Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 2/2019

01-06-2019 | Insulins

Structure and function of the exocrine pancreas in patients with type 1 diabetes

Authors: Laure Alexandre-Heymann, Roberto Mallone, Christian Boitard, Raphaël Scharfmann, Etienne Larger

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 2/2019

Login to get access

Abstract

In the last 10 years, several studies have shown that the pancreas of patients with type 1 diabetes (T1D), and even of subjects at risk for T1D, was smaller than the pancreas from healthy subjects. This arose the question of the relationships between the endocrine and exocrine parts of the pancreas in T1D pathogenesis. Our review underlines that histological anomalies of the exocrine pancreas are common in patients with T1D: intralobular and interacinar fibrosis, acinar atrophy, fatty infiltration, leucocytic infiltration, and pancreatic arteriosclerosis are all frequent observations. Moreover, 25% to 75% of adult patients with T1D present with pancreatic exocrine dysfunction. Our review summarizes the putative causal factors for these structural and functional anomalies, including: 1/ alterations of insulin, glucagon, somatostatin and pancreatic polypeptide secretion, 2/ global pancreatic inflammation 3/ autoimmunity targeting the exocrine pancreas, 4/ vascular and neural abnormalities, and 5/ the putative involvement of pancreatic stellate cells. These observations have also given rise to new theories on T1D: the primary event of T1D pathogenesis could be non-specific, e.g bacterial or viral or chemical, resulting in global pancreatic inflammation, which in turn could cause beta-cell predominant destruction by the immune system. Finally, this review emphasizes that it is advisable to evaluate pancreatic exocrine function in patients with T1D presenting with gastro-intestinal complaints, as a clinical trial has shown that pancreatic enzymes replacement therapy can reduce the frequency of hypoglycemia and thus might improve quality of life in subjects with T1D and exocrine failure.
Literature
3.
go back to reference Opie EL. Pathological changes affecting the islands of Langerhans of the pancreas. J Boston Soc Med Sci. 1900;4:251–60.PubMedPubMedCentral Opie EL. Pathological changes affecting the islands of Langerhans of the pancreas. J Boston Soc Med Sci. 1900;4:251–60.PubMedPubMedCentral
4.
go back to reference Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017;3:17016.CrossRefPubMed Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017;3:17016.CrossRefPubMed
5.
go back to reference Fonseca V, Berger LA, Beckett AG, Dandona P. Size of pancreas in diabetes mellitus: a study based on ultrasound. Br Med J (Clin Res Ed). 1985;291:1240–1.CrossRef Fonseca V, Berger LA, Beckett AG, Dandona P. Size of pancreas in diabetes mellitus: a study based on ultrasound. Br Med J (Clin Res Ed). 1985;291:1240–1.CrossRef
6.
go back to reference Chiarelli F, Verrotti A, Altobelli E, Blasetti A, Morgese G. Size of the pancreas in type I diabetic children and adolescents. Diabetes Care. 1995;18:1505–6.CrossRefPubMed Chiarelli F, Verrotti A, Altobelli E, Blasetti A, Morgese G. Size of the pancreas in type I diabetic children and adolescents. Diabetes Care. 1995;18:1505–6.CrossRefPubMed
7.
go back to reference Hardt PD, Krauss A, Bretz L, Porsch-Ozcürümez M, Schnell-Kretschmer H, Mäser E, et al. Pancreatic exocrine function in patients with type 1 and type 2 diabetes mellitus. Acta Diabetol. 2000;37:105–10.CrossRefPubMed Hardt PD, Krauss A, Bretz L, Porsch-Ozcürümez M, Schnell-Kretschmer H, Mäser E, et al. Pancreatic exocrine function in patients with type 1 and type 2 diabetes mellitus. Acta Diabetol. 2000;37:105–10.CrossRefPubMed
8.
go back to reference Icks A, Haastert B, Giani G, Rathmann W. Low fecal elastase-1 in type I diabetes mellitus. Z Gastroenterol. 2001;39:823–30.CrossRefPubMed Icks A, Haastert B, Giani G, Rathmann W. Low fecal elastase-1 in type I diabetes mellitus. Z Gastroenterol. 2001;39:823–30.CrossRefPubMed
9.
