertension. Hypertension, 41, 709–714.CrossRefPubMed Zhao, X., Pollock, D. M., Inscho, E. W., Zeldin, D. C., & Imig, J. D. (2003). Decreased renal cytochrome P450 2C enzymes and impaired vasodilation are associated with angiotensin salt-sensitive hypertension. Hypertension, 41, 709–714.CrossRefPubMed
50.
go back to reference Luo, G., Zeldin, D. C., Blaisdell, J. A., Hodgson, E., & Goldstein, J. A. (1998). Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Archives of Biochemistry and Biophysics, 357, 45–57.CrossRefPubMed Luo, G., Zeldin, D. C., Blaisdell, J. A., Hodgson, E., & Goldstein, J. A. (1998). Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Archives of Biochemistry and Biophysics, 357, 45–57.CrossRefPubMed
51.
go back to reference Yu, Z., Xu, F., Huse, L. M., Morisseau, C., Draper, A. J., Newman, J. W., et al. (2000). Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circulation Research, 87, 992–998.CrossRefPubMed Yu, Z., Xu, F., Huse, L. M., Morisseau, C., Draper, A. J., Newman, J. W., et al. (2000). Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circulation Research, 87, 992–998.CrossRefPubMed
52.
go back to reference Morisseau, C., & Hammock, B. D. (2005). Epoxide hydrolases: Mechanisms, inhibitor designs, and biological roles. Annual Review of Pharmacology and Toxicology, 45, 311–333.CrossRefPubMed Morisseau, C., & Hammock, B. D. (2005). Epoxide hydrolases: Mechanisms, inhibitor designs, and biological roles. Annual Review of Pharmacology and Toxicology, 45, 311–333.CrossRefPubMed
53.
go back to reference Xu, D., Li, N., He, Y., Timofeyev, V., Lu, L., Tsai, H. J., et al. (2006). Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 103, 18733–18738.CrossRefPubMedPubMedCentral Xu, D., Li, N., He, Y., Timofeyev, V., Lu, L., Tsai, H. J., et al. (2006). Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 103, 18733–18738.CrossRefPubMedPubMedCentral
54.
go back to reference Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nature Reviews Drug Discovery, 8, 794–805.CrossRefPubMedPubMedCentral Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nature Reviews Drug Discovery, 8, 794–805.CrossRefPubMedPubMedCentral
55.
go back to reference Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 22, 153–183.PubMed Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 22, 153–183.PubMed
56.
go back to reference Li, S. E. M., Mingyan, E., & Yu, B. (2008). Adriamycin induces myocardium apoptosis through activation of nuclear factor kappaB in rat. Molecular Biology Reports, 35, 489–494.CrossRefPubMed Li, S. E. M., Mingyan, E., & Yu, B. (2008). Adriamycin induces myocardium apoptosis through activation of nuclear factor kappaB in rat. Molecular Biology Reports, 35, 489–494.CrossRefPubMed
57.
go back to reference Ai, D., Pang, W., Li, N., Xu, M., Jones, P. D., Yang, J., et al. (2009). Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 106, 564–569.CrossRefPubMedPubMedCentral Ai, D., Pang, W., Li, N., Xu, M., Jones, P. D., Yang, J., et al. (2009). Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 106, 564–569.CrossRefPubMedPubMedCentral
58.
go back to reference Liu, Y., Dang, H., Li, D., Pang, W., Hammock, B. D., & Zhu, Y. (2012). Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice. PLoS ONE, 7, e39165.CrossRefPubMedPubMedCentral Liu, Y., Dang, H., Li, D., Pang, W., Hammock, B. D., & Zhu, Y. (2012). Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice. PLoS ONE, 7, e39165.CrossRefPubMedPubMedCentral
59.
go back to reference Frantz, S., Hu, K., Bayer, B., Gerondakis, S., Strotmann, J., Adamek, A., et al. (2006). Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20, 1918–1920.CrossRef Frantz, S., Hu, K., Bayer, B., Gerondakis, S., Strotmann, J., Adamek, A., et al. (2006). Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20, 1918–1920.CrossRef
60.
