Skip to main content
Top
Published in: Molecular Imaging and Biology 2/2020

Open Access 01-04-2020 | Positron Emission Tomography | Review Article

Quantitative Rodent Brain Receptor Imaging

Authors: Kristina Herfert, Julia G. Mannheim, Laura Kuebler, Sabina Marciano, Mario Amend, Christoph Parl, Hanna Napieczynska, Florian M. Maier, Salvador Castaneda Vega, Bernd J. Pichler

Published in: Molecular Imaging and Biology | Issue 2/2020

Login to get access

Abstract

Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.
Literature
3.
go back to reference Koprich JB, Kalia LV, Brotchie JM (2017) Animal models of alpha-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 18:515–529PubMedCrossRef Koprich JB, Kalia LV, Brotchie JM (2017) Animal models of alpha-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 18:515–529PubMedCrossRef
4.
go back to reference Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington's disease. Nat Rev Neurosci 14:708–721PubMedCrossRef Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington's disease. Nat Rev Neurosci 14:708–721PubMedCrossRef
5.
go back to reference Chadman KK (2017) Animal models for autism in 2017 and the consequential implications to drug discovery. Expert Opin Drug Discov 12:1187–1194PubMedCrossRef Chadman KK (2017) Animal models for autism in 2017 and the consequential implications to drug discovery. Expert Opin Drug Discov 12:1187–1194PubMedCrossRef
6.
go back to reference Nielsen J, Fejgin K, Sotty F et al (2017) A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission. Transl Psychiatry 7:1261PubMedPubMedCentralCrossRef Nielsen J, Fejgin K, Sotty F et al (2017) A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission. Transl Psychiatry 7:1261PubMedPubMedCentralCrossRef
8.
go back to reference Cherry SR (2001) Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 41:482–491PubMedCrossRef Cherry SR (2001) Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 41:482–491PubMedCrossRef
9.
go back to reference Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42:219–232PubMedCrossRef Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42:219–232PubMedCrossRef
10.
go back to reference Fang XT, Eriksson J, Antoni G et al (2017) Brain mGluR5 in mice with amyloid beta pathology studied with in vivo [11C]ABP688 PET imaging and ex vivo immunoblotting. Neuropharmacology 113:293–300PubMedCrossRef Fang XT, Eriksson J, Antoni G et al (2017) Brain mGluR5 in mice with amyloid beta pathology studied with in vivo [11C]ABP688 PET imaging and ex vivo immunoblotting. Neuropharmacology 113:293–300PubMedCrossRef
11.
go back to reference Walker M, Ehrlichmann W, Stahlschmidt A et al (2016) In vivo evaluation of 11C-DASB for quantitative SERT imaging in rats and mice. J Nucl Med 57:115–121PubMedCrossRef Walker M, Ehrlichmann W, Stahlschmidt A et al (2016) In vivo evaluation of 11C-DASB for quantitative SERT imaging in rats and mice. J Nucl Med 57:115–121PubMedCrossRef
12.
go back to reference Fischer K, Sossi V, Schmid A et al (2011) Noninvasive nuclear imaging enables the in vivo quantification of striatal dopamine receptor expression and raclopride affinity in mice. J Nucl Med 52:1133–1141PubMedCrossRef Fischer K, Sossi V, Schmid A et al (2011) Noninvasive nuclear imaging enables the in vivo quantification of striatal dopamine receptor expression and raclopride affinity in mice. J Nucl Med 52:1133–1141PubMedCrossRef
13.
go back to reference Fischer K, Sossi V, von Ameln-Mayerhofer A, Reischl G, Pichler BJ (2012) In vivo quantification of dopamine transporters in mice with unilateral 6-OHDA lesions using [11C]methylphenidate and PET. Neuroimage 59:2413–2422PubMedCrossRef Fischer K, Sossi V, von Ameln-Mayerhofer A, Reischl G, Pichler BJ (2012) In vivo quantification of dopamine transporters in mice with unilateral 6-OHDA lesions using [11C]methylphenidate and PET. Neuroimage 59:2413–2422PubMedCrossRef
14.
go back to reference Sossi V, Dinelle K, Jivan S et al (2012) In vivo dopamine transporter imaging in a unilateral 6-hydroxydopamine rat model of Parkinson disease using 11C-methylphenidate PET. J Nucl Med 53:813–822PubMedCrossRef Sossi V, Dinelle K, Jivan S et al (2012) In vivo dopamine transporter imaging in a unilateral 6-hydroxydopamine rat model of Parkinson disease using 11C-methylphenidate PET. J Nucl Med 53:813–822PubMedCrossRef
15.
go back to reference Phan JA, Landau AM, Jakobsen S, Gjedde A (2017) Radioligand binding analysis of alpha 2 adrenoceptors with [11C]yohimbine in brain in vivo: extended inhibition plot correction for plasma protein binding. Sci Rep-UK 7:15979CrossRef Phan JA, Landau AM, Jakobsen S, Gjedde A (2017) Radioligand binding analysis of alpha 2 adrenoceptors with [11C]yohimbine in brain in vivo: extended inhibition plot correction for plasma protein binding. Sci Rep-UK 7:15979CrossRef
16.
go back to reference Virdee K, Cumming P, Caprioli D et al (2012) Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 36:1188–1216PubMedCrossRef Virdee K, Cumming P, Caprioli D et al (2012) Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 36:1188–1216PubMedCrossRef
19.
go back to reference Goertzen AL, Bao Q, Bergeron M et al (2012) NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med 53:1300–1309PubMedCrossRef Goertzen AL, Bao Q, Bergeron M et al (2012) NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med 53:1300–1309PubMedCrossRef
20.
go back to reference Nagy K, Toth M, Major P et al (2013) Performance evaluation of the small-animal nanoScan PET/MRI system. J Nucl Med 54:1825–1832PubMedCrossRef Nagy K, Toth M, Major P et al (2013) Performance evaluation of the small-animal nanoScan PET/MRI system. J Nucl Med 54:1825–1832PubMedCrossRef
21.
22.
go back to reference Mannheim JG, Schmid AM, Schwenck J et al (2018) PET/MRI hybrid systems. Semin Nucl Med 48:332–347PubMedCrossRef Mannheim JG, Schmid AM, Schwenck J et al (2018) PET/MRI hybrid systems. Semin Nucl Med 48:332–347PubMedCrossRef
23.
go back to reference Badea A, Ali-Sharief AA, Johnson GA (2007) Morphometric analysis of the C57BL/6J mouse brain. Neuroimage 37:683–693PubMedCrossRef Badea A, Ali-Sharief AA, Johnson GA (2007) Morphometric analysis of the C57BL/6J mouse brain. Neuroimage 37:683–693PubMedCrossRef
24.
go back to reference Ma Y, Hof PR, Grant SC et al (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135:1203–1215PubMedCrossRef Ma Y, Hof PR, Grant SC et al (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135:1203–1215PubMedCrossRef
25.
go back to reference Lin YS, Wang HY, Huang DF et al (2016) Neuronal splicing regulator RBFOX3 (NeuN) regulates adult hippocampal neurogenesis and synaptogenesis. PLoS One 11:e0164164PubMedPubMedCentralCrossRef Lin YS, Wang HY, Huang DF et al (2016) Neuronal splicing regulator RBFOX3 (NeuN) regulates adult hippocampal neurogenesis and synaptogenesis. PLoS One 11:e0164164PubMedPubMedCentralCrossRef
26.
go back to reference Hume SP, Jones T (1998) Positron emission tomography (PET) methodology for small animals and its application in radiopharmaceutical preclinical investigation. Nucl Med Biol 25:729–732PubMedCrossRef Hume SP, Jones T (1998) Positron emission tomography (PET) methodology for small animals and its application in radiopharmaceutical preclinical investigation. Nucl Med Biol 25:729–732PubMedCrossRef
27.
go back to reference Moses WW (2011) Fundamental limits of spatial resolution in PET. Nucl Instrum Methods A 648:S236–S240CrossRef Moses WW (2011) Fundamental limits of spatial resolution in PET. Nucl Instrum Methods A 648:S236–S240CrossRef
28.
go back to reference Kolb A, Parl C, Mantlik F et al (2014) Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding. Med Phys 41:081916PubMedCrossRef Kolb A, Parl C, Mantlik F et al (2014) Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding. Med Phys 41:081916PubMedCrossRef
29.
go back to reference Kang HG, Hong SJ, Ko GB et al (2015) Assessment of MR-compatibility of SiPM PET insert using short optical fiber bundles for small animal research. J Instrum 10:P12008–P12008CrossRef Kang HG, Hong SJ, Ko GB et al (2015) Assessment of MR-compatibility of SiPM PET insert using short optical fiber bundles for small animal research. J Instrum 10:P12008–P12008CrossRef
30.
go back to reference Ko GB, Yoon HS, Kim KY et al (2016) Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging. J Nucl Med 57:1309–1315PubMedCrossRef Ko GB, Yoon HS, Kim KY et al (2016) Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging. J Nucl Med 57:1309–1315PubMedCrossRef
31.
go back to reference Olcott P, Kim E, Hong K et al (2015) Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI. Phys Med Biol 60:3459–3478PubMedCrossRef Olcott P, Kim E, Hong K et al (2015) Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI. Phys Med Biol 60:3459–3478PubMedCrossRef
32.
go back to reference Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–1976PubMed Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–1976PubMed
33.
go back to reference Maramraju SH, Smith SD, Junnarkar SS et al (2011) Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol 56:2459–2480PubMedCrossRef Maramraju SH, Smith SD, Junnarkar SS et al (2011) Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol 56:2459–2480PubMedCrossRef
34.
go back to reference Wehrl HF, Schwab J, Hasenbach K et al (2013) Multimodal elucidation of choline metabolism in a murine glioma model using magnetic resonance spectroscopy and 11C-choline positron emission tomography. Cancer Res 73:1470–1480PubMedCrossRef Wehrl HF, Schwab J, Hasenbach K et al (2013) Multimodal elucidation of choline metabolism in a murine glioma model using magnetic resonance spectroscopy and 11C-choline positron emission tomography. Cancer Res 73:1470–1480PubMedCrossRef
35.
go back to reference Weissler B, Gebhardt P, Lerche CW et al (2014) MR compatibility aspects of a silicon photomultiplier-based PET/RF insert with integrated digitisation. Phys Med Biol 59:5119–5139PubMedCrossRef Weissler B, Gebhardt P, Lerche CW et al (2014) MR compatibility aspects of a silicon photomultiplier-based PET/RF insert with integrated digitisation. Phys Med Biol 59:5119–5139PubMedCrossRef
36.
go back to reference Yamamoto S, Watabe T, Watabe H et al (2012) Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Phys Med Biol 57:N1–N13PubMedCrossRef Yamamoto S, Watabe T, Watabe H et al (2012) Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Phys Med Biol 57:N1–N13PubMedCrossRef
37.
go back to reference Yoon HS, Ko GB, Kwon SI et al (2012) Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med 53:608–614PubMedCrossRef Yoon HS, Ko GB, Kwon SI et al (2012) Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med 53:608–614PubMedCrossRef
38.
