Skip to main content

Advertisement

Log in

5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Recent studies have established the role of mid-chain hydroxyeicosatetraenoic acids (HETEs) in the development of cardiovascular disease. Mid-chain HETEs have been reported to have vasoconstrictive and pro-inflammatory effects. However, whether mid-chain HETEs can induce cardiac hypertrophy remains unclear. Therefore, the overall objective of the present study was to elucidate the potential hypertrophic effect of mid-chain HETEs in the human ventricular cardiomyocytes, RL-14 cells, and to explore the mechanisms involved. For this purpose, RL-14 cells were treated with increasing concentrations of mid-chain HETEs (2.5, 5, 10 and 20 µM). Thereafter, the cardiac hypertrophy markers and cell size were determined using real-time polymerase chain reaction and phase contrast imaging, respectively. Phosphorylated mitogen-activated protein kinase (MAPK) level and nuclear factor kappa B (NF-κB) binding activity were determined. Our results showed that mid-chain HETEs induced cellular hypertrophy in RL-14 cells as evidenced by the induction of cardiac hypertrophy markers, α- and β-myocin heavy chain and atrial and brain natriuretic peptide as well as the increase in cell size. Mechanistically, all mid-chain HETEs were able to induce the binding activity of NF-κB to its responsive element in a HETE-dependent manner, and they significantly induced the phosphorylation of ERK 1/2. The induction of cellular hypertrophy was associated with proportional increase in the formation of dihydroxyeicosatrienoic acids parallel to the increase of soluble epoxide hydrolase enzyme activity. In conclusion, our study provides the first evidence that mid-chain HETEs induce cellular hypertrophy in RL-14 cells through MAPK- and NF-κB-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ai D, Pang W, Li N et al (2009) Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. Proc Natl Acad Sci USA 106(2):564–569. doi:10.1073/pnas.0811022106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92(10):1079–1088. doi:10.1161/01.RES.0000072977.86706.23

    Article  CAS  PubMed  Google Scholar 

  • Althurwi HN, Tse MM, Abdelhamid G, Zordoky BN, Hammock BD, El-Kadi AO (2013) Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br J Pharmacol 168(8):1794–1807. doi:10.1111/bph.12066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19(9):2499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40(10):2023–2039. doi:10.1016/j.biocel.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya N, Sarno A, Idler IS et al (2010) High-throughput detection of nuclear factor-kappaB activity using a sensitive oligo-based chemiluminescent enzyme-linked immunosorbent assay. Int J Cancer J Int du Cancer 127(2):404–411. doi:10.1002/ijc.25054

    CAS  Google Scholar 

  • Burhop KE, Selig WM, Malik AB (1988) Monohydroxyeicosatetraenoic acids (5-HETE and 15-HETE) induce pulmonary vasoconstriction and edema. Circ Res 62(4):687–698

    Article  CAS  PubMed  Google Scholar 

  • Capdevila J, Chacos N, Werringloer J, Prough RA, Estabrook RW (1981) Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proc Natl Acad Sci USA 78(9):5362–5366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cyrus T, Witztum JL, Rader DJ et al (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Investig 103(11):1597–1604. doi:10.1172/JCI5897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delozier TC, Kissling GE, Coulter SJ et al (2007) Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab Dispos 35(4):682–688. doi:10.1124/dmd.106.012823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elshenawy OH, Anwar-Mohamed A, El-Kadi AO (2013) 20-Hydroxyeicosatetraenoic acid is a potential therapeutic target in cardiovascular diseases. Curr Drug Metab 14(6):706–719

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Rapacciuolo A, Naga Prasad SV et al (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105(1):85–92

    Article  CAS  PubMed  Google Scholar 

  • Fava C, Ricci M, Melander O, Minuz P (2012) Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: a sex-specific relation? Prostaglandins Other Lipid Mediat 98(3–4):75–85. doi:10.1016/j.prostaglandins.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Nunez D, Claria J, Rivera F, Poch E (2001) Increased levels of 12(S)-HETE in patients with essential hypertension. Hypertension 37(2):334–338

