Skip to main content
Top
Published in: Current Cardiology Reports 4/2022

Open Access 01-04-2022 | Angiography | Interventional Cardiology (SR Bailey and T Helmy, Section Editors)

Current State and Future Perspectives of Artificial Intelligence for Automated Coronary Angiography Imaging Analysis in Patients with Ischemic Heart Disease

Authors: Mitchel A. Molenaar, Jasper L. Selder, Johny Nicolas, Bimmer E. Claessen, Roxana Mehran, Javier Oliván Bescós, Mark J. Schuuring, Berto J. Bouma, Niels J. Verouden, Steven A. J. Chamuleau

Published in: Current Cardiology Reports | Issue 4/2022

Login to get access

Abstract

Purpose of Review

Artificial intelligence (AI) applications in (interventional) cardiology continue to emerge. This review summarizes the current state and future perspectives of AI for automated imaging analysis in invasive coronary angiography (ICA).

Recent Findings

Recently, 12 studies on AI for automated imaging analysis In ICA have been published. In these studies, machine learning (ML) models have been developed for frame selection, segmentation, lesion assessment, and functional assessment of coronary flow. These ML models have been developed on monocenter datasets (in range 31–14,509 patients) and showed moderate to good performance. However, only three ML models were externally validated.

Summary

Given the current pace of AI developments for the analysis of ICA, less-invasive, objective, and automated diagnosis of CAD can be expected in the near future. Further research on this technology in the catheterization laboratory may assist and improve treatment allocation, risk stratification, and cath lab logistics by integrating ICA analysis with other clinical characteristics.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sermesant M, Delingette H, Cochet H, Jaïs P, Ayache N. Applications of artificial intelligence in cardiovascular imaging. Nat Rev Cardiol. Nature Publishing Group; 2021;1–10. Sermesant M, Delingette H, Cochet H, Jaïs P, Ayache N. Applications of artificial intelligence in cardiovascular imaging. Nat Rev Cardiol. Nature Publishing Group; 2021;1–10.
2.
go back to reference Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson. 2019;21:61.PubMedPubMedCentralCrossRef Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson. 2019;21:61.PubMedPubMedCentralCrossRef
4.
go back to reference Opincariu D, Benedek T, Chițu M, Raț N, Benedek I. From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging. 2020;36:2403–27.PubMedCrossRef Opincariu D, Benedek T, Chițu M, Raț N, Benedek I. From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging. 2020;36:2403–27.PubMedCrossRef
5.
go back to reference Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38:500–7.PubMed Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38:500–7.PubMed
6.
go back to reference Knuuti J. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Russ J Cardiol. 2020;25:119–80.CrossRef Knuuti J. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Russ J Cardiol. 2020;25:119–80.CrossRef
8.
go back to reference Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z, et al. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone. JACC Heart Fail. 2020;8:172–84.PubMedPubMedCentralCrossRef Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z, et al. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone. JACC Heart Fail. 2020;8:172–84.PubMedPubMedCentralCrossRef
10.
go back to reference Cao C, Liu F, Tan H, Song D, Shu W, Li W, et al. Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics. 2018;16:17–32.PubMedPubMedCentralCrossRef Cao C, Liu F, Tan H, Song D, Shu W, Li W, et al. Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics. 2018;16:17–32.PubMedPubMedCentralCrossRef
12.