39.
go back to reference Yao R, Lecomte R, Crawford ES (2012) Small-animal PET: what is it, and why do we need it? J Nucl Med Technol 40:157–165PubMedCrossRef Yao R, Lecomte R, Crawford ES (2012) Small-animal PET: what is it, and why do we need it? J Nucl Med Technol 40:157–165PubMedCrossRef
40.
41.
go back to reference Jones T, Rabiner EA, Company PETRA (2012) The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab 32:1426–1454PubMedPubMedCentralCrossRef Jones T, Rabiner EA, Company PETRA (2012) The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab 32:1426–1454PubMedPubMedCentralCrossRef
42.
go back to reference Van Heertum RL, Masanori Ichise MDF, Tikofsky RS (2015) Functional cerebral SPECT and PET imaging. Wolters Kluwer Health, Philadelphia Van Heertum RL, Masanori Ichise MDF, Tikofsky RS (2015) Functional cerebral SPECT and PET imaging. Wolters Kluwer Health, Philadelphia
43.
go back to reference Burger C, Deschwanden A, Ametamey S et al (2010) Evaluation of a bolus/infusion protocol for 11C-ABP688, a PET tracer for mGluR5. Nucl Med Biol 37:845–851PubMedCrossRef Burger C, Deschwanden A, Ametamey S et al (2010) Evaluation of a bolus/infusion protocol for 11C-ABP688, a PET tracer for mGluR5. Nucl Med Biol 37:845–851PubMedCrossRef
44.
go back to reference Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158PubMedCrossRef Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158PubMedCrossRef
45.
go back to reference Shi X, Li N, Ding H et al (2018) Comparison among reconstruction algorithms for quantitative analysis of 11C-acetate cardiac PET imaging. Contrast Media Mol Imaging 2018:9193403PubMedPubMedCentralCrossRef Shi X, Li N, Ding H et al (2018) Comparison among reconstruction algorithms for quantitative analysis of 11C-acetate cardiac PET imaging. Contrast Media Mol Imaging 2018:9193403PubMedPubMedCentralCrossRef
46.
go back to reference Morimoto T, Ito H, Takano A et al (2006) Effects of image reconstruction algorithm on neurotransmission PET studies in humans: comparison between filtered backprojection and ordered subsets expectation maximization. Ann Nucl Med 20:237–243PubMedCrossRef Morimoto T, Ito H, Takano A et al (2006) Effects of image reconstruction algorithm on neurotransmission PET studies in humans: comparison between filtered backprojection and ordered subsets expectation maximization. Ann Nucl Med 20:237–243PubMedCrossRef
47.
go back to reference Vunckx K, Dupont P, Goffin K et al (2014) Voxel-based comparison of state-of-the-art reconstruction algorithms for 18F-FDG PET brain imaging using simulated and clinical data. Neuroimage 102(Pt 2):875–884PubMedCrossRef Vunckx K, Dupont P, Goffin K et al (2014) Voxel-based comparison of state-of-the-art reconstruction algorithms for 18F-FDG PET brain imaging using simulated and clinical data. Neuroimage 102(Pt 2):875–884PubMedCrossRef
48.
go back to reference Thiyagarajan A, Rajasekaran PM, Subramanian K (2014) A quantitative assessment of PET brain image reconstruction using MAP and neural network based segmentation of CG algorithm. Int J Comput Inform Syst Indust Manag Appl 6:381–390 Thiyagarajan A, Rajasekaran PM, Subramanian K (2014) A quantitative assessment of PET brain image reconstruction using MAP and neural network based segmentation of CG algorithm. Int J Comput Inform Syst Indust Manag Appl 6:381–390
49.
50.
52.
go back to reference El Ali HH, Bodholdt RP, Jorgensen JT, Myschetzky R, Kjaer A (2012) Importance of attenuation correction (AC) for small animal PET imaging. Diagnostics 2:42–51PubMedPubMedCentralCrossRef El Ali HH, Bodholdt RP, Jorgensen JT, Myschetzky R, Kjaer A (2012) Importance of attenuation correction (AC) for small animal PET imaging. Diagnostics 2:42–51PubMedPubMedCentralCrossRef
53.
go back to reference Mannheim JG, Schmid AM, Pichler BJ (2017) Influence of Co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol 19:825–836PubMedCrossRef Mannheim JG, Schmid AM, Pichler BJ (2017) Influence of Co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol 19:825–836PubMedCrossRef
54.
go back to reference Mannheim JG, Judenhofer MS, Schmid A et al (2012) Quantification accuracy and partial volume effect in dependence of the attenuation correction of a state-of-the-art small animal PET scanner. Phys Med Biol 57:3981–3993PubMedCrossRef Mannheim JG, Judenhofer MS, Schmid A et al (2012) Quantification accuracy and partial volume effect in dependence of the attenuation correction of a state-of-the-art small animal PET scanner. Phys Med Biol 57:3981–3993PubMedCrossRef
56.
go back to reference Rahmim A, Rousset O, Zaidi H (2007) Strategies for motion tracking and correction in PET. PET Clinics 2:251–266PubMedCrossRef Rahmim A, Rousset O, Zaidi H (2007) Strategies for motion tracking and correction in PET. PET Clinics 2:251–266PubMedCrossRef
57.
go back to reference Catana C, Benner T, van der Kouwe A et al (2011) MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med 52:154–161PubMedCrossRef Catana C, Benner T, van der Kouwe A et al (2011) MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med 52:154–161PubMedCrossRef
58.
go back to reference Furst S, Grimm R, Hong I et al (2015) Motion correction strategies for integrated PET/MR. J Nucl Med 56:261–269PubMedCrossRef Furst S, Grimm R, Hong I et al (2015) Motion correction strategies for integrated PET/MR. J Nucl Med 56:261–269PubMedCrossRef
59.
go back to reference Wurslin C, Schmidt H, Martirosian P et al (2013) Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med 54:464–471PubMedCrossRef Wurslin C, Schmidt H, Martirosian P et al (2013) Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med 54:464–471PubMedCrossRef
60.
go back to reference Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL (2006) Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods 155:272–284PubMedCrossRef Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL (2006) Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods 155:272–284PubMedCrossRef
61.
go back to reference Mirrione MM, Schiffer WK, Fowler JS, Alexoff DL, Dewey SL, Tsirka SE (2007) A novel approach for imaging brain-behavior relationships in mice reveals unexpected metabolic patterns during seizures in the absence of tissue plasminogen activator. Neuroimage 38:34–42PubMedCrossRef Mirrione MM, Schiffer WK, Fowler JS, Alexoff DL, Dewey SL, Tsirka SE (2007) A novel approach for imaging brain-behavior relationships in mice reveals unexpected metabolic patterns during seizures in the absence of tissue plasminogen activator. Neuroimage 38:34–42PubMedCrossRef
62.
go back to reference Casteels C, Vermaelen P, Nuyts J et al (2006) Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 47:1858–1866PubMed Casteels C, Vermaelen P, Nuyts J et al (2006) Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 47:1858–1866PubMed
63.
go back to reference Verhaeghe J, Wyffels L, Wyckhuys T et al (2014) Rat brain normalization templates for robust regional analysis of [11C]ABP688 positron emission tomography/computed tomography. Mol Imaging 13 Verhaeghe J, Wyffels L, Wyckhuys T et al (2014) Rat brain normalization templates for robust regional analysis of [11C]ABP688 positron emission tomography/computed tomography. Mol Imaging 13
64.
go back to reference Vallez Garcia D, Casteels C, Schwarz AJ et al (2015) A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox. PLoS One 10:e0122363PubMedPubMedCentralCrossRef Vallez Garcia D, Casteels C, Schwarz AJ et al (2015) A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox. PLoS One 10:e0122363PubMedPubMedCentralCrossRef
65.
go back to reference Mannheim JG, Wehrl HF, Judenhofer MS, Pichler BJ (2011) Small animal PET cameras—development, technology, PET/CT, PET/MRI. In Trends on the role of PET in drug development. World Sci, pp 289–317 Mannheim JG, Wehrl HF, Judenhofer MS, Pichler BJ (2011) Small animal PET cameras—development, technology, PET/CT, PET/MRI. In Trends on the role of PET in drug development. World Sci, pp 289–317
66.
go back to reference Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945PubMedCrossRef Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945PubMedCrossRef
67.
go back to reference Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3:299–308PubMedCrossRef Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3:299–308PubMedCrossRef
68.
go back to reference Muellauer J, Willimayer R, Goertzen AL et al (2013) 18F, 11C and 58Ga in small animal PET imaging. Evaluation of partial volume correction methods. Nuklearmedizin Nuclear Medicine 52:250–261PubMedCrossRef Muellauer J, Willimayer R, Goertzen AL et al (2013) 18F, 11C and 58Ga in small animal PET imaging. Evaluation of partial volume correction methods. Nuklearmedizin Nuclear Medicine 52:250–261PubMedCrossRef
69.
go back to reference Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51:610–617PubMedCrossRef Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51:610–617PubMedCrossRef
70.
go back to reference Erlandsson K, Buvat I, Pretorius PH et al (2012) A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 57:R119–R159PubMedCrossRef Erlandsson K, Buvat I, Pretorius PH et al (2012) A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 57:R119–R159PubMedCrossRef
71.
go back to reference Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39:904–911PubMed Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39:904–911PubMed
72.
go back to reference Hume SP, Opacka-Juffry J, Myers R et al (1995) Effect of L-dopa and 6-hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET. Synapse 21:45–53PubMedCrossRef Hume SP, Opacka-Juffry J, Myers R et al (1995) Effect of L-dopa and 6-hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET. Synapse 21:45–53PubMedCrossRef
73.
go back to reference Noguchi J, Zhang MR, Yanamoto K, Nakao R, Suzuki K (2008) In vitro binding of [11C]raclopride with ultrahigh specific activity in rat brain determined by homogenate assay and autoradiography. Nucl Med Biol 35:19–27PubMedCrossRef Noguchi J, Zhang MR, Yanamoto K, Nakao R, Suzuki K (2008) In vitro binding of [11C]raclopride with ultrahigh specific activity in rat brain determined by homogenate assay and autoradiography. Nucl Med Biol 35:19–27PubMedCrossRef
74.