    Article  CAS  PubMed  Google Scholar 

  • Grabellus F, Levkau B, Sokoll A et al (2002) Reversible activation of nuclear factor-kappaB in human end-stage heart failure after left ventricular mechanical support. Cardiovasc Res 53(1):124–130

    Article  CAS  PubMed  Google Scholar 

  • Gross GJ, Falck JR, Gross ER, Isbell M, Moore J, Nithipatikom K (2005) Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited. Cardiovasc Res 68(1):18–25. doi:10.1016/j.cardiores.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Zhang W, Chen J et al (2014) EPC-derived microvesicles protect cardiomyocytes from Ang II-induced hypertrophy and apoptosis. PLOS One 9(1):e85396. doi:10.1371/journal.pone.0085396

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirotani S, Otsu K, Nishida K et al (2002) Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105(4):509–515

    Article  CAS  PubMed  Google Scholar 

  • Imaoka S, Hashizume T, Funae Y (2005) Localization of rat cytochrome P450 in various tissues and comparison of arachidonic acid metabolism by rat P450 with that by human P450 orthologs. Drug Metab Pharmacokinet 20(6):478–484

    Article  CAS  PubMed  Google Scholar 

  • Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD (2002) Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 39(2 Pt 2):690–694

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CM, Cedars A, Gross RW (2009) Eicosanoid signalling pathways in the heart. Cardiovasc Res 82(2):240–249. doi:10.1093/cvr/cvn346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawano S, Kubota T, Monden Y et al (2005) Blockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovasc Res 67(4):689–698. doi:10.1016/j.cardiores.2005.04.030

    Article  CAS  PubMed  Google Scholar 

  • Kayama Y, Minamino T, Toko H et al (2009) Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med 206(7):1565–1574. doi:10.1084/jem.20082596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Korashy HM, El-Kadi AO (2004) Differential effects of mercury, lead and copper on the constitutive and inducible expression of aryl hydrocarbon receptor (AHR)-regulated genes in cultured hepatoma Hepa 1c1c7 cells. Toxicology 201(1–3):153–172. doi:10.1016/j.tox.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  • Leychenko A, Konorev E, Jijiwa M, Matter ML (2011) Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes. PLoS One 6(12):e29055. doi:10.1371/journal.pone.0029055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li S, Mingyan E, Yu B (2008) Adriamycin induces myocardium apoptosis through activation of nuclear factor kappaB in rat. Mol Biol Rep 35(4):489–494. doi:10.1007/s11033-007-9112-4

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Maayah ZH, El Gendy MA, El-Kadi AO, Korashy HM (2013) Sunitinib, a tyrosine kinase inhibitor, induces cytochrome P450 1A1 gene in human breast cancer MCF7 cells through ligand-independent aryl hydrocarbon receptor activation. Arch Toxicol 87(5):847–856. doi:10.1007/s00204-012-0996-y

    Article  CAS  PubMed  Google Scholar 

  • Maayah ZH, Ansari MA, El Gendy MA, Al-Arifi MN, Korashy HM (2014) Development of cardiac hypertrophy by sunitinib in vivo and in vitro rat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Arch Toxicol 88(3):725–738. doi:10.1007/s00204-013-1159-5

    CAS  PubMed  Google Scholar 

  • Modesti PA, Serneri GG, Gamberi T et al (2008) Impaired angiotensin II-extracellular signal-regulated kinase signaling in failing human ventricular myocytes. J Hypertens 26(10):2030–2039. doi:10.1097/HJH.0b013e328308de68

    Article  CAS  PubMed  Google Scholar 

  • Nozawa K, Tuck ML, Golub M, Eggena P, Nadler JL, Stern N (1990) Inhibition of lipoxygenase pathway reduces blood pressure in renovascular hypertensive rats. Am J Physiol 259(6 Pt 2):H1774–H1780

    CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183. doi:10.1210/edrv.22.2.0428

    CAS  PubMed  Google Scholar 

  • Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280(4):H1814–H1820

    CAS  PubMed  Google Scholar 

  • Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82(1):131–185. doi:10.1152/physrev.00021.2001