go back to reference Handelman GS, Kok HK, Chandra RV, Razavi AH, Huang S, Brooks M, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. Am J Roentgenol. American Roentgen Ray Society; 2019;212:38–43. Handelman GS, Kok HK, Chandra RV, Razavi AH, Huang S, Brooks M, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. Am J Roentgenol. American Roentgen Ray Society; 2019;212:38–43.
13.
go back to reference van de Schoot R, de Bruin J, Schram R, Zahedi P, de Boer J, Weijdema F, et al. An open source machine learning framework for efficient and transparent systematic reviews. Nat Mach Intell. 2021;3:125–33.CrossRef van de Schoot R, de Bruin J, Schram R, Zahedi P, de Boer J, Weijdema F, et al. An open source machine learning framework for efficient and transparent systematic reviews. Nat Mach Intell. 2021;3:125–33.CrossRef
14.
go back to reference Fazlali HR, Karimi N, Soroushmehr SMR, Sinha S, Samavi S, Nallamothu B, et al. Vessel region detection in coronary X-ray angiograms. 2015 IEEE Int Conf Image Process (ICIP). 2015. p. 1493–7. Fazlali HR, Karimi N, Soroushmehr SMR, Sinha S, Samavi S, Nallamothu B, et al. Vessel region detection in coronary X-ray angiograms. 2015 IEEE Int Conf Image Process (ICIP). 2015. p. 1493–7.
15.
go back to reference Cervantes-Sanchez F, Cruz-Aceves I, Hernandez-Aguirre A, Hernandez-Gonzalez MA, Solorio-Meza SE. Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks. Appl Sci. 2019;9:5507.CrossRef Cervantes-Sanchez F, Cruz-Aceves I, Hernandez-Aguirre A, Hernandez-Gonzalez MA, Solorio-Meza SE. Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks. Appl Sci. 2019;9:5507.CrossRef
16.
go back to reference Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr SMR, Ward K, Jafari MH, et al. Vessel extraction in X-ray angiograms using deep learning. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Orlando, FL, USA: IEEE; 2016 [cited 2021 Jan 4]. p. 643–6. Available from: http://ieeexplore.ieee.org/document/7590784/ Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr SMR, Ward K, Jafari MH, et al. Vessel extraction in X-ray angiograms using deep learning. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Orlando, FL, USA: IEEE; 2016 [cited 2021 Jan 4]. p. 643–6. Available from: http://​ieeexplore.​ieee.​org/​document/​7590784/​
17.
18.
go back to reference Kobayashi T, Hirshfeld JW. Radiation exposure in cardiac catheterization. Circulation: Cardiovascular Interventions. American Heart Association; 2017;10:e005689. Kobayashi T, Hirshfeld JW. Radiation exposure in cardiac catheterization. Circulation: Cardiovascular Interventions. American Heart Association; 2017;10:e005689.
19.
go back to reference Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary angiography. Circulation. 1976;53:627–32.PubMedCrossRef Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary angiography. Circulation. 1976;53:627–32.PubMedCrossRef
21.
go back to reference • Ciusdel C, Turcea A, Puiu A, Itu L, Calmac L, Weiss E, et al. Deep neural networks for ECG-free cardiac phase and end-diastolic frame detection on coronary angiographies. Comput Med Imaging Graph. 2020;84:101749. The study of Ciusdel et al. showed that specific coronary frames can be accurately selected with deep learning. • Ciusdel C, Turcea A, Puiu A, Itu L, Calmac L, Weiss E, et al. Deep neural networks for ECG-free cardiac phase and end-diastolic frame detection on coronary angiographies. Comput Med Imaging Graph. 2020;84:101749. The study of Ciusdel et al. showed that specific coronary frames can be accurately selected with deep learning.
22.
go back to reference Wu W, Zhang J, Xie H, Zhao Y, Zhang S, Gu L. Automatic detection of coronary artery stenosis by convolutional neural network with temporal constraint. Comput Biol Med. 2020;118:103657. Wu W, Zhang J, Xie H, Zhao Y, Zhang S, Gu L. Automatic detection of coronary artery stenosis by convolutional neural network with temporal constraint. Comput Biol Med. 2020;118:103657.