go back to reference Kuwabara H, Chamroonrat W, Mathews W et al (2011) Evaluation of 11C-ABP688 and 18F-FPEB for imaging mGluR5 receptors in the human brain. J Nucl Med 52:390 Kuwabara H, Chamroonrat W, Mathews W et al (2011) Evaluation of 11C-ABP688 and 18F-FPEB for imaging mGluR5 receptors in the human brain. J Nucl Med 52:390
75.
go back to reference Elmenhorst D, Aliaga A, Bauer A, Rosa-Neto P (2012) Test-retest stability of cerebral mGluR5 quantification using [11C]ABP688 and positron emission tomography in rats. Synapse 66:552–560PubMedCrossRef Elmenhorst D, Aliaga A, Bauer A, Rosa-Neto P (2012) Test-retest stability of cerebral mGluR5 quantification using [11C]ABP688 and positron emission tomography in rats. Synapse 66:552–560PubMedCrossRef
77.
go back to reference Aznavour N, Benkelfat C, Gravel P et al (2008) MicroPET imaging of 5-HT1A receptors in rat brain: a test–retest [18F]MPPF study. Eur J Nucl Med Mol Imaging 36:53PubMedCrossRef Aznavour N, Benkelfat C, Gravel P et al (2008) MicroPET imaging of 5-HT1A receptors in rat brain: a test–retest [18F]MPPF study. Eur J Nucl Med Mol Imaging 36:53PubMedCrossRef
78.
go back to reference Avendano-Estrada A, Avila-Rodriguez MA (2018) Reference tissue models in the assessment of 11C-DTBZ binding to the VMAT2 in rat striatum: a test-retest reproducibility study. Synapse 72:e22029PubMedCrossRef Avendano-Estrada A, Avila-Rodriguez MA (2018) Reference tissue models in the assessment of 11C-DTBZ binding to the VMAT2 in rat striatum: a test-retest reproducibility study. Synapse 72:e22029PubMedCrossRef
79.
go back to reference Sijbesma JW, Zhou X, Vallez Garcia D et al (2016) Novel approach to repeated arterial blood sampling in small animal PET: application in a test-retest study with the adenosine A1 receptor ligand [11C]MPDX. Mol Imaging Biol 18:715–723PubMedPubMedCentralCrossRef Sijbesma JW, Zhou X, Vallez Garcia D et al (2016) Novel approach to repeated arterial blood sampling in small animal PET: application in a test-retest study with the adenosine A1 receptor ligand [11C]MPDX. Mol Imaging Biol 18:715–723PubMedPubMedCentralCrossRef
80.
go back to reference Sephton SM, Herde AM, Mu L et al (2015) Preclinical evaluation and test–retest studies of [18F]PSS232, a novel radioligand for targeting metabotropic glutamate receptor 5 (mGlu5). Eur J Nucl Med Mol Imaging 42:128–137PubMedCrossRef Sephton SM, Herde AM, Mu L et al (2015) Preclinical evaluation and test–retest studies of [18F]PSS232, a novel radioligand for targeting metabotropic glutamate receptor 5 (mGlu5). Eur J Nucl Med Mol Imaging 42:128–137PubMedCrossRef
81.
go back to reference Zhou X, de Vries E, Koole M, Dierckx R, Elsinga P (2015) In vivo evaluation of [11C]preladenant for imaging of adenosine A2A receptors in rat brain: kinetic modelling and test/retest variability. J Nucl Med 56:488CrossRef Zhou X, de Vries E, Koole M, Dierckx R, Elsinga P (2015) In vivo evaluation of [11C]preladenant for imaging of adenosine A2A receptors in rat brain: kinetic modelling and test/retest variability. J Nucl Med 56:488CrossRef
82.
go back to reference Alexoff DL, Vaska P, Marsteller D et al (2003) Reproducibility of 11C-raclopride binding in the rat brain measured with the microPET R4: effects of scatter correction and tracer specific activity. J Nucl Med 44:815–822PubMed Alexoff DL, Vaska P, Marsteller D et al (2003) Reproducibility of 11C-raclopride binding in the rat brain measured with the microPET R4: effects of scatter correction and tracer specific activity. J Nucl Med 44:815–822PubMed
83.
go back to reference Kroll T, Elmenhorst D, Weisshaupt A et al (2014) Reproducibility of non-invasive A1 adenosine receptor quantification in the rat brain using [18F]CPFPX and positron emission tomography. Mol Imaging Biol 16:699–709PubMedCrossRef Kroll T, Elmenhorst D, Weisshaupt A et al (2014) Reproducibility of non-invasive A1 adenosine receptor quantification in the rat brain using [18F]CPFPX and positron emission tomography. Mol Imaging Biol 16:699–709PubMedCrossRef
84.
go back to reference Elmenhorst D, Kroll T, Wedekind F et al (2013) In vivo kinetic and steady-state quantification of 18F-CPFPX binding to rat cerebral A1 adenosine receptors: validation by displacement and autoradiographic experiments. J Nucl Med 54:1411–1419PubMedCrossRef Elmenhorst D, Kroll T, Wedekind F et al (2013) In vivo kinetic and steady-state quantification of 18F-CPFPX binding to rat cerebral A1 adenosine receptors: validation by displacement and autoradiographic experiments. J Nucl Med 54:1411–1419PubMedCrossRef
85.
go back to reference van Berckel BN, Ossenkoppele R, Tolboom N et al (2013) Longitudinal amyloid imaging using 11C-PiB: methodologic considerations. J Nucl Med 54:1570–1576PubMedCrossRef van Berckel BN, Ossenkoppele R, Tolboom N et al (2013) Longitudinal amyloid imaging using 11C-PiB: methodologic considerations. J Nucl Med 54:1570–1576PubMedCrossRef
86.
go back to reference Keyes JW Jr (1995) SUV: standard uptake or silly useless value? J Nucl Med 36:1836–1839PubMed Keyes JW Jr (1995) SUV: standard uptake or silly useless value? J Nucl Med 36:1836–1839PubMed
88.
go back to reference Lammertsma AA (2017) Forward to the past: the case for quantitative PET imaging. J Nucl Med 58:1019–1024PubMedCrossRef Lammertsma AA (2017) Forward to the past: the case for quantitative PET imaging. J Nucl Med 58:1019–1024PubMedCrossRef
89.
go back to reference Lammertsma AA, Bench CJ, Hume SP et al (1996) Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 16:42–52PubMedCrossRef Lammertsma AA, Bench CJ, Hume SP et al (1996) Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 16:42–52PubMedCrossRef
90.
go back to reference Schmidt KC, Turkheimer FE (2002) Kinetic modeling in positron emission tomography. Quart J Nucl Med 46:70–85 Schmidt KC, Turkheimer FE (2002) Kinetic modeling in positron emission tomography. Quart J Nucl Med 46:70–85
91.
go back to reference Gunn RN, Gunn SR, Turkheimer FE et al (2002) Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 22:1425–1439PubMedCrossRef Gunn RN, Gunn SR, Turkheimer FE et al (2002) Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 22:1425–1439PubMedCrossRef
92.
go back to reference Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21:635–652PubMedCrossRef Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21:635–652PubMedCrossRef
93.
go back to reference Koeppe RA, Holthoff VA, Frey KA et al (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744PubMedCrossRef Koeppe RA, Holthoff VA, Frey KA et al (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744PubMedCrossRef
94.
go back to reference Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539PubMedCrossRef Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539PubMedCrossRef
95.
go back to reference Weber B, Burger C, Biro P, Buck A (2002) A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals. Eur J Nucl Med Mol Imaging 29:319–323PubMedCrossRef Weber B, Burger C, Biro P, Buck A (2002) A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals. Eur J Nucl Med Mol Imaging 29:319–323PubMedCrossRef
96.
go back to reference Herfert K, Marciano S, Kuebler L et al (2019) Preclinical experimentation (neurology). In: Lewis JS, Windhorst AD, Zeglis BM (eds) Radiopharmaceutical chemistry. Springer, Berlin Herfert K, Marciano S, Kuebler L et al (2019) Preclinical experimentation (neurology). In: Lewis JS, Windhorst AD, Zeglis BM (eds) Radiopharmaceutical chemistry. Springer, Berlin
97.
go back to reference Napieczynska H, Kolb A, Katiyar P et al (2018) Impact of the AIF recording method on kinetic parameters in small animal PET. J Nucl Med 59:1159–1164PubMedCrossRef Napieczynska H, Kolb A, Katiyar P et al (2018) Impact of the AIF recording method on kinetic parameters in small animal PET. J Nucl Med 59:1159–1164PubMedCrossRef
98.
go back to reference Kimura Y, Seki C, Hashizume N et al (2013) Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study. Phys Med Biol 58:7889–7903PubMedCrossRef Kimura Y, Seki C, Hashizume N et al (2013) Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study. Phys Med Biol 58:7889–7903PubMedCrossRef
99.
go back to reference Yee SH, Jerabek PA, Fox PT (2005) Non-invasive quantification of cerebral blood flow for rats by microPET imaging of 15O labelled water: the application of a cardiac time-activity curve for the tracer arterial input function. Nucl Med Commun 26:903–911PubMedCrossRef Yee SH, Jerabek PA, Fox PT (2005) Non-invasive quantification of cerebral blood flow for rats by microPET imaging of 15O labelled water: the application of a cardiac time-activity curve for the tracer arterial input function. Nucl Med Commun 26:903–911PubMedCrossRef
100.
go back to reference Fang YH, Muzic RF Jr (2008) Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med 49:606–614PubMedCrossRef Fang YH, Muzic RF Jr (2008) Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med 49:606–614PubMedCrossRef
101.
go back to reference Cunningham VJ, Hume SP, Price GR et al (1991) Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab 11:1–9PubMedCrossRef Cunningham VJ, Hume SP, Price GR et al (1991) Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab 11:1–9PubMedCrossRef
102.
go back to reference Finnema SJ, Nabulsi NB, Eid T et al (2016) Imaging synaptic density in the living human brain. Sci Transl Med 8:348ra396CrossRef Finnema SJ, Nabulsi NB, Eid T et al (2016) Imaging synaptic density in the living human brain. Sci Transl Med 8:348ra396CrossRef
103.
go back to reference Becker G, Warnier C, Serrano ME et al (2017) Pharmacokinetic characterization of [18F]UCB-H PET radiopharmaceutical in the rat brain. Mol Pharm 14:2719–2725PubMedCrossRef Becker G, Warnier C, Serrano ME et al (2017) Pharmacokinetic characterization of [18F]UCB-H PET radiopharmaceutical in the rat brain. Mol Pharm 14:2719–2725PubMedCrossRef
104.
