Skip to main content
Log in

Amphetamine challenge decreases yohimbine binding to α2 adrenoceptors in Landrace pig brain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The noradrenaline (NA) system is implicated in neurodegenerative and psychiatric disorders; however, our understanding is impaired by the lack of well-validated radioligands to assess NA function and release. Yohimbine, an α2 adrenoceptor antagonist, has recently been developed as a carbon-11 [11C]-labeled radioligand for positron emission tomography (PET) imaging studies.

Objectives

Here we explore the hypothesis that yohimbine can be used as an in vivo tracer of NA receptor binding and release during amphetamine challenges in Landrace pigs.

Methods

Pigs underwent baseline PET scans with [11C]yohimbine and were then challenged with 10 mg/kg d-amphetamine 20 min prior to a second [11C]yohimbine scan. Using the Logan analysis model, volumes of distribution were calculated from fits of the kinetic data 25–90 min post-yohimbine injection.

Results

Amphetamine decreased [11C]yohimbine volume of distribution in the brain regions under investigation, including the thalamus, caudate nucleus, and cortical regions.

Conclusion

These data suggest that the binding of [11C]yohimbine to α2 adrenoceptors may be displaceable by increases in synaptic concentrations of the endogenous ligand, NA, and possibly dopamine, suggesting the possibility that [11C]yohimbine may be used as a surrogate marker of NA release in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal RK, Chandna VK, Engelking LR, Lightbown K, Kumar MS (1993) Distribution of catecholamines in the central nervous system of the pig. Brain Res Bull 32:285–291

    Article  PubMed  CAS  Google Scholar 

  • Alhassoon OM, Dupont RM, Schweinsburg BC, Taylor MJ, Patterson TL, Grant I (2001) Regional cerebral blood flow in cocaine- versus methamphetamine-dependent patients with a history of alcoholism. Int J Neuropsychopharmacol 4:105–112

    Article  PubMed  CAS  Google Scholar 

  • Alstrup AKO, Jakobsen S, Wegener G, Hansen AK, Doudet DJ, Landau AM (2010) Anesthesia in animal imaging: differing effects of propofol vs isoflurane on DA D1 receptor binding in Gottingen minipig brain. Neuroimage: S181

  • Arponen E, Helin S, Marjamaki P, Gronroos T, Nagren K, Ingman K, Haaparanta M, Sallinen J, Solin O (2010) Radiosynthesis of a new alpha-2C-adrenoceptor tracer [11C]ORM-13070 and its preclinical evaluation in rats. NeuroImage 52(suppl 1):S125

    Article  Google Scholar 

  • Biaggioni I, Robertson RM, Robertson D (1994) Manipulation of norepinephrine metabolism with yohimbine in the treatment of autonomic failure. J Clin Pharmacol 34:418–423

    PubMed  CAS  Google Scholar 

  • Bjorklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex. Neurosci Lett 7:115–119

    Article  PubMed  CAS  Google Scholar 

  • Chan GL, Holden JE, Stoessl AJ, Doudet DJ, Wang Y, Dobko T, Morrison KS, Huser JM, English C, Legg B, Schulzer M, Calne DB, Ruth TJ (1998) Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med 39:792–797

    PubMed  CAS  Google Scholar 

  • Cho SS, Strafella AP (2009) rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One 4:e6725

    Article  PubMed  Google Scholar 

  • Clarke RW, Harris J (2002) RX 821002 as a tool for physiological investigation of alpha(2)-adrenoceptors. CNS Drug Rev 8:177–192

    Article  PubMed  CAS  Google Scholar 

  • Cornil CA, Ball GF (2008) Interplay among catecholamine systems: dopamine binds to alpha2-adrenergic receptors in birds and mammals. J Comp Neurol 511:610–627

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain 127:2747–2754

    Article  PubMed  Google Scholar 

  • Dennis T, L'Heureux R, Carter C, Scatton B (1987) Presynaptic alpha-2 adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat. J Pharmacol Exp Ther 241:642–649

    PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Pira L, Longu G, Gessa GL (2004) alpha2-Adrenoceptor mediated co-release of dopamine and noradrenaline from noradrenergic neurons in the cerebral cortex. J Neurochem 88:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Saba P, Fa M, Gessa GL (2005) Stimulation of the locus coeruleus elicits noradrenaline and dopamine release in the medial prefrontal and parietal cortex. J Neurochem 92:368–374