23.
go back to reference Yang S, Kweon J, Roh J-H, Lee J-H, Kang H, Park L-J, et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci Rep Nature Publishing Group. 2019;9:1–11. Yang S, Kweon J, Roh J-H, Lee J-H, Kang H, Park L-J, et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci Rep Nature Publishing Group. 2019;9:1–11.
24.
go back to reference Shin SY, Lee S, Yun ID, Lee KM. Deep vessel segmentation by learning graphical connectivity. Med Image Anal. 2019;58:101556. Shin SY, Lee S, Yun ID, Lee KM. Deep vessel segmentation by learning graphical connectivity. Med Image Anal. 2019;58:101556.
25.
go back to reference Fan J, Yang J, Wang Y, Yang S, Ai D, Huang Y, et al. Multichannel fully convolutional network for coronary artery segmentation in X-ray angiograms. IEEE Access. 2018;6:44635–43.CrossRef Fan J, Yang J, Wang Y, Yang S, Ai D, Huang Y, et al. Multichannel fully convolutional network for coronary artery segmentation in X-ray angiograms. IEEE Access. 2018;6:44635–43.CrossRef
26.
go back to reference Zhu X, Cheng Z, Wang S, Chen X, Lu G. Coronary angiography image segmentation based on PSPNet. Comput Methods Programs Biomed. 2020;105897. Zhu X, Cheng Z, Wang S, Chen X, Lu G. Coronary angiography image segmentation based on PSPNet. Comput Methods Programs Biomed. 2020;105897.
27.
go back to reference Jo K, Kweon J, Kim Y-H, Choi J. Segmentation of the main vessel of the left anterior descending artery using selective feature mapping in coronary angiography. IEEE Access. 2019;7:919–30.CrossRef Jo K, Kweon J, Kim Y-H, Choi J. Segmentation of the main vessel of the left anterior descending artery using selective feature mapping in coronary angiography. IEEE Access. 2019;7:919–30.CrossRef
28.
go back to reference Jun TJ, Kweon J, Kim Y-H, Kim D. T-Net: Nested encoder–decoder architecture for the main vessel segmentation in coronary angiography. Neural Netw. 2020;128:216–33.PubMedCrossRef Jun TJ, Kweon J, Kim Y-H, Kim D. T-Net: Nested encoder–decoder architecture for the main vessel segmentation in coronary angiography. Neural Netw. 2020;128:216–33.PubMedCrossRef
30.
go back to reference •• Du T, Xie L, Zhang H, Liu X, Wang X, Chen D, et al. Automatic and multimodal analysis for coronary angiography: training and validation of a deep learning architecture. EuroIntervention. 2020. The study of Du et al. showed the feasibility of deep learning to recognize 20 segments of coronary arteries and to detect and classify lesions. •• Du T, Xie L, Zhang H, Liu X, Wang X, Chen D, et al. Automatic and multimodal analysis for coronary angiography: training and validation of a deep learning architecture. EuroIntervention. 2020. The study of Du et al. showed the feasibility of deep learning to recognize 20 segments of coronary arteries and to detect and classify lesions.
31.
go back to reference Zhang H, Mu L, Hu S, Nallamothu BK, Lansky AJ, Xu B, et al. Comparison of physician visual assessment with quantitative coronary angiography in assessment of stenosis severity in China. JAMA Intern Med. 2018;178:239–47.PubMedPubMedCentralCrossRef Zhang H, Mu L, Hu S, Nallamothu BK, Lansky AJ, Xu B, et al. Comparison of physician visual assessment with quantitative coronary angiography in assessment of stenosis severity in China. JAMA Intern Med. 2018;178:239–47.PubMedPubMedCentralCrossRef
32.
