Skip to main content
Log in

The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Numerous experimental studies have demonstrated the role of cytochrome P450 1B1 (CYP1B1) and its associated mid-chain hydroxyeicosatetraenoic acids (mid-chain HETEs) metabolite in the pathogenesis of cardiac hypertrophy. However, the ability of isoproterenol (ISO) to induce cardiac hypertrophy through mid-chain HETEs has not been investigated yet. Therefore, we hypothesized that ISO induces cardiac hypertrophy through the induction of CYP1B1 and its associated mid-chain HETE metabolites. To test our hypothesis, Sprague–Dawley rats were treated with ISO (5 mg/kg i.p.) for 12 and 72 h whereas, human ventricular cardiomyocytes RL-14 cells were exposed to 100 μM ISO in the presence and absence of 0.5 μM tetramethoxystilbene (TMS) a selective CYP1B1 inhibitor, or 25 nM CYP1B1-siRNA. Moreover, RL-14 cells were transiently transfected with the CRISPR-CYP1B1 plasmid. Thereafter, real-time PCR, western blot analysis, and liquid chromatography–electrospray ionization mass spectroscopy were used to determine the level of gene expression, protein expression, and mid-chain HETEs, respectively. Our results showed that ISO induced CYP1B1 protein expression and the level of cardiac mid-chain HETEs in vivo at pre-hypertrophic and hypertrophic stage. In vitro, inhibition of CYP1B1 using TMS or CYP1B1-siRNA significantly attenuates ISO-induced hypertrophy. Furthermore, overexpression of CYP1B1 significantly induced cellular hypertrophy and mid-chain HETEs metabolite. Mechanistically, the protective effect of TMS against cardiac hypertrophy was mediated through the modulation of superoxide anion, mitogen-activated protein kinases (MAPKs), and nuclear factor-κB (NF-κB). In conclusion, our study provides the first evidence that CYP1B1 and its associated mid-chain HETE metabolites are directly involved in the ISO-induced cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vakili BA, Okin PM, Devereux RB (2001) Prognostic implications of left ventricular hypertrophy. Am Heart J 141:334–341. doi:10.1067/mhj.2001.113218

    Article  CAS  PubMed  Google Scholar 

  2. Carreno JE, Apablaza F, Ocaranza MP, Jalil JE (2006) Cardiac hypertrophy: molecular and cellular events. Rev Esp Cardiol 59:473–486

    Article  PubMed  Google Scholar 

  3. Berenji K, Drazner MH, Rothermel BA, Hill JA (2005) Does load-induced ventricular hypertrophy progress to systolic heart failure? Am J Physiol Heart Circ Physiol 289:H8–H16. doi:10.1152/ajpheart.01303.2004

    Article  CAS  PubMed  Google Scholar 

  4. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347:1397–1402. doi:10.1056/NEJMoa020265

    Article  PubMed  Google Scholar 

  5. Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82:131–185. doi:10.1152/physrev.00021.2001

    Article  CAS  PubMed  Google Scholar 

  6. Zordoky BN, El-Kadi AO (2010) Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 125:446–463. doi:10.1016/j.pharmthera.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Elshenawy OH, Anwar-Mohamed A, El-Kadi AO (2013) 20-Hydroxyeicosatetraenoic acid is a potential therapeutic target in cardiovascular diseases. Curr Drug Metab 14:706–719

    Article  CAS  PubMed  Google Scholar 

  8. Elshenawy OH, Anwar-Mohamed A, Abdelhamid G, El-Kadi AO (2013) Murine atrial HL-1 cell line is a reliable model to study drug metabolizing enzymes in the heart. Vascul Pharmacol 58:326–333. doi:10.1016/j.vph.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  9. Korashy HM, El-Kadi AO (2006) The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab Rev 38:411–450. doi:10.1080/03602530600632063

    Article  CAS  PubMed  Google Scholar 

  10. Malik KU, Jennings BL, Yaghini FA, Sahan-Firat S, Song CY, Estes AM, Fang XR (2012) Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents. Prostaglandins Other Lipid Mediat 98:69–74. doi:10.1016/j.prostaglandins.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Thum T, Borlak J (2002) Testosterone, cytochrome P450, and cardiac hypertrophy. FASEB J 16:1537–1549. doi:10.1096/fj.02-0138com