    Article  PubMed  CAS  Google Scholar 

  • Devous MD Sr, Trivedi MH, Rush AJ (2001) Regional cerebral blood flow response to oral amphetamine challenge in healthy volunteers. J Nucl Med 42:535–542

    PubMed  CAS  Google Scholar 

  • Doxey JC, Lane AC, Roach AG, Virdee NK (1984) Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthine. Naunyn Schmiedebergs Arch Pharmacol 325:136–144

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Price JC, Kupfer DJ, Kinahan PE, Lopresti B, Holt D, Mathis C (1999) PET measures of amphetamine-induced dopamine release in ventral versus dorsal striatum. Neuropsychopharmacology 21:694–709

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49:81–96

    Article  PubMed  CAS  Google Scholar 

  • Endres CJ, Kolachana BS, Saunders RC, Su T, Weinberger D, Breier A, Eckelman WC, Carson RE (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17:932–942

    Article  PubMed  CAS  Google Scholar 

  • Freedman JE, Aghajanian GK (1984) Idazoxan (RX 781094) selectively antagonizes alpha 2-adrenoceptors on rat central neurons. Eur J Pharmacol 105:265–272

    Article  PubMed  CAS  Google Scholar 

  • Gallezot JD, Weinzimmer D, Nabulsi N, Lin SF, Fowles K, Sandiego C, McCarthy TJ, Maguire RP, Carson RE, Ding YS (2011) Evaluation of [(11)C]MRB for assessment of occupancy of norepinephrine transporters: studies with atomoxetine in non-human primates. NeuroImage 56:268–279

    Article  PubMed  CAS  Google Scholar 

  • Ginovart N, Hassoun W, Le Cavorsin M, Veyre L, Le Bars D, Leviel V (2002) Effects of amphetamine and evoked dopamine release on [11C]raclopride binding in anesthetized cats. Neuropsychopharmacology 27:72–84

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, Rivet JM, Cistarelli L, Melon C, Millan MJ (1997) alpha2-Adrenergic receptor blockade markedly potentiates duloxetine- and fluoxetine-induced increases in noradrenaline, dopamine, and serotonin levels in the frontal cortex of freely moving rats. J Neurochem 69:2616–2619

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, Billiras R, Cistarelli L, Millan MJ (2004) Quantification and pharmacological characterization of dialysate levels of noradrenaline in the striatum of freely-moving rats: release from adrenergic terminals and modulation by alpha2-autoreceptors. J Neurosci Methods 140:141–152

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AM, Pascual J, Meana JJ, Barturen F, del Arco C, Pazos A, Garcia-Sevilla JA (1994) Autoradiographic demonstration of increased alpha 2-adrenoceptor agonist binding sites in the hippocampus and frontal cortex of depressed suicide victims. J Neurochem 63:256–265

    Article  PubMed  CAS  Google Scholar 

  • Hassoun W, Le Cavorsin M, Ginovart N, Zimmer L, Gualda V, Bonnefoi F, Leviel V (2003) PET study of the [11C]raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow. Eur J Nucl Med Mol Imaging 30:141–148

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen S, Pedersen K, Smith DF, Jensen SB, Munk OL, Cumming P (2006) Detection of alpha2-adrenergic receptors in brain of living pig with 11C-yohimbine. J Nucl Med 47:2008–2015

    PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    PubMed  CAS  Google Scholar 

  • Kimmerly DS, Tutungi E, Wilson TD, Serrador JM, Gelb AW, Hughson RL, Shoemaker JK (2003) Circulating norepinephrine and cerebrovascular control in conscious humans. Clin Physiol Funct Imaging 23:314–319

    Article  PubMed  CAS  Google Scholar 

  • Kjaer TW, Bertelsen C, Piccini P, Brooks D, Alving J, Lou HC (2002) Increased dopamine tone during meditation-induced change of consciousness. Brain Res Cogn Brain Res 13:255–259

    Article  PubMed  CAS  Google Scholar 

  • Kovachich GB, Frazer A, Aronson CE (1993) Effect of chronic administration of antidepressants on alpha 2-adrenoceptors in the locus coeruleus and its projection fields in rat brain determined by quantitative autoradiography. Neuropsychopharmacology 8:57–65

    PubMed  CAS  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  PubMed  CAS  Google Scholar 