go back to reference Nallamothu BK, Spertus JA, Lansky AJ, Cohen DJ, Jones PG, Kureshi F, et al. Comparison of clinical interpretation with visual assessment and quantitative coronary angiography in patients undergoing percutaneous coronary intervention in contemporary practice. Circ Am Heart Assoc. 2013;127:1793–800. Nallamothu BK, Spertus JA, Lansky AJ, Cohen DJ, Jones PG, Kureshi F, et al. Comparison of clinical interpretation with visual assessment and quantitative coronary angiography in patients undergoing percutaneous coronary intervention in contemporary practice. Circ Am Heart Assoc. 2013;127:1793–800.
33.
go back to reference Nakamura S, Kobayashi T, Funatsu A, Okada T, Mauti M, Waizumi Y, et al. Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention. Heart Vessels. 2016;31:655–63.PubMedCrossRef Nakamura S, Kobayashi T, Funatsu A, Okada T, Mauti M, Waizumi Y, et al. Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention. Heart Vessels. 2016;31:655–63.PubMedCrossRef
34.
go back to reference Ten Cate T, van Wely M, Gehlmann H, Mauti M, Camaro C, Reifart N, et al. Novel X-ray image noise reduction technology reduces patient radiation dose while maintaining image quality in coronary angiography. Neth Heart J. 2015;23:525–30.PubMedPubMedCentralCrossRef Ten Cate T, van Wely M, Gehlmann H, Mauti M, Camaro C, Reifart N, et al. Novel X-ray image noise reduction technology reduces patient radiation dose while maintaining image quality in coronary angiography. Neth Heart J. 2015;23:525–30.PubMedPubMedCentralCrossRef
35.
go back to reference Nirmala Devi S, Kumaravel N. Comparison of active contour models for image segmentation in X-ray coronary angiogram images. J Med Eng Technol. 2008;32:408–18.PubMedCrossRef Nirmala Devi S, Kumaravel N. Comparison of active contour models for image segmentation in X-ray coronary angiogram images. J Med Eng Technol. 2008;32:408–18.PubMedCrossRef
36.
go back to reference Moccia S, De Momi E, El Hadji S, Mattos LS. Blood vessel segmentation algorithms — review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed. 2018;158:71–91.PubMedCrossRef Moccia S, De Momi E, El Hadji S, Mattos LS. Blood vessel segmentation algorithms — review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed. 2018;158:71–91.PubMedCrossRef
37.
go back to reference Cruz-Aceves I, Oloumi F, Rangayyan RM, Aviña-Cervantes JG, Hernandez-Aguirre A. Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization. Biomed Signal Process Control. 2016;25:76–85.CrossRef Cruz-Aceves I, Oloumi F, Rangayyan RM, Aviña-Cervantes JG, Hernandez-Aguirre A. Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization. Biomed Signal Process Control. 2016;25:76–85.CrossRef
38.
go back to reference Fazlali HR, Karimi N, Soroushmehr SMR, Shirani S, Nallamothu BK, Ward KR, et al. Vessel segmentation and catheter detection in X-ray angiograms using superpixels. Med Biol Eng Comput. 2018;56:1515–30.PubMedCrossRef Fazlali HR, Karimi N, Soroushmehr SMR, Shirani S, Nallamothu BK, Ward KR, et al. Vessel segmentation and catheter detection in X-ray angiograms using superpixels. Med Biol Eng Comput. 2018;56:1515–30.PubMedCrossRef
40.
go back to reference Brieva J, Galvez M, Toumoulin C. Coronary extraction and stenosis quantification in X-ray angiographic imaging. The 26th Annual International Conference of the IEEE Eng Med Biol Soc. 2004. p. 1714–7. Brieva J, Galvez M, Toumoulin C. Coronary extraction and stenosis quantification in X-ray angiographic imaging. The 26th Annual International Conference of the IEEE Eng Med Biol Soc. 2004. p. 1714–7.
41.
go back to reference Fatemi MJR. Detection of narrowed coronary arteries in X-ray angiographic images using contour processing of segmented heart vessels based on Hessian vesselness filter and wavelet based image fusion. Int J Comput Appl. 36:7. Fatemi MJR. Detection of narrowed coronary arteries in X-ray angiographic images using contour processing of segmented heart vessels based on Hessian vesselness filter and wavelet based image fusion. Int J Comput Appl. 36:7.