go back to reference Lacan G, Plenevaux A, Rubins DJ et al (2008) Cyclosporine, a P-glycoprotein modulator, increases [18F]MPPF uptake in rat brain and peripheral tissues: microPET and ex vivo studies. Eur J Nucl Med Mol Imaging 35:2256–2266PubMedCrossRef Lacan G, Plenevaux A, Rubins DJ et al (2008) Cyclosporine, a P-glycoprotein modulator, increases [18F]MPPF uptake in rat brain and peripheral tissues: microPET and ex vivo studies. Eur J Nucl Med Mol Imaging 35:2256–2266PubMedCrossRef
105.
go back to reference Liow JS, Lu S, McCarron JA et al (2007) Effect of a P-glycoprotein inhibitor, Cyclosporin A, on the disposition in rodent brain and blood of the 5-HT1A receptor radioligand, [11C](R)-(-)-RWAY. Synapse 61:96–105PubMedCrossRef Liow JS, Lu S, McCarron JA et al (2007) Effect of a P-glycoprotein inhibitor, Cyclosporin A, on the disposition in rodent brain and blood of the 5-HT1A receptor radioligand, [11C](R)-(-)-RWAY. Synapse 61:96–105PubMedCrossRef
106.
go back to reference Kroll T, Elmenhorst D, Matusch A et al (2014) [18F]Altanserin and small animal PET: impact of multidrug efflux transporters on ligand brain uptake and subsequent quantification of 5-HT(2)A receptor densities in the rat brain. Nucl Med Biol 41:1–9PubMedCrossRef Kroll T, Elmenhorst D, Matusch A et al (2014) [18F]Altanserin and small animal PET: impact of multidrug efflux transporters on ligand brain uptake and subsequent quantification of 5-HT(2)A receptor densities in the rat brain. Nucl Med Biol 41:1–9PubMedCrossRef
107.
go back to reference Syvanen S, Lindhe O, Palner M et al (2009) Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37:635–643PubMedCrossRef Syvanen S, Lindhe O, Palner M et al (2009) Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37:635–643PubMedCrossRef
108.
go back to reference Elsinga PH, Hendrikse NH, Bart J et al (2005) Positron emission tomography studies on binding of central nervous system drugs and P-glycoprotein function in the rodent brain. Mol Imaging Biol 7:37–44PubMedCrossRef Elsinga PH, Hendrikse NH, Bart J et al (2005) Positron emission tomography studies on binding of central nervous system drugs and P-glycoprotein function in the rodent brain. Mol Imaging Biol 7:37–44PubMedCrossRef
109.
go back to reference Tournier N, Cisternino S, Peyronneau MA et al (2012) Discrepancies in the P-glycoprotein-mediated transport of 18F-MPPF: a pharmacokinetic study in mice and non-human primates. Pharm Res 29:2468–2476PubMedCrossRef Tournier N, Cisternino S, Peyronneau MA et al (2012) Discrepancies in the P-glycoprotein-mediated transport of 18F-MPPF: a pharmacokinetic study in mice and non-human primates. Pharm Res 29:2468–2476PubMedCrossRef
110.
go back to reference Kroll T, Elmenhorst D, Matusch A et al (2013) Suitability of [18F]altanserin and PET to determine 5-HT2A receptor availability in the rat brain: in vivo and in vitro validation of invasive and non-invasive kinetic models. Mol Imaging Biol 15:456–467PubMedCrossRef Kroll T, Elmenhorst D, Matusch A et al (2013) Suitability of [18F]altanserin and PET to determine 5-HT2A receptor availability in the rat brain: in vivo and in vitro validation of invasive and non-invasive kinetic models. Mol Imaging Biol 15:456–467PubMedCrossRef
111.
go back to reference Riss PJ, Hong YT, Williamson D et al (2011) Validation and quantification of [18F]altanserin binding in the rat brain using blood input and reference tissue modeling. J Cereb Blood Flow Metab 31:2334–2342PubMedPubMedCentralCrossRef Riss PJ, Hong YT, Williamson D et al (2011) Validation and quantification of [18F]altanserin binding in the rat brain using blood input and reference tissue modeling. J Cereb Blood Flow Metab 31:2334–2342PubMedPubMedCentralCrossRef
112.
go back to reference Sadzot B, Lemaire C, Maquet P et al (1995) Serotonin 5HT2 receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]altanserin: results in young normal controls. J Cereb Blood Flow Metab 15:787–797PubMedCrossRef Sadzot B, Lemaire C, Maquet P et al (1995) Serotonin 5HT2 receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]altanserin: results in young normal controls. J Cereb Blood Flow Metab 15:787–797PubMedCrossRef
113.
go back to reference Skaddan MB, Sherman PS, Kilbourn MR (2001) The role of species-dependent metabolism in the regional brain retention of 18F-labeled muscarinic acetylcholine receptor ligands. Nucl Med Biol 28:753–759PubMedCrossRef Skaddan MB, Sherman PS, Kilbourn MR (2001) The role of species-dependent metabolism in the regional brain retention of 18F-labeled muscarinic acetylcholine receptor ligands. Nucl Med Biol 28:753–759PubMedCrossRef
114.
go back to reference Walker MD, Dinelle K, Kornelsen R et al (2013) In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F]FDOPA PET. J Cereb Blood Flow Metab 33:59–66PubMedCrossRef Walker MD, Dinelle K, Kornelsen R et al (2013) In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F]FDOPA PET. J Cereb Blood Flow Metab 33:59–66PubMedCrossRef
116.
go back to reference Brown AK, Kimura Y, Zoghbi SS et al (2008) Metabotropic glutamate subtype 5 receptors are quantified in the human brain with a novel radioligand for PET. J Nucl Med 49:2042–2048PubMedCrossRef Brown AK, Kimura Y, Zoghbi SS et al (2008) Metabotropic glutamate subtype 5 receptors are quantified in the human brain with a novel radioligand for PET. J Nucl Med 49:2042–2048PubMedCrossRef
117.
go back to reference Shetty HU, Zoghbi SS, Simeon FG et al (2008) Radiodefluorination of 3-fluoro-5-(2-(2-[18F](fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile ([18F]SP203), a radioligand for imaging brain metabotropic glutamate subtype-5 receptors with positron emission tomography, occurs by glutathionylation in rat brain. J Pharmacol Exp Ther 327:727–735PubMedCrossRef Shetty HU, Zoghbi SS, Simeon FG et al (2008) Radiodefluorination of 3-fluoro-5-(2-(2-[18F](fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile ([18F]SP203), a radioligand for imaging brain metabotropic glutamate subtype-5 receptors with positron emission tomography, occurs by glutathionylation in rat brain. J Pharmacol Exp Ther 327:727–735PubMedCrossRef
118.
go back to reference Fischer K (2012) Thesis: Limits and possibilities of the in vivo quantification of the dopaminergic system in rats and mice using positron emission tomography. In Department of Preclinical Imaging and Radiopharmacy. Library: Eberhard-Karls University of Tuebingen, p 433 Fischer K (2012) Thesis: Limits and possibilities of the in vivo quantification of the dopaminergic system in rats and mice using positron emission tomography. In Department of Preclinical Imaging and Radiopharmacy. Library: Eberhard-Karls University of Tuebingen, p 433
119.
go back to reference Doudet DJ, Jivan S, Ruth TJ, Holden JE (2002) Density and affinity of the dopamine D2 receptors in aged symptomatic and asymptomatic MPTP-treated monkeys: PET studies with [11C]raclopride. Synapse 44:198–202PubMedCrossRef Doudet DJ, Jivan S, Ruth TJ, Holden JE (2002) Density and affinity of the dopamine D2 receptors in aged symptomatic and asymptomatic MPTP-treated monkeys: PET studies with [11C]raclopride. Synapse 44:198–202PubMedCrossRef
120.
go back to reference Holden JE, Jivan S, Ruth TJ, Doudet DJ (2002) In vivo receptor assay with multiple ligand concentrations: an equilibrium approach. J Cereb Blood Flow Metab 22:1132–1141PubMedCrossRef Holden JE, Jivan S, Ruth TJ, Doudet DJ (2002) In vivo receptor assay with multiple ligand concentrations: an equilibrium approach. J Cereb Blood Flow Metab 22:1132–1141PubMedCrossRef
121.
go back to reference Ikoma Y, Watabe H, Hayashi T et al (2009) Quantitative evaluation of changes in binding potential with a simplified reference tissue model and multiple injections of [11C]raclopride. Neuroimage 47:1639–1648PubMedCrossRef Ikoma Y, Watabe H, Hayashi T et al (2009) Quantitative evaluation of changes in binding potential with a simplified reference tissue model and multiple injections of [11C]raclopride. Neuroimage 47:1639–1648PubMedCrossRef
122.
go back to reference Ikoma Y, Watabe H, Hayashi T et al (2010) Measurement of density and affinity for dopamine D2 receptors by a single positron emission tomography scan with multiple injections of [11C]raclopride. J CerebBlood Flow Metab 30:663–673CrossRef Ikoma Y, Watabe H, Hayashi T et al (2010) Measurement of density and affinity for dopamine D2 receptors by a single positron emission tomography scan with multiple injections of [11C]raclopride. J CerebBlood Flow Metab 30:663–673CrossRef
123.
go back to reference Delforge J, Spelle L, Bendriem B et al (1996) Quantitation of benzodiazepine receptors in human brain using the partial saturation method. J Nucl Med 37:5–11PubMed Delforge J, Spelle L, Bendriem B et al (1996) Quantitation of benzodiazepine receptors in human brain using the partial saturation method. J Nucl Med 37:5–11PubMed
124.
go back to reference Leriche L, Bjorklund T, Breysse N et al (2009) Positron emission tomography imaging demonstrates correlation between behavioral recovery and correction of dopamine neurotransmission after gene therapy. J Neurosci 29:1544–1553PubMedPubMedCentralCrossRef Leriche L, Bjorklund T, Breysse N et al (2009) Positron emission tomography imaging demonstrates correlation between behavioral recovery and correction of dopamine neurotransmission after gene therapy. J Neurosci 29:1544–1553PubMedPubMedCentralCrossRef
125.
go back to reference Wimberley CJ, Fischer K, Reilhac A et al (2014) A data driven method for estimation of B(avail) and appK(D) using a single injection protocol with [11C]raclopride in the mouse. Neuroimage 99:365–376PubMedCrossRef Wimberley CJ, Fischer K, Reilhac A et al (2014) A data driven method for estimation of B(avail) and appK(D) using a single injection protocol with [11C]raclopride in the mouse. Neuroimage 99:365–376PubMedCrossRef
126.