  • Lind NM, Olsen AK, Moustgaard A, Jensen SB, Jakobsen S, Hansen AK, Arnfred SM, Hemmingsen RP, Gjedde A, Cumming P (2005) Mapping the amphetamine-evoked dopamine release in the brain of the Gottingen minipig. Brain Res Bull 65:1–9

    Article  PubMed  CAS  Google Scholar 

  • Linnet J, Moller A, Peterson E, Gjedde A, Doudet D (2011) Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction 106:383–390

    Article  PubMed  Google Scholar 

  • Logan J, Volkow ND, Fowler JS, Wang GJ, Dewey SL, MacGregor R, Schlyer D, Gatley SJ, Pappas N, King P et al (1994) Effects of blood flow on [11C]raclopride binding in the brain: model simulations and kinetic analysis of PET data. J Cereb Blood Flow Metab 14:995–1010

    Article  PubMed  CAS  Google Scholar 

  • MacDonald E, Scheinin M (1995) Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol 46:241–258

    PubMed  CAS  Google Scholar 

  • Mathew RJ, Wilson WH (1989) Changes in cerebral blood flow and mental state after amphetamine challenge in schizophrenic patients. Neuropsychobiology 21:117–123

    Article  PubMed  CAS  Google Scholar 

  • McCormick PN, Ginovart N, Wilson AA (2011) Isoflurane anaesthesia differentially affects the amphetamine sensitivity of agonist and antagonist D2/D3 positron emission tomography radiotracers: implications for in vivo imaging of dopamine release. Mol Imaging Biol 13:737–746

    Article  PubMed  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Coge F, Galizzi JP, Boutin JA, Rivet JM, Dekeyne A, Gobert A (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse 35:79–95

    Article  PubMed  CAS  Google Scholar 

  • Narendran R, Frankle WG, Mason NS, Rabiner EA, Gunn RN, Searle GE, Vora S, Litschge M, Kendro S, Cooper TB, Mathis CA, Laruelle M (2009) Positron emission tomography imaging of amphetamine-induced dopamine release in the human cortex: a comparative evaluation of the high affinity dopamine D2/3 radiotracers [11C]FLB 457 and [11C]fallypride. Synapse 63:447–461

    Article  PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Nicolas JP, Audinot V, Gavaudan S, Verriele L, Touzard M, Chaput C, Richard N, Millan MJ (1998) Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 358:197–206

    Article  PubMed  CAS  Google Scholar 

  • Ordway GA, Schenk J, Stockmeier CA, May W, Klimek V (2003) Elevated agonist binding to alpha2-adrenoceptors in the locus coeruleus in major depression. Biol Psychiatry 53:315–323

    Article  PubMed  CAS  Google Scholar 

  • Polesskaya O, Silva J, Sanfilippo C, Desrosiers T, Sun A, Shen J, Feng C, Polesskiy A, Deane R, Zlokovic B, Kasischke K, Dewhurst S (2011) Methamphetamine causes sustained depression in cerebral blood flow. Brain Res 1373:91–100

    Article  PubMed  CAS  Google Scholar 

  • Price JC, Drevets WC, Ruszkiewicz J, Greer PJ, Villemagne VL, Xu L, Mazumdar S, Cantwell MN, Mathis CA (2002) Sequential H(2)(15)O PET studies in baboons: before and after amphetamine. J Nucl Med 43:1090–1100

    PubMed  CAS  Google Scholar 

  • Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19

    Article  PubMed  Google Scholar 

  • Riccardi P, Li R, Ansari MS, Zald D, Park S, Dawant B, Anderson S, Doop M, Woodward N, Schoenberg E, Schmidt D, Baldwin R, Kessler R (2006) Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology 31:1016–1026

    Article  PubMed  CAS  Google Scholar 

  • Rose SE, Janke AL, Strudwick MW, McMahon KL, Chalk JB, Snyder P, De zubicaray GI (2006) Assessment of dynamic susceptibility contrast cerebral blood flow response to amphetamine challenge: a human pharmacological magnetic resonance imaging study at 1.5 and 4 T. Magn Reson Med 55:9–15

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  PubMed  CAS  Google Scholar 

  • Schou M, Halldin C, Sovago J, Pike VW, Gulyas B, Mozley PD, Johnson DP, Hall H, Innis RB, Farde L (2003) Specific in vivo binding to the norepinephrine transporter demonstrated with the PET radioligand, (S, S)-[11C]MeNER. Nucl Med Biol 30:707–714