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Hori MT, Hino T, Golub MS, Tuck ML (1997) Elevated 12-lipoxygenase activity in the spontaneously hypertensive rat. Am J Hypertens 10(4 Pt 1):371–378

    CAS  PubMed  Google Scholar 

  • Schwartzman ML, da Silva JL, Lin F, Nishimura M, Abraham NG (1996) Cytochrome P450 4A expression and arachidonic acid omega-hydroxylation in the kidney of the spontaneously hypertensive rat. Nephron 73(4):652–663

    Article  CAS  PubMed  Google Scholar 

  • Sopontammarak S, Aliharoob A, Ocampo C, Arcilla RA, Gupta MP, Gupta M (2005) Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem Biophys 43(1):61–76. doi:10.1385/CBB:43:1:061

    Article  CAS  PubMed  Google Scholar 

  • Thorburn J, McMahon M, Thorburn A (1994) Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J Biol Chem 269(48):30580–30586

    CAS  PubMed  Google Scholar 

  • Tse MM, Aboutabl ME, Althurwi HN, Elshenawy OH, Abdelhamid G, El-Kadi AO (2013) Cytochrome P450 epoxygenase metabolite, 14,15-EET, protects against isoproterenol-induced cellular hypertrophy in H9c2 rat cell line. Vascul Pharmacol 58(5–6):363–373. doi:10.1016/j.vph.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  • Vanezis A, Thaitirarot C, Butt M, Squire I, Samani N, Rodrigo G (2014) 208 The PKC epsilon/AMPK ALPHA/ENOS pathway is implicated as a mechanism by which remote ischaemic conditioning attenuates endothelin-1 mediated cardiomyocyte hypertrophy. Heart 100(Suppl 3):A114. doi:10.1136/heartjnl-2014-306118.208

    Article  Google Scholar 

  • Wallukat G, Morwinski R, Kuhn H (1994) Modulation of the beta-adrenergic response of cardiomyocytes by specific lipoxygenase products involves their incorporation into phosphatidylinositol and activation of protein kinase C. J Biol Chem 269(46):29055–29060

    CAS  PubMed  Google Scholar 

  • Wu CC, Schwartzman ML (2011) The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat 96(1–4):45–53. doi:10.1016/j.prostaglandins.2011.06.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu D, Li N, He Y et al (2006) Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci USA 103(49):18733–18738. doi:10.1073/pnas.0609158103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yousif MH, Benter IF, Roman RJ (2009) Cytochrome P450 metabolites of arachidonic acid play a role in the enhanced cardiac dysfunction in diabetic rats following ischaemic reperfusion injury. Auton Autacoid Pharmacol 29(1–2):33–41. doi:10.1111/j.1474-8673.2009.00429.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Z, Xu F, Huse LM et al (2000) Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res 87(11):992–998

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Elimban V, Nijjar MS, Gupta SK, Dhalla NS (2003) Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Exp Clin Cardiol 8(4):173–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zong J, Zhang DP, Zhou H et al (2013) Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling. J Cell Biochem 114(5):1058–1065. doi:10.1002/jcb.24445

    Article  CAS  PubMed  Google Scholar 

  • Zordoky BN, El-Kadi AO (2010) Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 125(3):446–463. doi:10.1016/j.pharmthera.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Zordoky BN, Aboutabl ME, El-Kadi AO (2008) Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats. Drug Metab Dispos 36(11):2277–2286. doi:10.1124/dmd.108.023077

    Article  CAS  PubMed  Google Scholar 

  • Zordoky BN, Anwar-Mohamed A, Aboutabl ME, El-Kadi AO (2010) Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicol Appl Pharmacol 242(1):38–46. doi:10.1016/j.taap.2009.09.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research [Grant 106665] to A.O.S.E. Z.H.M. is the recipient of University of Alberta Doctoral Recruitment Scholarship. We are grateful to Dr. Vishwa Somayaji for technical assistance with LCMS.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman O. S. El-Kadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maayah, Z.H., El-Kadi, A.O.S. 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism. Arch Toxicol 90, 359–373 (2016). https://doi.org/10.1007/s00204-014-1419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1419-z

Keywords

Navigation