42.
go back to reference Zhao C, Vij A, Malhotra S, Tang J, Tang H, Pienta D, et al. Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms. Comput Biol Med. 2021;136:104667. Zhao C, Vij A, Malhotra S, Tang J, Tang H, Pienta D, et al. Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms. Comput Biol Med. 2021;136:104667.
43.
go back to reference Liu X, Du T, Zhang H, Sun C. Detection and classification of chronic total occlusion lesions using deep learning. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:828–31.PubMed Liu X, Du T, Zhang H, Sun C. Detection and classification of chronic total occlusion lesions using deep learning. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:828–31.PubMed
44.
go back to reference Chen S, Tang Y, Shi X, Zhang H, Xie L, Xu B. Convolution pyramid network: a classification network on coronary artery angiogram images. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1186–9.PubMed Chen S, Tang Y, Shi X, Zhang H, Xie L, Xu B. Convolution pyramid network: a classification network on coronary artery angiogram images. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1186–9.PubMed
45.
go back to reference Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet Elsevier. 2018;392:2388–96.CrossRef Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet Elsevier. 2018;392:2388–96.CrossRef
46.
go back to reference Yabushita H, Goto S, Nakamura S, Oka H, Nakayama M, Goto S. Development of novel artificial intelligence to detect the presence of clinically meaningful coronary atherosclerotic stenosis in major branch from coronary angiography video. J Atheroscler Thromb. 2020; Yabushita H, Goto S, Nakamura S, Oka H, Nakayama M, Goto S. Development of novel artificial intelligence to detect the presence of clinically meaningful coronary atherosclerotic stenosis in major branch from coronary angiography video. J Atheroscler Thromb. 2020;
47.
go back to reference Pang K, Ai D, Fang H, Fan J, Song H, Yang J. Stenosis-DetNet: Sequence consistency-based stenosis detection for X-ray coronary angiography. Comput Med Imaging Graph. 2021;89:101900. Pang K, Ai D, Fang H, Fan J, Song H, Yang J. Stenosis-DetNet: Sequence consistency-based stenosis detection for X-ray coronary angiography. Comput Med Imaging Graph. 2021;89:101900.
48.
go back to reference Moon JH, Lee DY, Cha WC, Chung MJ, Lee K-S, Cho BH, et al. Automatic stenosis recognition from coronary angiography using convolutional neural networks. Comput Methods Programs Biomed. 2021;198:105819. Moon JH, Lee DY, Cha WC, Chung MJ, Lee K-S, Cho BH, et al. Automatic stenosis recognition from coronary angiography using convolutional neural networks. Comput Methods Programs Biomed. 2021;198:105819.
49.
go back to reference Ovalle-Magallanes E, Avina-Cervantes JG, Cruz-Aceves I, Ruiz-Pinales J. Transfer learning for stenosis detection in X-ray coronary angiography. Mathematics. 2020;8:1510.CrossRef Ovalle-Magallanes E, Avina-Cervantes JG, Cruz-Aceves I, Ruiz-Pinales J. Transfer learning for stenosis detection in X-ray coronary angiography. Mathematics. 2020;8:1510.CrossRef
50.
go back to reference •• Danilov VV, Klyshnikov KY, Gerget OM, Kutikhin AG, Ganyukov VI, Frangi AF, et al. Real-time coronary artery stenosis detection based on modern neural networks. Sci Rep. 2021;11:7582. The study of Danilov et al. showed the feasibility of real-time coronary artery lesion detection. •• Danilov VV, Klyshnikov KY, Gerget OM, Kutikhin AG, Ganyukov VI, Frangi AF, et al. Real-time coronary artery stenosis detection based on modern neural networks. Sci Rep. 2021;11:7582. The study of Danilov et al. showed the feasibility of real-time coronary artery lesion detection.
51.