go back to reference Korsgren S, Molin Y, Salmela K, Lundgren T, Melhus A, Korsgren O. On the etiology of type 1 diabetes: a new animal model signifying a decisive role for bacteria eliciting an adverse innate immunity response. Am J Pathol. 2012;181:1735–48.CrossRefPubMedPubMedCentral Korsgren S, Molin Y, Salmela K, Lundgren T, Melhus A, Korsgren O. On the etiology of type 1 diabetes: a new animal model signifying a decisive role for bacteria eliciting an adverse innate immunity response. Am J Pathol. 2012;181:1735–48.CrossRefPubMedPubMedCentral
10.
go back to reference Skog O, Korsgren S, Melhus A, Korsgren O. Revisiting the notion of type 1 diabetes being a T-cell-mediated autoimmune disease. Curr Opin Endocrinol Diabetes Obes. 2013;20:118–23.CrossRefPubMed Skog O, Korsgren S, Melhus A, Korsgren O. Revisiting the notion of type 1 diabetes being a T-cell-mediated autoimmune disease. Curr Opin Endocrinol Diabetes Obes. 2013;20:118–23.CrossRefPubMed
11.
go back to reference Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS. Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. JAMA. 2012;308:2337–9.CrossRefPubMed Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS. Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. JAMA. 2012;308:2337–9.CrossRefPubMed
12.
go back to reference Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes. 2014;63:3880–90.CrossRefPubMedPubMedCentral Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes. 2014;63:3880–90.CrossRefPubMedPubMedCentral
13.
go back to reference Longnecker DS. Anatomy and Histology of the Pancreas. Pancreapedia: The Exocrine Pancreas Knowledge Base [Internet]. 2014 [cited 2018 Aug 21]; Available from: /reviews/anatomy-and-histology-of-pancreas. Longnecker DS. Anatomy and Histology of the Pancreas. Pancreapedia: The Exocrine Pancreas Knowledge Base [Internet]. 2014 [cited 2018 Aug 21]; Available from: /reviews/anatomy-and-histology-of-pancreas.
14.
go back to reference Maclean N, Ogilvie RF. Observations on the pancreatic islet tissue of young diabetic subjects. Diabetes. 1959;8:83–91.CrossRefPubMed Maclean N, Ogilvie RF. Observations on the pancreatic islet tissue of young diabetic subjects. Diabetes. 1959;8:83–91.CrossRefPubMed
15.
go back to reference Löhr M, Klöppel G. Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia. 1987;30:757–62.CrossRefPubMed Löhr M, Klöppel G. Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia. 1987;30:757–62.CrossRefPubMed
16.
go back to reference Alzaid A, Aideyan O, Nawaz S. The size of the pancreas in diabetes mellitus. Diabet Med. 1993;10:759–63.CrossRefPubMed Alzaid A, Aideyan O, Nawaz S. The size of the pancreas in diabetes mellitus. Diabet Med. 1993;10:759–63.CrossRefPubMed
17.
go back to reference Silva ME, Vezozzo DP, Ursich MJ, Rocha DM, Cerri GG, Wajchenberg BL. Ultrasonographic abnormalities of the pancreas in IDDM and NIDDM patients. Diabetes Care. 1993;16:1296–7.CrossRefPubMed Silva ME, Vezozzo DP, Ursich MJ, Rocha DM, Cerri GG, Wajchenberg BL. Ultrasonographic abnormalities of the pancreas in IDDM and NIDDM patients. Diabetes Care. 1993;16:1296–7.CrossRefPubMed
18.
go back to reference Gilbeau JP, Poncelet V, Libon E, Derue G, Heller FR. The density, contour, and thickness of the pancreas in diabetics: CT findings in 57 patients. AJR Am J Roentgenol. 1992;159:527–31.CrossRefPubMed Gilbeau JP, Poncelet V, Libon E, Derue G, Heller FR. The density, contour, and thickness of the pancreas in diabetics: CT findings in 57 patients. AJR Am J Roentgenol. 1992;159:527–31.CrossRefPubMed
19.
go back to reference Goda K, Sasaki E, Nagata K, Fukai M, Ohsawa N, Hahafusa T. Pancreatic volume in type 1 and type 2 diabetes mellitus. Acta Diabetol. 2001;38:145–9.CrossRefPubMed Goda K, Sasaki E, Nagata K, Fukai M, Ohsawa N, Hahafusa T. Pancreatic volume in type 1 and type 2 diabetes mellitus. Acta Diabetol. 2001;38:145–9.CrossRefPubMed
20.
go back to reference Philippe M-F, Benabadji S, Barbot-Trystram L, Vadrot D, Boitard C, Larger E. Pancreatic volume and endocrine and exocrine functions in patients with diabetes. Pancreas. 2011;40:359–63.CrossRefPubMed Philippe M-F, Benabadji S, Barbot-Trystram L, Vadrot D, Boitard C, Larger E. Pancreatic volume and endocrine and exocrine functions in patients with diabetes. Pancreas. 2011;40:359–63.CrossRefPubMed
21.
go back to reference Virostko J, Hilmes M, Eitel K, Moore DJ, Powers AC. Use of the electronic medical record to assess pancreas size in type 1 diabetes. PLoS One. 2016;11:e0158825.CrossRefPubMedPubMedCentral Virostko J, Hilmes M, Eitel K, Moore DJ, Powers AC. Use of the electronic medical record to assess pancreas size in type 1 diabetes. PLoS One. 2016;11:e0158825.CrossRefPubMedPubMedCentral