go back to reference Wimberley C, Angelis G, Boisson F et al (2014) Simulation-based optimisation of the PET data processing for partial saturation approach protocols. Neuroimage 97:29–40PubMedCrossRef Wimberley C, Angelis G, Boisson F et al (2014) Simulation-based optimisation of the PET data processing for partial saturation approach protocols. Neuroimage 97:29–40PubMedCrossRef
127.
go back to reference Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451PubMedCrossRef Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451PubMedCrossRef
128.
go back to reference Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM (2010) Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow 30:1682–1706CrossRef Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM (2010) Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow 30:1682–1706CrossRef
129.
go back to reference Sahin G, Thompson LH, Lavisse S et al (2014) Differential dopamine receptor occupancy underlies L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. PLoS One 9:e90759PubMedPubMedCentralCrossRef Sahin G, Thompson LH, Lavisse S et al (2014) Differential dopamine receptor occupancy underlies L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. PLoS One 9:e90759PubMedPubMedCentralCrossRef
130.
go back to reference Houston GC, Hume SP, Hirani E et al (2004) Temporal characterisation of amphetamine-induced dopamine release assessed with [11C]raclopride in anaesthetised rodents. Synapse 51:206–212PubMedCrossRef Houston GC, Hume SP, Hirani E et al (2004) Temporal characterisation of amphetamine-induced dopamine release assessed with [11C]raclopride in anaesthetised rodents. Synapse 51:206–212PubMedCrossRef
131.
go back to reference Hume SP, Myers R, Bloomfield PM et al (1992) Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 12:47–54PubMedCrossRef Hume SP, Myers R, Bloomfield PM et al (1992) Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 12:47–54PubMedCrossRef
132.
go back to reference Kuczenski R, Segal DS (1999) Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate. Psychopharmacol (Berl) 147:96–103CrossRef Kuczenski R, Segal DS (1999) Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate. Psychopharmacol (Berl) 147:96–103CrossRef
133.
go back to reference Laruelle M, Iyer RN, al-Tikriti MS et al (1997) Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25:1–14PubMedCrossRef Laruelle M, Iyer RN, al-Tikriti MS et al (1997) Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25:1–14PubMedCrossRef
134.
go back to reference Skinbjerg M, Liow JS, Seneca N et al (2010) D2 dopamine receptor internalization prolongs the decrease of radioligand binding after amphetamine: a PET study in a receptor internalization-deficient mouse model. Neuroimage 50:1402–1407PubMedCrossRef Skinbjerg M, Liow JS, Seneca N et al (2010) D2 dopamine receptor internalization prolongs the decrease of radioligand binding after amphetamine: a PET study in a receptor internalization-deficient mouse model. Neuroimage 50:1402–1407PubMedCrossRef
135.
go back to reference Hwang DR, Kegeles LS, Laruelle M (2000) (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D2 receptors. Nucl Med Biol 27:533–539PubMedCrossRef Hwang DR, Kegeles LS, Laruelle M (2000) (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D2 receptors. Nucl Med Biol 27:533–539PubMedCrossRef
136.
go back to reference Wilson AA, McCormick P, Kapur S et al (2005) Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem 48:4153–4160PubMedCrossRef Wilson AA, McCormick P, Kapur S et al (2005) Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem 48:4153–4160PubMedCrossRef
137.
go back to reference Finnema SJ, Seneca N, Farde L et al (2005) A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey. Nucl Med Biol 32:353–360PubMedCrossRef Finnema SJ, Seneca N, Farde L et al (2005) A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey. Nucl Med Biol 32:353–360PubMedCrossRef
138.
go back to reference Seneca N, Zoghbi SS, Skinbjerg M et al (2008) Occupancy of dopamine D2/3 receptors in rat brain by endogenous dopamine measured with the agonist positron emission tomography radioligand [11C]MNPA. Synapse 62:756–763PubMedPubMedCentralCrossRef Seneca N, Zoghbi SS, Skinbjerg M et al (2008) Occupancy of dopamine D2/3 receptors in rat brain by endogenous dopamine measured with the agonist positron emission tomography radioligand [11C]MNPA. Synapse 62:756–763PubMedPubMedCentralCrossRef
139.
go back to reference Galineau L, Wilson AA, Garcia A et al (2006) In vivo characterization of the pharmacokinetics and pharmacological properties of [11C]-(+)-PHNO in rats using an intracerebral beta-sensitive system. Synapse 60:172–183PubMedCrossRef Galineau L, Wilson AA, Garcia A et al (2006) In vivo characterization of the pharmacokinetics and pharmacological properties of [11C]-(+)-PHNO in rats using an intracerebral beta-sensitive system. Synapse 60:172–183PubMedCrossRef
140.
go back to reference Narendran R, Mason NS, Laymon CM et al (2010) A comparative evaluation of the dopamine D(2/3) agonist radiotracer [11C](-)-N-propyl-norapomorphine and antagonist [11C]raclopride to measure amphetamine-induced dopamine release in the human striatum. J Pharmacol Exp Therap 333:533–539CrossRef Narendran R, Mason NS, Laymon CM et al (2010) A comparative evaluation of the dopamine D(2/3) agonist radiotracer [11C](-)-N-propyl-norapomorphine and antagonist [11C]raclopride to measure amphetamine-induced dopamine release in the human striatum. J Pharmacol Exp Therap 333:533–539CrossRef
141.
go back to reference Jørgensen LM, Weikop P, Villadsen J et al (2016) Cerebral 5-HT release correlates with [11C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain. J Cereb Blood Flow Metab 37:425–434PubMedPubMedCentralCrossRef Jørgensen LM, Weikop P, Villadsen J et al (2016) Cerebral 5-HT release correlates with [11C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain. J Cereb Blood Flow Metab 37:425–434PubMedPubMedCentralCrossRef
142.
go back to reference Jørgensen LM, Weikop P, Svarer C et al (2017) Cerebral serotonin release correlates with [11C ]AZ10419369 PET measures of 5-HT 1B receptor binding in the pig brain. J Cereb Blood Flow Metab 38:1243–1252PubMedPubMedCentralCrossRef Jørgensen LM, Weikop P, Svarer C et al (2017) Cerebral serotonin release correlates with [11C ]AZ10419369 PET measures of 5-HT 1B receptor binding in the pig brain. J Cereb Blood Flow Metab 38:1243–1252PubMedPubMedCentralCrossRef
143.
go back to reference Jorgensen LM, Weikop P, Svarer C et al (2017) Cerebral serotonin release correlates with [11C]AZ10419369 PET measures of 5-HT1B receptor binding in the pig brain. J Cereb Blood Flow Metab 38:1243–1252PubMedPubMedCentralCrossRef Jorgensen LM, Weikop P, Svarer C et al (2017) Cerebral serotonin release correlates with [11C]AZ10419369 PET measures of 5-HT1B receptor binding in the pig brain. J Cereb Blood Flow Metab 38:1243–1252PubMedPubMedCentralCrossRef
144.
go back to reference Landau AM, Doudet DJ, Jakobsen S (2012) Amphetamine challenge decreases yohimbine binding to α2 adrenoceptors in Landrace pig brain. Psychopharmacol 222:155–163CrossRef Landau AM, Doudet DJ, Jakobsen S (2012) Amphetamine challenge decreases yohimbine binding to α2 adrenoceptors in Landrace pig brain. Psychopharmacol 222:155–163CrossRef
146.
go back to reference Phan JA, Landau AM, Wong DF et al (2015) Quantification of [11C]yohimbine binding to alpha2 adrenoceptors in rat brain in vivo. J Cereb Blood Flow Metab 35:501–511PubMedPubMedCentralCrossRef Phan JA, Landau AM, Wong DF et al (2015) Quantification of [11C]yohimbine binding to alpha2 adrenoceptors in rat brain in vivo. J Cereb Blood Flow Metab 35:501–511PubMedPubMedCentralCrossRef
148.
go back to reference Sperlagh B, Vizi ES (2011) The role of extracellular adenosine in chemical neurotransmission in the hippocampus and basal ganglia: pharmacological and clinical aspects. Curr Top Med Chem 11:1034–1046PubMedPubMedCentralCrossRef Sperlagh B, Vizi ES (2011) The role of extracellular adenosine in chemical neurotransmission in the hippocampus and basal ganglia: pharmacological and clinical aspects. Curr Top Med Chem 11:1034–1046PubMedPubMedCentralCrossRef
149.
go back to reference Noguchi J, Ishiwata K, Furuta R et al (1997) Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. Nucl Med Biol 24:53–59PubMedCrossRef Noguchi J, Ishiwata K, Furuta R et al (1997) Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. Nucl Med Biol 24:53–59PubMedCrossRef
150.
go back to reference Holschbach MH, Olsson RA, Bier D et al (2002) Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX): a potent and selective A1-adenosine receptor antagonist for in vivo imaging. J Med Chem 45:5150–5156PubMedCrossRef Holschbach MH, Olsson RA, Bier D et al (2002) Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX): a potent and selective A1-adenosine receptor antagonist for in vivo imaging. J Med Chem 45:5150–5156PubMedCrossRef
151.
go back to reference Zhou X, Khanapur S, de Jong JR et al (2017) In vivo evaluation of [11C]preladenant positron emission tomography for quantification of adenosine A2A receptors in the rat brain. J Cereb Blood Flow Metab 37:577–589PubMedCrossRef Zhou X, Khanapur S, de Jong JR et al (2017) In vivo evaluation of [11C]preladenant positron emission tomography for quantification of adenosine A2A receptors in the rat brain. J Cereb Blood Flow Metab 37:577–589PubMedCrossRef
152.
go back to reference Ishiwata K, Wang WF, Kimura Y et al (2003) Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann Nucl Med 17:205–211PubMedCrossRef Ishiwata K, Wang WF, Kimura Y et al (2003) Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann Nucl Med 17:205–211PubMedCrossRef
153.
go back to reference Moresco RM, Todde S, Belloli S et al (2005) In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 32:405–413PubMedCrossRef Moresco RM, Todde S, Belloli S et al (2005) In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 32:405–413PubMedCrossRef
154.
go back to reference Elmenhorst D, Garibotto V, Prescher A, Bauer A (2011) Adenosine A(1) receptors in human brain and transfected CHO cells: inhibition of [3H]CPFPX binding by adenosine and caffeine. Neurosci Lett 487:415–420PubMedCrossRef Elmenhorst D, Garibotto V, Prescher A, Bauer A (2011) Adenosine A(1) receptors in human brain and transfected CHO cells: inhibition of [3H]CPFPX binding by adenosine and caffeine. Neurosci Lett 487:415–420PubMedCrossRef
155.