go back to reference De Luca G, Suryapranata H, Ottervanger JP, Antman EM. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation. 2004;109:1223–5.PubMedCrossRef De Luca G, Suryapranata H, Ottervanger JP, Antman EM. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation. 2004;109:1223–5.PubMedCrossRef
52.
go back to reference Ramkumar PN, Kunze KN, Haeberle HS, Karnuta JM, Luu BC, Nwachukwu BU, et al. Clinical and research medical applications of artificial intelligence. Arthroscopy. 2021;37:1694–7.PubMedCrossRef Ramkumar PN, Kunze KN, Haeberle HS, Karnuta JM, Luu BC, Nwachukwu BU, et al. Clinical and research medical applications of artificial intelligence. Arthroscopy. 2021;37:1694–7.PubMedCrossRef
53.
go back to reference Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Chien Chuang Y, et al. Limitations of angiography in the assessment of plaque distribution in coronary artery disease. Circulation American Heart Association. 1996;93:924–31. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Chien Chuang Y, et al. Limitations of angiography in the assessment of plaque distribution in coronary artery disease. Circulation American Heart Association. 1996;93:924–31.
54.
go back to reference Rigattieri S, Biondi Zoccai G, Sciahbasi A, Di Russo C, Cera M, Patrizi R, et al. Meta-Analysis of head-to-head comparison of intracoronary versus intravenous adenosine for the assessment of fractional flow reserve. Am J Cardiol. 2017;120:563–8.PubMedCrossRef Rigattieri S, Biondi Zoccai G, Sciahbasi A, Di Russo C, Cera M, Patrizi R, et al. Meta-Analysis of head-to-head comparison of intracoronary versus intravenous adenosine for the assessment of fractional flow reserve. Am J Cardiol. 2017;120:563–8.PubMedCrossRef
55.
go back to reference Park S-J, Kang S-J, Ahn J-M, Shim EB, Kim Y-T, Yun S-C, et al. Visual-functional mismatch between coronary angiography and fractional flow reserve. JACC Cardiovasc Interv. 2012;5:1029–36.PubMedCrossRef Park S-J, Kang S-J, Ahn J-M, Shim EB, Kim Y-T, Yun S-C, et al. Visual-functional mismatch between coronary angiography and fractional flow reserve. JACC Cardiovasc Interv. 2012;5:1029–36.PubMedCrossRef
56.
go back to reference Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165.PubMedCrossRef Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165.PubMedCrossRef
57.
go back to reference Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.
58.
go back to reference Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56:177–84.PubMedCrossRef Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56:177–84.PubMedCrossRef
60.
go back to reference • Roguin A, Abu Dogosh A, Feld Y, Konigstein M, Lerman A, Koifman E. Early feasibility of automated artificial intelligence angiography based fractional flow reserve estimation. Am J Cardiol. 2021;139:8–14. The study of Roguin et al. demonstrates the feasibility of AI-based FFR measurements of coronary lesions. • Roguin A, Abu Dogosh A, Feld Y, Konigstein M, Lerman A, Koifman E. Early feasibility of automated artificial intelligence angiography based fractional flow reserve estimation. Am J Cardiol. 2021;139:8–14. The study of Roguin et al. demonstrates the feasibility of AI-based FFR measurements of coronary lesions.
61.
go back to reference Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Kitabata H, et al. Quantitative flow ratio and instantaneous wave-free ratio for the assessment of the functional severity of intermediate coronary artery stenosis. Coron Artery Dis. 2018;29:611–7.PubMedCrossRef Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Kitabata H, et al. Quantitative flow ratio and instantaneous wave-free ratio for the assessment of the functional severity of intermediate coronary artery stenosis. Coron Artery Dis. 2018;29:611–7.PubMedCrossRef
62.