    Article  CAS  PubMed  Google Scholar 

  12. Zordoky BN, Aboutabl ME, El-Kadi AO (2008) Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats. Drug Metab Dispos 36:2277–2286. doi:10.1124/dmd.108.023077

    Article  CAS  PubMed  Google Scholar 

  13. Jennings BL, Anderson LJ, Estes AM, Yaghini FA, Fang XR, Porter J, Gonzalez FJ, Campbell WB, Malik KU (2012) Cytochrome P450 1B1 contributes to renal dysfunction and damage caused by angiotensin II in mice. Hypertension 59:348–354. doi:10.1161/HYPERTENSIONAHA.111.183301

    Article  CAS  PubMed  Google Scholar 

  14. El-Sherbeni AA, El-Kadi AO (2014) Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol 87:456–466. doi:10.1016/j.bcp.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Jennings BL, Estes AM, Anderson LJ, Fang XR, Yaghini FA, Fan Z, Gonzalez FJ, Campbell WB, Malik KU (2012) Cytochrome P450 1B1 gene disruption minimizes deoxycorticosterone acetate-salt-induced hypertension and associated cardiac dysfunction and renal damage in mice. Hypertension 60:1510–1516. doi:10.1161/HYPERTENSIONAHA.112.202606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morgan ET (2001) Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos 29:207–212

    CAS  PubMed  Google Scholar 

  17. Maayah ZH, El-Kadi AO (2016) The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Arch Toxicol 90:119–136. doi:10.1007/s00204-015-1620-8

    Article  CAS  PubMed  Google Scholar 

  18. Jenkins CM, Cedars A, Gross RW (2009) Eicosanoid signalling pathways in the heart. Cardiovasc Res 82:240–249. doi:10.1093/cvr/cvn346

    Article  CAS  PubMed  Google Scholar 

  19. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 103:1597–1604. doi:10.1172/JCI5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nozawa K, Tuck ML, Golub M, Eggena P, Nadler JL, Stern N (1990) Inhibition of lipoxygenase pathway reduces blood pressure in renovascular hypertensive rats. Am J Physiol 259:H1774–H1780

    CAS  PubMed  Google Scholar 

  21. Maayah ZH, El-Kadi AO (2015) 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-kappaB-dependent mechanism. Arch Toxicol. doi:10.1007/s00204-014-1419-z

    Google Scholar 

  22. Maayah ZH, El-Kadi AO (2015) The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Arch Toxicol. doi:10.1007/s00204-015-1620-8

    Google Scholar 

  23. Maayah ZH, Abdelhamid G, El-Kadi AO (2015) Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-kappaB. Cell Biol Toxicol. doi:10.1007/s10565-015-9308-7

    PubMed  Google Scholar 

  24. Burhop KE, Selig WM, Malik AB (1988) Monohydroxyeicosatetraenoic acids (5-HETE and 15-HETE) induce pulmonary vasoconstriction and edema. Circ Res 62:687–698

    Article  CAS  PubMed  Google Scholar 

  25. Wen Y, Gu J, Peng X, Zhang G, Nadler J (2003) Overexpression of 12-lipoxygenase and cardiac fibroblast hypertrophy. Trends Cardiovasc Med 13:129–136

    Article  CAS  PubMed  Google Scholar 

  26. Wen Y, Gu J, Liu Y, Wang PH, Sun Y, Nadler JL (2001) Overexpression of 12-lipoxygenase causes cardiac fibroblast cell growth. Circ Res 88:70–76

    Article  CAS  PubMed  Google Scholar 

  27. Wallukat G, Morwinski R, Kuhn H (1994) Modulation of the beta-adrenergic response of cardiomyocytes by specific lipoxygenase products involves their incorporation into phosphatidylinositol and activation of protein kinase C. J Biol Chem 269:29055–29060