go back to reference Guo M, Gao ZG, Tyler R et al (2018) Preclinical evaluation of the first adenosine A1 receptor partial agonist Radioligand for positron emission tomography imaging. J Med Chem 61:9966–9975PubMedCrossRefPubMedCentral Guo M, Gao ZG, Tyler R et al (2018) Preclinical evaluation of the first adenosine A1 receptor partial agonist Radioligand for positron emission tomography imaging. J Med Chem 61:9966–9975PubMedCrossRefPubMedCentral
156.
go back to reference Mead BP, Kim N, Miller GW et al (2017) Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson's disease model. Nano Lett 17:3533–3542PubMedPubMedCentralCrossRef Mead BP, Kim N, Miller GW et al (2017) Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson's disease model. Nano Lett 17:3533–3542PubMedPubMedCentralCrossRef
157.
go back to reference Hua Y, Sahashi K, Rigo F et al (2011) Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478:123–126PubMedPubMedCentralCrossRef Hua Y, Sahashi K, Rigo F et al (2011) Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478:123–126PubMedPubMedCentralCrossRef
158.
go back to reference Tomiyama T, Matsuyama S, Iso H et al (2010) A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30:4845–4856PubMedPubMedCentralCrossRef Tomiyama T, Matsuyama S, Iso H et al (2010) A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30:4845–4856PubMedPubMedCentralCrossRef
159.
go back to reference Boronat-Garcia A, Palomero-Rivero M, Guerra-Crespo M et al (2016) Intrastriatal grafting of chromospheres: survival and functional effects in the 6-OHDA rat model of Parkinson's disease. PLoS One 11:e0160854PubMedPubMedCentralCrossRef Boronat-Garcia A, Palomero-Rivero M, Guerra-Crespo M et al (2016) Intrastriatal grafting of chromospheres: survival and functional effects in the 6-OHDA rat model of Parkinson's disease. PLoS One 11:e0160854PubMedPubMedCentralCrossRef
160.
go back to reference Chow RD, Guzman CD, Wang G et al (2017) AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci 20:1329–1341PubMedPubMedCentralCrossRef Chow RD, Guzman CD, Wang G et al (2017) AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci 20:1329–1341PubMedPubMedCentralCrossRef
162.
go back to reference Lin H, Hu H, Duan W et al (2016) Intramuscular delivery of scAAV9-hIGF1 prolongs survival in the hSOD1(G93A) ALS mouse model via upregulation of D-amino acid oxidase. Mol Neurobiol Lin H, Hu H, Duan W et al (2016) Intramuscular delivery of scAAV9-hIGF1 prolongs survival in the hSOD1(G93A) ALS mouse model via upregulation of D-amino acid oxidase. Mol Neurobiol
163.
go back to reference de Solis CA, Ho A, Holehonnur R, Ploski JE (2016) The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing. Front Mol Neurosci 9:70PubMedPubMedCentralCrossRef de Solis CA, Ho A, Holehonnur R, Ploski JE (2016) The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing. Front Mol Neurosci 9:70PubMedPubMedCentralCrossRef
164.
go back to reference Suzuki K, Tsunekawa Y, Hernandez-Benitez R et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149PubMedPubMedCentralCrossRef Suzuki K, Tsunekawa Y, Hernandez-Benitez R et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149PubMedPubMedCentralCrossRef
165.
go back to reference Nishiyama J, Mikuni T, Yasuda R (2017) Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron 96:755–768 e755PubMedPubMedCentralCrossRef Nishiyama J, Mikuni T, Yasuda R (2017) Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron 96:755–768 e755PubMedPubMedCentralCrossRef
166.
go back to reference Swiech L, Heidenreich M, Banerjee A et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106PubMedCrossRef Swiech L, Heidenreich M, Banerjee A et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106PubMedCrossRef
167.
go back to reference Back S, Necarsulmer J, Whitaker LR et al (2019) Neuron-specific genome modification in the adult rat brain using CRISPR-Cas9 transgenic rats. Neuron 102:105–119PubMedCrossRef Back S, Necarsulmer J, Whitaker LR et al (2019) Neuron-specific genome modification in the adult rat brain using CRISPR-Cas9 transgenic rats. Neuron 102:105–119PubMedCrossRef
168.
169.
go back to reference Whitworth KM, Lee K, Benne JA et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:1–13CrossRef Whitworth KM, Lee K, Benne JA et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:1–13CrossRef
170.
go back to reference Zhou X, Xin J, Fan N et al (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184PubMedCrossRef Zhou X, Xin J, Fan N et al (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184PubMedCrossRef
171.
go back to reference Niu Y, Shen B, Cui Y et al (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843PubMedCrossRef Niu Y, Shen B, Cui Y et al (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843PubMedCrossRef
172.
go back to reference Ohmura Y, Tanaka KF, Tsunematsu T et al (2014) Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. Int J Neuropsychopharmacol 17:1777–1783PubMedCrossRef Ohmura Y, Tanaka KF, Tsunematsu T et al (2014) Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. Int J Neuropsychopharmacol 17:1777–1783PubMedCrossRef
173.
go back to reference Bock R, Shin JH, Kaplan AR et al (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci 16:632–638PubMedPubMedCentralCrossRef Bock R, Shin JH, Kaplan AR et al (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci 16:632–638PubMedPubMedCentralCrossRef
174.
go back to reference Krashes MJ, Shah BP, Koda S, Lowell BB (2013) Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18:588–595PubMedCrossRef Krashes MJ, Shah BP, Koda S, Lowell BB (2013) Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18:588–595PubMedCrossRef
175.
go back to reference Cai H, Haubensak W, Anthony TE, Anderson DJ (2014) Central amygdala PKC-delta(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17:1240–1248PubMedPubMedCentralCrossRef Cai H, Haubensak W, Anthony TE, Anderson DJ (2014) Central amygdala PKC-delta(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17:1240–1248PubMedPubMedCentralCrossRef
177.
178.
go back to reference Manvich DF, Webster KA, Foster SL et al (2018) The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep-UK 8:3840CrossRef Manvich DF, Webster KA, Foster SL et al (2018) The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep-UK 8:3840CrossRef
179.
go back to reference Mahler SV, Vazey EM, Beckley JT et al (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17:577–585PubMedPubMedCentralCrossRef Mahler SV, Vazey EM, Beckley JT et al (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17:577–585PubMedPubMedCentralCrossRef
180.
go back to reference Thompson KJ, Khajehali E, Bradley SJ et al (2018) DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharmacol Trans Sci 1:61–72CrossRef Thompson KJ, Khajehali E, Bradley SJ et al (2018) DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharmacol Trans Sci 1:61–72CrossRef
181.
go back to reference Yuan P, Grutzendler J (2016) Attenuation of beta-amyloid deposition and neurotoxicity by chemogenetic modulation of neural activity. J Neurosci 36:632–641PubMedCrossRef Yuan P, Grutzendler J (2016) Attenuation of beta-amyloid deposition and neurotoxicity by chemogenetic modulation of neural activity. J Neurosci 36:632–641PubMedCrossRef
182.
go back to reference Alcacer C, Andreoli L, Sebastianutto I et al (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy. J Clin Invest 127:720–734PubMedPubMedCentralCrossRef Alcacer C, Andreoli L, Sebastianutto I et al (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy. J Clin Invest 127:720–734PubMedPubMedCentralCrossRef
183.
go back to reference Chen Y, Xiong M, Dong Y et al (2016) Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson's disease. Cell Stem Cell 18:817–826PubMedPubMedCentralCrossRef Chen Y, Xiong M, Dong Y et al (2016) Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson's disease. Cell Stem Cell 18:817–826PubMedPubMedCentralCrossRef
184.
go back to reference Aldrin-Kirk P, Heuer A, Wang G et al (2016) DREADD modulation of transplanted DA neurons reveals a novel parkinsonian dyskinesia mechanism mediated by the serotonin 5-HT6 receptor. Neuron 90:955–968PubMedPubMedCentralCrossRef Aldrin-Kirk P, Heuer A, Wang G et al (2016) DREADD modulation of transplanted DA neurons reveals a novel parkinsonian dyskinesia mechanism mediated by the serotonin 5-HT6 receptor. Neuron 90:955–968PubMedPubMedCentralCrossRef
185.
go back to reference Michaelides M, Hurd YL (2015) DREAMM: a biobehavioral imaging methodology for dynamic in vivo whole-brain mapping of cell type-specific functional networks. Neuropsychopharmacol 40:239–240CrossRef Michaelides M, Hurd YL (2015) DREAMM: a biobehavioral imaging methodology for dynamic in vivo whole-brain mapping of cell type-specific functional networks. Neuropsychopharmacol 40:239–240CrossRef
186.
go back to reference Michaelides M, Anderson SA, Ananth M et al (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123:5342–5350PubMedPubMedCentralCrossRef Michaelides M, Anderson SA, Ananth M et al (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123:5342–5350PubMedPubMedCentralCrossRef
187.
go back to reference Heneka MT, Ramanathan M, Jacobs AH et al (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343–1354PubMedPubMedCentralCrossRef Heneka MT, Ramanathan M, Jacobs AH et al (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343–1354PubMedPubMedCentralCrossRef
188.
go back to reference Thanos PK, Taintor NB, Alexoff D et al (2002) In vivo comparative imaging of dopamine D2 knockout and wild-type mice with 11C-raclopride and microPET. J Nucl Med 43:1570–1577PubMed Thanos PK, Taintor NB, Alexoff D et al (2002) In vivo comparative imaging of dopamine D2 knockout and wild-type mice with 11C-raclopride and microPET. J Nucl Med 43:1570–1577PubMed
189.
go back to reference Brendel M, Jaworska A, Probst F et al (2016) Small-animal PET imaging of tau pathology with 18F-THK5117 in 2 transgenic mouse models. J Nucl Med 57:792–798PubMedCrossRef Brendel M, Jaworska A, Probst F et al (2016) Small-animal PET imaging of tau pathology with 18F-THK5117 in 2 transgenic mouse models. J Nucl Med 57:792–798PubMedCrossRef
190.
go back to reference Manook A, Yousefi BH, Willuweit A et al (2012) Small-animal PET imaging of amyloid-beta plaques with [11C]PiB and its multi-modal validation in an APP/PS1 mouse model of Alzheimer's disease. PLoS One 7:e31310PubMedPubMedCentralCrossRef Manook A, Yousefi BH, Willuweit A et al (2012) Small-animal PET imaging of amyloid-beta plaques with [11C]PiB and its multi-modal validation in an APP/PS1 mouse model of Alzheimer's disease. PLoS One 7:e31310PubMedPubMedCentralCrossRef
191.