go back to reference Morris PD, Silva Soto DA, Feher JFA, Rafiroiu D, Lungu A, Varma S, et al. Fast virtual fractional flow reserve based upon steady-state computational fluid dynamics analysis: results from the VIRTU-Fast Study. JACC: Basic Transl Sci. 2017;2:434–46. Morris PD, Silva Soto DA, Feher JFA, Rafiroiu D, Lungu A, Varma S, et al. Fast virtual fractional flow reserve based upon steady-state computational fluid dynamics analysis: results from the VIRTU-Fast Study. JACC: Basic Transl Sci. 2017;2:434–46.
64.
go back to reference Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol. 2016;121:42–52.PubMedCrossRef Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol. 2016;121:42–52.PubMedCrossRef
65.
go back to reference Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016;785–94. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016;785–94.
66.
go back to reference Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:195.PubMedPubMedCentralCrossRef Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:195.PubMedPubMedCentralCrossRef
67.
go back to reference Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. 2019;20:405–10.PubMedPubMedCentralCrossRef Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. 2019;20:405–10.PubMedPubMedCentralCrossRef
68.
go back to reference Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018.
69.
go back to reference Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Definitions, methods, and applications in interpretable machine learning. Proc Natl Acad Sci U S A. 2019;116:22071–80.PubMedPubMedCentralCrossRef Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Definitions, methods, and applications in interpretable machine learning. Proc Natl Acad Sci U S A. 2019;116:22071–80.PubMedPubMedCentralCrossRef
70.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2020;128:336–59.CrossRef Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2020;128:336–59.CrossRef
72.
go back to reference van Rosendael AR, Maliakal G, Kolli KK, Beecy A, Al’Aref SJ, Dwivedi A, et al. Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr. 2018;12:204–9. van Rosendael AR, Maliakal G, Kolli KK, Beecy A, Al’Aref SJ, Dwivedi A, et al. Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr. 2018;12:204–9.
73.
go back to reference de Vos BD, Wolterink JM, Leiner T, de Jong PA, Lessmann N, Isgum I. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans Med Imaging. 2019;38:2127–38.PubMedCrossRef de Vos BD, Wolterink JM, Leiner T, de Jong PA, Lessmann N, Isgum I. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans Med Imaging. 2019;38:2127–38.PubMedCrossRef
74.
go back to reference Kwon J-M, Kim K-H, Jeon K-H, Park J. Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography. Echocardiography. 2019;36:213–8.PubMedCrossRef Kwon J-M, Kim K-H, Jeon K-H, Park J. Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography. Echocardiography. 2019;36:213–8.PubMedCrossRef
75.
go back to reference Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, et al. Predicting survival from large echocardiography and electronic health record datasets: optimization with machine learning. JACC Cardiovasc Imaging. 2019;12:681–9.PubMedCrossRef Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, et al. Predicting survival from large echocardiography and electronic health record datasets: optimization with machine learning. JACC Cardiovasc Imaging. 2019;12:681–9.PubMedCrossRef
76.
go back to reference Bello GA, Dawes TJW, Duan J, Biffi C, de Marvao A, Howard LSGE, et al. Deep-learning cardiac motion analysis for human survival prediction. Nat Mach Intell. 2019;1:95–104.PubMedPubMedCentralCrossRef Bello GA, Dawes TJW, Duan J, Biffi C, de Marvao A, Howard LSGE, et al. Deep-learning cardiac motion analysis for human survival prediction. Nat Mach Intell. 2019;1:95–104.PubMedPubMedCentralCrossRef