    CAS  PubMed  Google Scholar 

  28. Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H, Okada S, Tateno K, Moriya J, Yokoyama M, Nojima A, Yoshimura M, Egashira K, Aburatani H, Komuro I (2009) Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med 206:1565–1574. doi:10.1084/jem.20082596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Molojavyi A, Lindecke A, Raupach A, Moellendorf S, Kohrer K, Godecke A (2010) Myoglobin-deficient mice activate a distinct cardiac gene expression program in response to isoproterenol-induced hypertrophy. Physiol Genomics 41:137–145. doi:10.1152/physiolgenomics.90297.2008

    Article  CAS  PubMed  Google Scholar 

  30. Osadchii OE (2007) Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev 12:66–86. doi:10.1007/s10741-007-9007-4

    Article  CAS  PubMed  Google Scholar 

  31. Meszaros J, Levai G (1990) Ultrastructural and electrophysiological alterations during the development of catecholamine-induced cardiac hypertrophy and failure. Acta Biol Hung 41:289–307

    CAS  PubMed  Google Scholar 

  32. Doggrell SA, Brown L (1998) Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39:89–105

    Article  CAS  PubMed  Google Scholar 

  33. Oyama N, Urasawa K, Kaneta S, Sakai H, Saito T, Takagi C, Yoshida I, Kitabatake A, Tsutsui H (2005) Chronic beta-adrenergic receptor stimulation enhances the expression of G-Protein coupled receptor kinases, GRK2 and GRK5, in both the heart and peripheral lymphocytes. Circ J 69:987–990

    Article  CAS  PubMed  Google Scholar 

  34. Chun YJ, Kim S, Kim D, Lee SK, Guengerich FP (2001) A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Res 61:8164–8170

    CAS  PubMed  Google Scholar 

  35. El-Sherbeni AA, El-Kadi AO (2014) Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: the involvement of CYP1As. Drug Metab Dispos 42:1498–1507. doi:10.1124/dmd.114.057836

    Article  PubMed  Google Scholar 

  36. Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593

    Article  CAS  PubMed  Google Scholar 

  37. Sambrook J, Fritsch EF and Maniatatis T (1989) In: Ford, N. (Ed.), Molecular Cloning. A Laboratory Manual. Cold Spring Harbour Laboratory Press, Plainview.

    Google Scholar 

  38. Davidson MM (2007) Immortalization of human post-mitotic cells. Google Patents

  39. Maayah ZH, Elshenawy OH, Althurwi HN, Abdelhamid G, El-Kadi AO (2014) Human fetal ventricular cardiomyocyte, RL-14 cell line, is a promising model to study drug metabolizing enzymes and their associated arachidonic acid metabolites. J Pharmacol Toxicol Methods. doi:10.1016/j.vascn.2014.11.005

    PubMed  Google Scholar 

  40. Maayah ZH, El Gendy MA, El-Kadi AO, Korashy HM (2013) Sunitinib, a tyrosine kinase inhibitor, induces cytochrome P450 1A1 gene in human breast cancer MCF7 cells through ligand-independent aryl hydrocarbon receptor activation. Arch Toxicol 87:847–856. doi:10.1007/s00204-012-0996-y

    Article  CAS  PubMed  Google Scholar 

  41. Maayah ZH, Ansari MA, El Gendy MA, Al-Arifi MN, Korashy HM (2014) Development of cardiac hypertrophy by sunitinib in vivo and in vitro rat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Arch Toxicol 88:725–738. doi:10.1007/s00204-013-1159-5

    CAS  PubMed  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  43. Tse MM, Aboutabl ME, Althurwi HN, Elshenawy OH, Abdelhamid G, El-Kadi AO (2013) Cytochrome P450 epoxygenase metabolite, 14,15-EET, protects against isoproterenol-induced cellular hypertrophy in H9c2 rat cell line. Vascul Pharmacol 58:363–373. doi:10.1016/j.vph.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  44. Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhattacharya N, Sarno A, Idler IS, Fuhrer M, Zenz T, Dohner H, Stilgenbauer S, Mertens D (2010) High-throughput detection of nuclear factor-kappaB activity using a sensitive oligo-based chemiluminescent enzyme-linked immunosorbent assay. Int J Cancer 127:404–411. doi:10.1002/ijc.25054