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Dyve S, Minuzzi L, Jakobsen S, Munk OL, Marthi K, Cumming P (2006) Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain. Synapse 59:463–471

    Article  PubMed  CAS  Google Scholar 

  • Sossi V, Holden JE, Topping GJ, Camborde ML, Kornelsen RA, McCormick SE, Greene J, Studenov AR, Ruth TJ, Doudet DJ (2007) In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD. J Cereb Blood Flow Metab 27:1407–1415

    Article  PubMed  CAS  Google Scholar 

  • Subhash MN, Nagaraja MR, Sharada S, Vinod KY (2003) Cortical alpha-adrenoceptor downregulation by tricyclic antidepressants in the rat brain. Neurochem Int 43:603–609

    Article  PubMed  CAS  Google Scholar 

  • Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N, Nakanishi S (1999) Isoflurane anesthesia enhances the inhibitory effects of cocaine and GBR12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain. Brain Res 849:85–96

    Article  PubMed  CAS  Google Scholar 

  • Tyacke RJ, Robinson ES, Lalies MD, Hume SP, Hudson AL, Nutt DJ (2005) Estimation of endogenous noradrenaline release in rat brain in vivo using [3H]RX 821002. Synapse 55:126–132

    Article  PubMed  CAS  Google Scholar 

  • Uhlen S, Lindblom J, Johnson A, Wikberg JE (1997) Autoradiographic studies of central alpha 2A- and alpha 2C-adrenoceptors in the rat using [3H]MK912 and subtype-selective drugs. Brain Res 770:261–266

    Article  PubMed  CAS  Google Scholar 

  • Uhlen S, Dambrova M, Nasman J, Schioth HB, Gu Y, Wikberg-Matsson A, Wikberg JE (1998) [3H]RS79948-197 binding to human, rat, guinea pig and pig alpha2A-, alpha2B- and alpha2C-adrenoceptors. Comparison with MK912, RX821002, rauwolscine and yohimbine. Eur J Pharmacol 343:93–101

    Article  PubMed  CAS  Google Scholar 

  • van der Staay FJ, Pouzet B, Mahieu M, Nordquist RE, Schuurman T (2009) The d-amphetamine-treated Gottingen miniature pig: an animal model for assessing behavioral effects of antipsychotics. Psychopharmacology (Berl) 206:715–729

    Article  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Dewey SL, Schlyer D, MacGregor R, Logan J, Alexoff D, Shea C, Hitzemann R et al (1993) Reproducibility of repeated measures of carbon-11-raclopride binding in the human brain. J Nucl Med 34:609–613

    PubMed  CAS  Google Scholar 

  • Wang Y, Hayashi T, Chang CF, Chiang YH, Tsao LI, Su TP, Borlongan C, Lin SZ (2001) Methamphetamine potentiates ischemia/reperfusion insults after transient middle cerebral artery ligation. Stroke 32:775–782

    Article  PubMed  CAS  Google Scholar 

  • Wikberg-Matsson A, Wikberg JE, Uhlen S (1995) Identification of drugs subtype-selective for alpha 2A-, alpha 2B-, and alpha 2C-adrenoceptors in the pig cerebellum and kidney cortex. Eur J Pharmacol 284:271–279

    Article  PubMed  CAS  Google Scholar 

  • Wortley KE, Hughes ZA, Heal DJ, Stanford SC (1999) Comparison of changes in the extracellular concentration of noradrenaline in rat frontal cortex induced by sibutramine or d-amphetamine: modulation by alpha2-adrenoceptors. Br J Pharmacol 127:1860–1866

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Klimek V, Farley JT, Zhu MY, Ordway GA (1999) alpha2C Adrenoceptors inhibit adenylyl cyclase in mouse striatum: potential activation by dopamine. J Pharmacol Exp Ther 289:1286–1292

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Denmark’s National Science Foundation and The Danish Medical Research Council. “Principles of laboratory animal care” were followed, and all experiments were performed according to Danish regulations. We thank Aage Alstrup for skillful assistance with the care of the pigs during the PET studies, and we are grateful to the staff at the PET center for technical assistance.

Conflicts of interest

Authors have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen Jakobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landau, A.M., Doudet, D.J. & Jakobsen, S. Amphetamine challenge decreases yohimbine binding to α2 adrenoceptors in Landrace pig brain. Psychopharmacology 222, 155–163 (2012). https://doi.org/10.1007/s00213-011-2632-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2632-6

Keywords

Navigation