go back to reference Brendel M, Jaworska A, Griessinger E et al (2015) Cross-sectional comparison of small animal [18F]-florbetaben amyloid-PET between transgenic AD mouse models. PLoS One 10:e0116678PubMedPubMedCentralCrossRef Brendel M, Jaworska A, Griessinger E et al (2015) Cross-sectional comparison of small animal [18F]-florbetaben amyloid-PET between transgenic AD mouse models. PLoS One 10:e0116678PubMedPubMedCentralCrossRef
192.
go back to reference Maier FC, Wehrl HF, Schmid AM et al (2014) Longitudinal PET-MRI reveals beta-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat Med 20:1485–1492PubMedCrossRef Maier FC, Wehrl HF, Schmid AM et al (2014) Longitudinal PET-MRI reveals beta-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat Med 20:1485–1492PubMedCrossRef
193.
go back to reference Ghaemi M, Hilker R, Rudolf J et al (2002) Differentiating multiple system atrophy from Parkinson's disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 73:517–523PubMedPubMedCentralCrossRef Ghaemi M, Hilker R, Rudolf J et al (2002) Differentiating multiple system atrophy from Parkinson's disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 73:517–523PubMedPubMedCentralCrossRef
194.
go back to reference Segovia F, Illan IA, Gorriz JM et al (2015) Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks. Front Comput Neurosci 9:137PubMedPubMedCentralCrossRef Segovia F, Illan IA, Gorriz JM et al (2015) Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks. Front Comput Neurosci 9:137PubMedPubMedCentralCrossRef
195.
go back to reference Strome EM, Cepeda IL, Sossi V, Doudet DJ (2006) Evaluation of the integrity of the dopamine system in a rodent model of Parkinson's disease: small animal positron emission tomography compared to behavioral assessment and autoradiography. Mol Imaging Biol 8:292–299PubMedCrossRef Strome EM, Cepeda IL, Sossi V, Doudet DJ (2006) Evaluation of the integrity of the dopamine system in a rodent model of Parkinson's disease: small animal positron emission tomography compared to behavioral assessment and autoradiography. Mol Imaging Biol 8:292–299PubMedCrossRef
196.
go back to reference Nikolaus S, Larisch R, Beu M et al (2003) Bilateral increase in striatal dopamine D2 receptor density in the 6-hydroxydopamine-lesioned rat: a serial in vivo investigation with small animal PET. Eur J Nucl Med Mol Imaging 30:390–395PubMedCrossRef Nikolaus S, Larisch R, Beu M et al (2003) Bilateral increase in striatal dopamine D2 receptor density in the 6-hydroxydopamine-lesioned rat: a serial in vivo investigation with small animal PET. Eur J Nucl Med Mol Imaging 30:390–395PubMedCrossRef
197.
go back to reference Sharma SK, Ebadi M (2005) Distribution kinetics of 18F-DOPA in weaver mutant mice. Mol Brain Res 139:23–30PubMedCrossRef Sharma SK, Ebadi M (2005) Distribution kinetics of 18F-DOPA in weaver mutant mice. Mol Brain Res 139:23–30PubMedCrossRef
198.
go back to reference Antonini A, Leenders KL, Spiegel R et al (1996) Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain 119:2085–2095PubMedCrossRef Antonini A, Leenders KL, Spiegel R et al (1996) Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain 119:2085–2095PubMedCrossRef
199.
go back to reference Feigin A, Leenders KL, Moeller JR et al (2001) Metabolic network abnormalities in early Huntington's disease: an [18F]FDG PET study. J Nucl Med 42:1591–1595PubMed Feigin A, Leenders KL, Moeller JR et al (2001) Metabolic network abnormalities in early Huntington's disease: an [18F]FDG PET study. J Nucl Med 42:1591–1595PubMed
200.
go back to reference Araujo DM, Cherry SR, Tatsukawa KJ et al (2000) Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington's disease. Exp Neurol 166:287–297PubMedCrossRef Araujo DM, Cherry SR, Tatsukawa KJ et al (2000) Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington's disease. Exp Neurol 166:287–297PubMedCrossRef
201.
go back to reference Kaneko G, Sanganahalli BG, Groman SM et al (2017) Hypofrontality and posterior hyperactivity in early schizophrenia: imaging and behavior in a preclinical model. Biol Psychiatry 81:503–513PubMedCrossRef Kaneko G, Sanganahalli BG, Groman SM et al (2017) Hypofrontality and posterior hyperactivity in early schizophrenia: imaging and behavior in a preclinical model. Biol Psychiatry 81:503–513PubMedCrossRef
202.
go back to reference Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377PubMedCrossRef Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377PubMedCrossRef
203.
go back to reference Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132PubMedCrossRef Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132PubMedCrossRef
204.
go back to reference Sullivan AM, Opacka-Juffry J, Blunt SB (1998) Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J Neurosci 10:57–63PubMedCrossRef Sullivan AM, Opacka-Juffry J, Blunt SB (1998) Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J Neurosci 10:57–63PubMedCrossRef
205.
go back to reference Vandeputte C, Evens N, Toelen J et al (2011) A PET brain reporter gene system based on type 2 cannabinoid receptors. J Nucl Med 52:1102–1109PubMedCrossRef Vandeputte C, Evens N, Toelen J et al (2011) A PET brain reporter gene system based on type 2 cannabinoid receptors. J Nucl Med 52:1102–1109PubMedCrossRef
206.
go back to reference MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791PubMedCrossRef MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791PubMedCrossRef
207.
go back to reference Liang Q, Satyamurthy N, Barrio JR et al (2001) Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8:1490–1498PubMedCrossRef Liang Q, Satyamurthy N, Barrio JR et al (2001) Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8:1490–1498PubMedCrossRef
209.
go back to reference Shao Y, Cherry SR, Farahani K et al (1997) Simultaneous PET and MR imaging. Phys Med Biol 42:1965–1970PubMedCrossRef Shao Y, Cherry SR, Farahani K et al (1997) Simultaneous PET and MR imaging. Phys Med Biol 42:1965–1970PubMedCrossRef
210.
go back to reference Hammer BE, Christensen NL, Heil BG (1994) Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21:1917–1920PubMedCrossRef Hammer BE, Christensen NL, Heil BG (1994) Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21:1917–1920PubMedCrossRef
211.
go back to reference Pichler BJ, Lorenz E, Mirzoyan R, et al. (1997) Performance test of a LSO-APD PET module in a 9.4 Tesla magnet. In IEEE IEEE, pp 1237–1239 Pichler BJ, Lorenz E, Mirzoyan R, et al. (1997) Performance test of a LSO-APD PET module in a 9.4 Tesla magnet. In IEEE IEEE, pp 1237–1239
212.
go back to reference Catana C, Procissi D, Wu Y et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105:3705–3710PubMedPubMedCentralCrossRef Catana C, Procissi D, Wu Y et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105:3705–3710PubMedPubMedCentralCrossRef
213.
go back to reference Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465PubMedCrossRef Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465PubMedCrossRef
214.
go back to reference Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1189PubMedCrossRef Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1189PubMedCrossRef
215.
go back to reference Wehrl HF, Wiehr S, Divine MR et al (2014) Preclinical and translational PET/MR imaging. J Nucl Med 55:11s–18sPubMedCrossRef Wehrl HF, Wiehr S, Divine MR et al (2014) Preclinical and translational PET/MR imaging. J Nucl Med 55:11s–18sPubMedCrossRef
216.
go back to reference Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68PubMedCrossRef Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68PubMedCrossRef
217.
go back to reference Sander CY, Hooker JM, Catana C et al (2013) Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc Natl Acad Sci U S A 110:11169–11174PubMedPubMedCentralCrossRef Sander CY, Hooker JM, Catana C et al (2013) Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc Natl Acad Sci U S A 110:11169–11174PubMedPubMedCentralCrossRef
218.
go back to reference Drzezga A, Arnold S, Minoshima S et al (1999) 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 40:737–746PubMed Drzezga A, Arnold S, Minoshima S et al (1999) 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 40:737–746PubMed
219.
go back to reference Sabri O, Hellwig D, Schreckenberger M et al (1998) Correlation of neuropsychological, morphological and functional (regional cerebral blood flow and glucose utilization) findings in cerebral microangiopathy. J Nucl Med 39:147–154PubMed Sabri O, Hellwig D, Schreckenberger M et al (1998) Correlation of neuropsychological, morphological and functional (regional cerebral blood flow and glucose utilization) findings in cerebral microangiopathy. J Nucl Med 39:147–154PubMed
220.
go back to reference Ito S, Kato K, Ikeda M et al (2007) Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 48:889–895PubMedCrossRef Ito S, Kato K, Ikeda M et al (2007) Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 48:889–895PubMedCrossRef
221.
go back to reference Rominger A, Brendel M, Burgold S et al (2013) Longitudinal assessment of cerebral β-amyloid deposition in mice overexpressing Swedish mutant β-amyloid precursor protein using 18F-florbetaben PET. J Nucl Med 54:1127–1134PubMedCrossRef Rominger A, Brendel M, Burgold S et al (2013) Longitudinal assessment of cerebral β-amyloid deposition in mice overexpressing Swedish mutant β-amyloid precursor protein using 18F-florbetaben PET. J Nucl Med 54:1127–1134PubMedCrossRef
222.
go back to reference Liu Y, Zhu L, Plössl K et al (2010) Optimization of automated radiosynthesis of [18F]AV-45: a new PET imaging agent for Alzheimer's disease. Nucl Med Biol 37:917–925PubMedPubMedCentralCrossRef Liu Y, Zhu L, Plössl K et al (2010) Optimization of automated radiosynthesis of [18F]AV-45: a new PET imaging agent for Alzheimer's disease. Nucl Med Biol 37:917–925PubMedPubMedCentralCrossRef
223.
go back to reference Snellman A, Rokka J, Lopez-Picon FR et al (2012) Pharmacokinetics of [18F]flutemetamol in wild-type rodents and its binding to beta amyloid deposits in a mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 39:1784–1795PubMedCrossRef Snellman A, Rokka J, Lopez-Picon FR et al (2012) Pharmacokinetics of [18F]flutemetamol in wild-type rodents and its binding to beta amyloid deposits in a mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 39:1784–1795PubMedCrossRef
224.
go back to reference Hostetler ED, Walji AM, Zeng Z et al (2016) Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med 57:1599–1606PubMedCrossRef Hostetler ED, Walji AM, Zeng Z et al (2016) Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med 57:1599–1606PubMedCrossRef
225.
go back to reference Lohith T, Bennacef I, Sur C et al (2017) Quantification of [18F]MK-6240, a new PET tracer targeting human neurofibrillary tangles (NFTs) in brain of healthy elderly and subjects with Alzheimer’s disease. J Nucl Med 58:277–277 Lohith T, Bennacef I, Sur C et al (2017) Quantification of [18F]MK-6240, a new PET tracer targeting human neurofibrillary tangles (NFTs) in brain of healthy elderly and subjects with Alzheimer’s disease. J Nucl Med 58:277–277
226.