    CAS  PubMed  Google Scholar 

  46. Zordoky BN, Anwar-Mohamed A, Aboutabl ME, El-Kadi AO (2010) Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicol Appl Pharmacol 242:38–46. doi:10.1016/j.taap.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  47. Althurwi HN, Maayah ZH, Elshenawy OH, El-Kadi AO (2015) Early changes in cytochrome P450s and their associated arachidonic acid metabolites play a crucial role in the initiation of cardiac hypertrophy induced by isoproterenol. Drug Metab Dispos 43:1254–1266. doi:10.1124/dmd.115.063776

    Article  CAS  PubMed  Google Scholar 

  48. Jennings BL, Montanez DE, May ME Jr, Estes AM, Fang XR, Yaghini FA, Kanu A, Malik KU (2014) Cytochrome P450 1B1 contributes to increased blood pressure and cardiovascular and renal dysfunction in spontaneously hypertensive rats. Cardiovasc Drugs Ther 28:145–161. doi:10.1007/s10557-014-6510-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maayah ZH, Althurwi HN, Abdelhamid G, Lesyk G, Jurasz P, El-Kadi AO (2016) CYP1B1 inhibition attenuates doxorubicin-induced cardiotoxicity through a mid-chain HETEs-dependent mechanism. Pharmacol Res. doi:10.1016/j.phrs.2015.12.016

    PubMed  Google Scholar 

  50. Nieves D, Moreno JJ (2006) Hydroxyeicosatetraenoic acids released through the cytochrome P-450 pathway regulate 3T6 fibroblast growth. J Lipid Res 47:2681–2689. doi:10.1194/jlr.M600212-JLR200

    Article  CAS  PubMed  Google Scholar 

  51. Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40:2023–2039. doi:10.1016/j.biocel.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  52. Fatkin D, McConnell BK, Mudd JO, Semsarian C, Moskowitz IG, Schoen FJ, Giewat M, Seidman CE, Seidman JG (2000) An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J Clin Invest 106:1351–1359. doi:10.1172/JCI11093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kiriazis H, Kranias EG (2000) Genetically engineered models with alterations in cardiac membrane calcium-handling proteins. Annu Rev Physiol 62:321–351. doi:10.1146/annurev.physiol.62.1.321

    Article  CAS  PubMed  Google Scholar 

  54. Locher MR, Razumova MV, Stelzer JE, Norman HS, Moss RL (2011) Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium. Am J Physiol Heart Circ Physiol 300:H869–H878. doi:10.1152/ajpheart.00452.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Lemos JA, McGuire DK, Drazner MH (2003) B-type natriuretic peptide in cardiovascular disease. The Lancet 362:316–322. doi:10.1016/S0140-6736(03)13976-1

    Article  Google Scholar 

  56. Latini R, Masson S, de Angelis N, Anand I (2002) Role of brain natriuretic peptide in the diagnosis and management of heart failure: current concepts. J Card Fail 8:288–299

    Article  CAS  PubMed  Google Scholar 

  57. Cox EJ, Marsh SA (2014) A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes. PLoS One 9:e92903. doi:10.1371/journal.pone.0092903

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sahan-Firat S, Jennings BL, Yaghini FA, Song CY, Estes AM, Fang XR, Farjana N, Khan AI, Malik KU (2010) 2,3′,4,5′-Tetramethoxystilbene prevents deoxycorticosterone-salt-induced hypertension: contribution of cytochrome P-450 1B1. Am J Physiol Heart Circ Physiol 299:H1891–H1901. doi:10.1152/ajpheart.00655.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aboutabl ME, Zordoky BN, El-Kadi AO (2009) 3-methylcholanthrene and benzo(a)pyrene modulate cardiac cytochrome P450 gene expression and arachidonic acid metabolism in male Sprague Dawley rats. Br J Pharmacol 158:1808–1819. doi:10.1111/j.1476-5381.2009.00461.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zordoky BN, El-Kadi AO (2010) 2,3,7,8-Tetrachlorodibenzo-p-dioxin and beta-naphthoflavone induce cellular hypertrophy in H9c2 cells by an aryl hydrocarbon receptor-dependant mechanism. Toxicol In Vitro 24:863–871. doi:10.1016/j.tiv.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  61. Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB (2004) Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos 32:840–847