go back to reference Timmers, L., van Keulen, J. K., Hoefer, I. E., Meijs, M. F., van Middelaar, B., den Ouden, K., et al. (2009). Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circulation Research, 104, 699–706.CrossRefPubMed Timmers, L., van Keulen, J. K., Hoefer, I. E., Meijs, M. F., van Middelaar, B., den Ouden, K., et al. (2009). Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circulation Research, 104, 699–706.CrossRefPubMed
61.
go back to reference Gaspar-Pereira, S., Fullard, N., Townsend, P. A., Banks, P. S., Ellis, E. L., Fox, C., et al. (2012). The NF-kappaB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. The American Journal of Pathology, 180, 929–939.CrossRefPubMedPubMedCentral Gaspar-Pereira, S., Fullard, N., Townsend, P. A., Banks, P. S., Ellis, E. L., Fox, C., et al. (2012). The NF-kappaB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. The American Journal of Pathology, 180, 929–939.CrossRefPubMedPubMedCentral
62.
go back to reference Liu, Y., Webb, H. K., Fukushima, H., Micheli, J., Markova, S., Olson, J. L., et al. (2012). Attenuation of cisplatin-induced renal injury by inhibition of soluble epoxide hydrolase involves nuclear factor kappaB signaling. The Journal of Pharmacology and Experimental Therapeutics, 341, 725–734.CrossRefPubMedPubMedCentral Liu, Y., Webb, H. K., Fukushima, H., Micheli, J., Markova, S., Olson, J. L., et al. (2012). Attenuation of cisplatin-induced renal injury by inhibition of soluble epoxide hydrolase involves nuclear factor kappaB signaling. The Journal of Pharmacology and Experimental Therapeutics, 341, 725–734.CrossRefPubMedPubMedCentral
63.
go back to reference Wessells, J., Baer, M., Young, H. A., Claudio, E., Brown, K., Siebenlist, U., et al. (2004). BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. The Journal of Biological Chemistry, 279, 49995–50003.CrossRefPubMed Wessells, J., Baer, M., Young, H. A., Claudio, E., Brown, K., Siebenlist, U., et al. (2004). BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. The Journal of Biological Chemistry, 279, 49995–50003.CrossRefPubMed
64.
go back to reference Sawyer, D. B., Fukazawa, R., Arstall, M. A., & Kelly, R. A. (1999). Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circulation Research, 84, 257–265.CrossRefPubMed Sawyer, D. B., Fukazawa, R., Arstall, M. A., & Kelly, R. A. (1999). Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circulation Research, 84, 257–265.CrossRefPubMed
65.
go back to reference Dragojew, S., Marczak, A., Maszewski, J., Ilnicki, K., & Jozwiak, Z. (2008). The induction of apoptosis by daunorubicin and idarubicin in human trisomic and diabetic fibroblasts. Cellular & Molecular Biology Letters, 13, 182–194.CrossRef Dragojew, S., Marczak, A., Maszewski, J., Ilnicki, K., & Jozwiak, Z. (2008). The induction of apoptosis by daunorubicin and idarubicin in human trisomic and diabetic fibroblasts. Cellular & Molecular Biology Letters, 13, 182–194.CrossRef
66.
go back to reference Masquelier, M., Zhou, Q. F., Gruber, A., & Vitols, S. (2004). Relationship between daunorubicin concentration and apoptosis induction in leukemic cells. Biochemical Pharmacology, 67, 1047–1056.CrossRefPubMed Masquelier, M., Zhou, Q. F., Gruber, A., & Vitols, S. (2004). Relationship between daunorubicin concentration and apoptosis induction in leukemic cells. Biochemical Pharmacology, 67, 1047–1056.CrossRefPubMed
Metadata
Title
The Role of Soluble Epoxide Hydrolase Enzyme on Daunorubicin-Mediated Cardiotoxicity
Authors
Zaid H. Maayah
Ghada Abdelhamid
Osama H. Elshenawy
Ahmed A. El-Sherbeni
Hassan N. Althurwi
Erica McGinn
Doaa Dawood
Ahmad H. Alammari
Ayman O. S. El-Kadi
Publication date
01-06-2018
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2018
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9437-8

Other articles of this Issue 3/2018

Cardiovascular Toxicology 3/2018 Go to the issue