go back to reference W-d H, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312 W-d H, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312
227.
go back to reference Nagano-Saito A, Lissemore JI, Gravel P, Leyton M, Carbonell F, Benkelfat C (2017) Posterior dopamine D2/3 receptors and brain network functional connectivity. Synapse e21993 Nagano-Saito A, Lissemore JI, Gravel P, Leyton M, Carbonell F, Benkelfat C (2017) Posterior dopamine D2/3 receptors and brain network functional connectivity. Synapse e21993
228.
go back to reference Constantinescu CC, Coleman RA, Pan ML, Mukherjee J (2011) Striatal and extrastriatal microPET imaging of D2/D3 dopamine receptors in rat brain with [18F]fallypride and [18F]desmethoxyfallypride. Synapse 65:778–787PubMedPubMedCentralCrossRef Constantinescu CC, Coleman RA, Pan ML, Mukherjee J (2011) Striatal and extrastriatal microPET imaging of D2/D3 dopamine receptors in rat brain with [18F]fallypride and [18F]desmethoxyfallypride. Synapse 65:778–787PubMedPubMedCentralCrossRef
229.
go back to reference Mukherjee J, Constantinescu CC, Hoang AT et al (2015) Dopamine D3 receptor binding of (18)F-fallypride: evaluation using in vitro and in vivo PET imaging studies. Synapse 69:577–591PubMedPubMedCentralCrossRef Mukherjee J, Constantinescu CC, Hoang AT et al (2015) Dopamine D3 receptor binding of (18)F-fallypride: evaluation using in vitro and in vivo PET imaging studies. Synapse 69:577–591PubMedPubMedCentralCrossRef
230.
go back to reference Kornum BR, Lind NM, Gillings N, Marner L, Andersen F, Knudsen GM (2009) Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Gottingen minipig. J Cereb Blood Flow Metab 29:186–196PubMedCrossRef Kornum BR, Lind NM, Gillings N, Marner L, Andersen F, Knudsen GM (2009) Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Gottingen minipig. J Cereb Blood Flow Metab 29:186–196PubMedCrossRef
231.
go back to reference da Cunha-Bang S, Mc Mahon B, MacDonald Fisher P et al (2016) High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT 4 receptor binding. Soc Cogn Affect Neurosci 11:548–555PubMedPubMedCentralCrossRef da Cunha-Bang S, Mc Mahon B, MacDonald Fisher P et al (2016) High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT 4 receptor binding. Soc Cogn Affect Neurosci 11:548–555PubMedPubMedCentralCrossRef
232.
go back to reference Yang KC, Takano A, Halldin C, wr L (2018) Serotonin concentration enhancers at clinically relevant doses reduce [1’C]AZ10419369 binding to the 5-HT1B receptors in the nonhuman primate brain. Transl Psychiatry 8:132PubMedPubMedCentralCrossRef Yang KC, Takano A, Halldin C, wr L (2018) Serotonin concentration enhancers at clinically relevant doses reduce [1’C]AZ10419369 binding to the 5-HT1B receptors in the nonhuman primate brain. Transl Psychiatry 8:132PubMedPubMedCentralCrossRef
233.
go back to reference Deen M, Hansen HD, Hougaard A et al (2017) Low 5-HT 1B receptor binding in the migraine brain: a PET study. Cephalalgia 0:033310241769870 Deen M, Hansen HD, Hougaard A et al (2017) Low 5-HT 1B receptor binding in the migraine brain: a PET study. Cephalalgia 0:033310241769870
234.
go back to reference Ishibashi K, Miura Y, Ishikawa K et al (2016) Relationship between type 1 metabotropic glutamate receptors and cerebellar ataxia. J Neurol 263:2179–2187PubMedCrossRef Ishibashi K, Miura Y, Ishikawa K et al (2016) Relationship between type 1 metabotropic glutamate receptors and cerebellar ataxia. J Neurol 263:2179–2187PubMedCrossRef
235.
go back to reference Li S, Cai Z, M-q Z et al (2017) A novel 18F-labeled kappa opioid receptor antagonist as PET radiotracer: synthesis and in vivo evaluation of 18F-LY2459989 in non-human primates. J Nucl Med 117:140–146 Li S, Cai Z, M-q Z et al (2017) A novel 18F-labeled kappa opioid receptor antagonist as PET radiotracer: synthesis and in vivo evaluation of 18F-LY2459989 in non-human primates. J Nucl Med 117:140–146
236.
237.
go back to reference Dani M, Wood M, Mizoguchi R et al (2018) Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain 141:2740–2754PubMed Dani M, Wood M, Mizoguchi R et al (2018) Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain 141:2740–2754PubMed
238.
go back to reference Datta G, Colasanti A, Rabiner EA et al (2017) Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 140:2927–2938PubMedCrossRef Datta G, Colasanti A, Rabiner EA et al (2017) Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 140:2927–2938PubMedCrossRef
239.
240.
go back to reference Arakawa R, Farde L, Matsumoto J et al (2018) Potential effect of prolonged sevoflurane anesthesia on the kinetics of [11C]raclopride in non-human primates. Mol Imaging Biol 20:183–187PubMedCrossRef Arakawa R, Farde L, Matsumoto J et al (2018) Potential effect of prolonged sevoflurane anesthesia on the kinetics of [11C]raclopride in non-human primates. Mol Imaging Biol 20:183–187PubMedCrossRef
241.
go back to reference Hassoun W, Le Cavorsin M, Ginovart N et al (2003) PET study of the [18C]raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow. Eur J Nucl Med Mol Imaging 30:141–148PubMedCrossRef Hassoun W, Le Cavorsin M, Ginovart N et al (2003) PET study of the [18C]raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow. Eur J Nucl Med Mol Imaging 30:141–148PubMedCrossRef
242.
go back to reference Chen Z, Tang J, Liu C et al (2016) Effects of anesthetics on vesicular monoamine transporter type 2 binding to 18F-FP-(+)-DTBZ: a biodistribution study in rat brain. Nucl Med Biol 43:124–129PubMedCrossRef Chen Z, Tang J, Liu C et al (2016) Effects of anesthetics on vesicular monoamine transporter type 2 binding to 18F-FP-(+)-DTBZ: a biodistribution study in rat brain. Nucl Med Biol 43:124–129PubMedCrossRef
243.
go back to reference Takuwa H, Maeda J, Ikoma Y et al (2015) [18C]Raclopride binding in the striatum of minimally restrained and free-walking awake mice in a positron emission tomography study. Synapse 69:600–606PubMedCrossRef Takuwa H, Maeda J, Ikoma Y et al (2015) [18C]Raclopride binding in the striatum of minimally restrained and free-walking awake mice in a positron emission tomography study. Synapse 69:600–606PubMedCrossRef
244.
go back to reference Miranda A, Staelens S, Stroobants S, Verhaeghe J (2017) Fast and accurate rat head motion tracking with point sources for awake brain PET. IEEE Trans Med Imaging 36:1573–1582PubMedCrossRef Miranda A, Staelens S, Stroobants S, Verhaeghe J (2017) Fast and accurate rat head motion tracking with point sources for awake brain PET. IEEE Trans Med Imaging 36:1573–1582PubMedCrossRef
245.
go back to reference Miranda A, Glorie D, Bertoglio D et al (2018) Awake 18F-FDG PET imaging of memantine-induced brain activation and test-retest in freely running mice. J Nucl Med 15 Miranda A, Glorie D, Bertoglio D et al (2018) Awake 18F-FDG PET imaging of memantine-induced brain activation and test-retest in freely running mice. J Nucl Med 15
246.
go back to reference Kyme AZ, Angelis GI, Eisenhuth J et al (2018) Open-field PET: simultaneous brain functional imaging and behavioural response measurements in freely moving small animals. Neuroimage 188:92–101PubMedCrossRef Kyme AZ, Angelis GI, Eisenhuth J et al (2018) Open-field PET: simultaneous brain functional imaging and behavioural response measurements in freely moving small animals. Neuroimage 188:92–101PubMedCrossRef
247.
go back to reference Egerton A, Modinos G, Ferrera D, McGuire P (2017) Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 7:e1147PubMedPubMedCentralCrossRef Egerton A, Modinos G, Ferrera D, McGuire P (2017) Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 7:e1147PubMedPubMedCentralCrossRef
248.
go back to reference Mannheim JG, Kara F, Doorduin J et al (2017) Standardization of small animal imaging—current status and future prospects. Mol Imaging Biol 20:716–731CrossRef Mannheim JG, Kara F, Doorduin J et al (2017) Standardization of small animal imaging—current status and future prospects. Mol Imaging Biol 20:716–731CrossRef
249.
go back to reference Wu T, Grandjean J, Bosshard SC et al (2017) Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain. Neuroimage 149:190–199PubMedCrossRef Wu T, Grandjean J, Bosshard SC et al (2017) Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain. Neuroimage 149:190–199PubMedCrossRef
250.
go back to reference Vanhoutte G, Verhoye M, Van der Linden A (2006) Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity. Magn Reson Med 55:1006–1012PubMedCrossRef Vanhoutte G, Verhoye M, Van der Linden A (2006) Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity. Magn Reson Med 55:1006–1012PubMedCrossRef
251.
go back to reference Gillam JE, Angelis GI, Kyme AZ, Meikle SR (2017) Motion compensation using origin ensembles in awake small animal positron emission tomography. Phys Med Biol 62:715–733PubMedCrossRef Gillam JE, Angelis GI, Kyme AZ, Meikle SR (2017) Motion compensation using origin ensembles in awake small animal positron emission tomography. Phys Med Biol 62:715–733PubMedCrossRef
252.
go back to reference Kyme AZ, Zhou VW, Meikle SR et al (2011) Optimised motion tracking for positron emission tomography studies of brain function in awake rats. PLoS One 6:e21727PubMedPubMedCentralCrossRef Kyme AZ, Zhou VW, Meikle SR et al (2011) Optimised motion tracking for positron emission tomography studies of brain function in awake rats. PLoS One 6:e21727PubMedPubMedCentralCrossRef
Metadata
Title
Quantitative Rodent Brain Receptor Imaging
Authors
Kristina Herfert
Julia G. Mannheim
Laura Kuebler
Sabina Marciano
Mario Amend
Christoph Parl
Hanna Napieczynska
Florian M. Maier
Salvador Castaneda Vega
Bernd J. Pichler
Publication date
01-04-2020
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 2/2020
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01368-9

Other articles of this Issue 2/2020

Molecular Imaging and Biology 2/2020 Go to the issue