    Article  CAS  PubMed  Google Scholar 

  62. Wassmann S, Laufs U, Baumer AT, Muller K, Konkol C, Sauer H, Bohm M, Nickenig G (2001) Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 59:646–654

    CAS  PubMed  Google Scholar 

  63. Xie Z, Kometiani P, Liu J, Li J, Shapiro JI, Askari A (1999) Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 274:19323–19328

    Article  CAS  PubMed  Google Scholar 

  64. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka K, Honda M, Takabatake T (2001) Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol 37:676–685

    Article  CAS  PubMed  Google Scholar 

  66. Kopf PG, Huwe JK, Walker MK (2008) Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovasc Toxicol 8:181–193. doi:10.1007/s12012-008-9027-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang W, Elimban V, Nijjar MS, Gupta SK, Dhalla NS (2003) Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Exp. Clin Cardiol 8:173–183

    CAS  Google Scholar 

  68. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183. doi:10.1210/edrv.22.2.0428

    CAS  PubMed  Google Scholar 

  69. Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai HJ, Kim IH, Tuteja D, Mateo RK, Singapuri A, Davis BB, Low R, Hammock BD, Chiamvimonvat N (2006) Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci U S A 103:18733–18738. doi:10.1073/pnas.0609158103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li S EM, Yu B (2008) Adriamycin induces myocardium apoptosis through activation of nuclear factor kappaB in rat. Mol Biol Rep 35:489–494. doi:10.1007/s11033-007-9112-4

    Article  PubMed  Google Scholar 

  71. Esposito G, Rapacciuolo A, Naga Prasad SV, Takaoka H, Thomas SA, Koch WJ, Rockman HA (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105:85–92

    Article  CAS  PubMed  Google Scholar 

  72. Purcell NH, Wilkins BJ, York A, Saba-El-Leil MK, Meloche S, Robbins J, Molkentin JD (2007) Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci U S A 104:14074–14079. doi:10.1073/pnas.0610906104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen J, Hoffman BB, Isseroff RR (2002) Beta-adrenergic receptor activation inhibits keratinocyte migration via a cyclic adenosine monophosphate-independent mechanism. J Invest Dermatol 119:1261–1268. doi:10.1046/j.1523-1747.2002.19611.x

    Article  CAS  PubMed  Google Scholar 

  74. Cheng TH, Liu JC, Lin H, Shih NL, Chen YL, Huang MT, Chan P, Cheng CF, Chen JJ (2004) Inhibitory effect of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy. Naunyn Schmiedebergs Arch Pharmacol 369:239–244. doi:10.1007/s00210-003-0849-6

    Article  CAS  PubMed  Google Scholar 

  75. Kawano S, Kubota T, Monden Y, Kawamura N, Tsutsui H, Takeshita A, Sunagawa K (2005) Blockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovasc Res 67:689–698. doi:10.1016/j.cardiores.2005.04.030

    Article  CAS  PubMed  Google Scholar 

  76. Hu X, Wang H, Lv X, Chu L, Liu Z, Wei X, Chen Q, Zhu L, Cui W (2015) Cardioprotective effects of tannic acid on isoproterenol-induced myocardial injury in rats: further insight into ‘French Paradox’. Phytother Res. doi:10.1002/ptr.5376

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Canadian Institutes of Health Research [Grant 106665] to A.O.S.E. Z.H.M. is the recipient Izaak Walton Killam Memorial Scholarship and Alberta Innovates Health Solution Graduate Student Scholarship. AAE is the recipient of Egyptian Government Scholarship and Alberta Innovates-Health Solutions studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman O. S. El-Kadi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maayah, Z.H., Althurwi, H.N., El-Sherbeni, A.A. et al. The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 429, 151–165 (2017). https://doi.org/10.1007/s11010-017-2943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2943-y

Keywords

Navigation