77.
go back to reference Wen J, Cheng Y, Hu X, Yuan P, Hao T, Shi Y. Workload, burnout, and medical mistakes among physicians in China: a cross-sectional study. Biosci Trends. 2016;10:27–33.PubMedCrossRef Wen J, Cheng Y, Hu X, Yuan P, Hao T, Shi Y. Workload, burnout, and medical mistakes among physicians in China: a cross-sectional study. Biosci Trends. 2016;10:27–33.PubMedCrossRef
78.
go back to reference Woolhandler S, Himmelstein DU. Administrative work consumes one-sixth of U.S. physicians’ working hours and lowers their career satisfaction. Int J Health Serv. 2014;44:635–42. Woolhandler S, Himmelstein DU. Administrative work consumes one-sixth of U.S. physicians’ working hours and lowers their career satisfaction. Int J Health Serv. 2014;44:635–42.
79.
go back to reference Kang S-J, Mintz GS, Park D-W, Lee S-W, Kim Y-H, Whan Lee C, et al. Mechanisms of in-stent restenosis after drug-eluting stent implantation. Circulation: Cardiovascular Interventions. Am Heart Assoc. 2011;4:9–14. Kang S-J, Mintz GS, Park D-W, Lee S-W, Kim Y-H, Whan Lee C, et al. Mechanisms of in-stent restenosis after drug-eluting stent implantation. Circulation: Cardiovascular Interventions. Am Heart Assoc. 2011;4:9–14.
80.
go back to reference Koo B-K, Samady H. Strap in for the artificial intelligence revolution in interventional cardiology∗. JACC: Cardiovascular Interventions. 2019;12:1325–7. Koo B-K, Samady H. Strap in for the artificial intelligence revolution in interventional cardiology∗. JACC: Cardiovascular Interventions. 2019;12:1325–7.
81.
go back to reference Bang JY, Hough M, Hawes RH, Varadarajulu S. Use of Artificial intelligence to reduce radiation exposure at fluoroscopy-guided endoscopic procedures. Am J Gastroenterol. 2020;115:555–61.PubMedCrossRef Bang JY, Hough M, Hawes RH, Varadarajulu S. Use of Artificial intelligence to reduce radiation exposure at fluoroscopy-guided endoscopic procedures. Am J Gastroenterol. 2020;115:555–61.PubMedCrossRef
82.
go back to reference Fedewa R, Puri R, Fleischman E, Lee J, Prabhu D, Wilson DL, et al. Artificial intelligence in intracoronary imaging. Curr Cardiol Rep. 2020;22:46.PubMedCrossRef Fedewa R, Puri R, Fleischman E, Lee J, Prabhu D, Wilson DL, et al. Artificial intelligence in intracoronary imaging. Curr Cardiol Rep. 2020;22:46.PubMedCrossRef
Metadata
Title
Current State and Future Perspectives of Artificial Intelligence for Automated Coronary Angiography Imaging Analysis in Patients with Ischemic Heart Disease
Authors
Mitchel A. Molenaar
Jasper L. Selder
Johny Nicolas
Bimmer E. Claessen
Roxana Mehran
Javier Oliván Bescós
Mark J. Schuuring
Berto J. Bouma
Niels J. Verouden
Steven A. J. Chamuleau
Publication date
01-04-2022
Publisher
Springer US
Published in
Current Cardiology Reports / Issue 4/2022
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-022-01655-y

Other articles of this Issue 4/2022

Current Cardiology Reports 4/2022 Go to the issue

New Therapies for Cardiovascular Disease (AA Bavry and MR Massoomi, Section Editors)

AngioVac for Minimally Invasive Removal of Intravascular and Intracardiac Masses: a Systematic Review

Invasive Electrophysiology and Pacing (E. Kevin Heist, Section Editor)

Interference by Modern Smartphones and Accessories with Cardiac Pacemakers and Defibrillators

Peripheral Vascular Disease (WS Jones, Section Editor)

Contemporary Management of Abdominal Aortic Aneurysms

Congenital Heart Disease (RA Krasuski and G Fleming, Section Editors)

MRI-Guided Cardiac Catheterization in Congenital Heart Disease: How to Get Started

Psychological Aspects of Cardiovascular Diseases (IM Kronish , Section Editor)

Is Sedentary Behavior a Novel Risk Factor for Cardiovascular Disease?