22.
go back to reference Lu J, Hou X, Pang C, Zhang L, Hu C, Zhao J, et al. Pancreatic volume is reduced in patients with latent autoimmune diabetes in adults. Diabetes Metab Res Rev. 2016;32:858–66.CrossRefPubMed Lu J, Hou X, Pang C, Zhang L, Hu C, Zhao J, et al. Pancreatic volume is reduced in patients with latent autoimmune diabetes in adults. Diabetes Metab Res Rev. 2016;32:858–66.CrossRefPubMed
23.
go back to reference Sasamori H, Fukui T, Hayashi T, Yamamoto T, Ohara M, Yamamoto S, et al. Analysis of pancreatic volume in acute-onset, slowly-progressive and fulminant type 1 diabetes in a Japanese population. J Diabetes Investig. 2018. Sasamori H, Fukui T, Hayashi T, Yamamoto T, Ohara M, Yamamoto S, et al. Analysis of pancreatic volume in acute-onset, slowly-progressive and fulminant type 1 diabetes in a Japanese population. J Diabetes Investig. 2018.
24.
go back to reference Bilgin M, Balci NC, Momtahen AJ, Bilgin Y, Klör H-U, Rau WS. MRI and MRCP findings of the pancreas in patients with diabetes mellitus: compared analysis with pancreatic exocrine function determined by fecal elastase 1. J Clin Gastroenterol. 2009;43:165–70.CrossRefPubMed Bilgin M, Balci NC, Momtahen AJ, Bilgin Y, Klör H-U, Rau WS. MRI and MRCP findings of the pancreas in patients with diabetes mellitus: compared analysis with pancreatic exocrine function determined by fecal elastase 1. J Clin Gastroenterol. 2009;43:165–70.CrossRefPubMed
25.
go back to reference Gaglia JL, Guimaraes AR, Harisinghani M, Turvey SE, Jackson R, Benoist C, et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest. 2011;121:442–5.CrossRefPubMed Gaglia JL, Guimaraes AR, Harisinghani M, Turvey SE, Jackson R, Benoist C, et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest. 2011;121:442–5.CrossRefPubMed
26.
go back to reference Williams AJK, Thrower SL, Sequeiros IM, Ward A, Bickerton AS, Triay JM, et al. Pancreatic volume is reduced in adult patients with recently diagnosed type 1 diabetes. J Clin Endocrinol Metab. 2012;97:E2109–13.CrossRefPubMed Williams AJK, Thrower SL, Sequeiros IM, Ward A, Bickerton AS, Triay JM, et al. Pancreatic volume is reduced in adult patients with recently diagnosed type 1 diabetes. J Clin Endocrinol Metab. 2012;97:E2109–13.CrossRefPubMed
27.
go back to reference d’Annunzio G, Chiara A, Lorini R. Pancreatic gland size reduction and exocrine impairment in type 1 diabetic children. Diabetes Care. 1996;19:777–8.CrossRefPubMed d’Annunzio G, Chiara A, Lorini R. Pancreatic gland size reduction and exocrine impairment in type 1 diabetic children. Diabetes Care. 1996;19:777–8.CrossRefPubMed
28.
go back to reference Regnell SE, Peterson P, Trinh L, Broberg P, Leander P, Lernmark Å, et al. Pancreas volume and fat fraction in children with type 1 diabetes. Diabet Med. 2016;33:1374–9.CrossRefPubMed Regnell SE, Peterson P, Trinh L, Broberg P, Leander P, Lernmark Å, et al. Pancreas volume and fat fraction in children with type 1 diabetes. Diabet Med. 2016;33:1374–9.CrossRefPubMed
29.
go back to reference Saisho Y, Butler AE, Meier JJ, Monchamp T, Allen-Auerbach M, Rizza RA, et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat. 2007;20:933–42.CrossRefPubMedPubMedCentral Saisho Y, Butler AE, Meier JJ, Monchamp T, Allen-Auerbach M, Rizza RA, et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat. 2007;20:933–42.CrossRefPubMedPubMedCentral
30.
go back to reference Kou K, Saisho Y, Jinzaki M, Itoh H. Relationship between body mass index and pancreas volume in Japanese people. JOP. 2014;15:626–7.PubMed Kou K, Saisho Y, Jinzaki M, Itoh H. Relationship between body mass index and pancreas volume in Japanese people. JOP. 2014;15:626–7.PubMed
31.
go back to reference Bonnet-Serrano F, Diedisheim M, Mallone R, Larger E. Decreased α-cell mass and early structural alterations of the exocrine pancreas in patients with type 1 diabetes: an analysis based on the nPOD repository. PLoS One. 2018;13:e0191528.CrossRefPubMedPubMedCentral Bonnet-Serrano F, Diedisheim M, Mallone R, Larger E. Decreased α-cell mass and early structural alterations of the exocrine pancreas in patients with type 1 diabetes: an analysis based on the nPOD repository. PLoS One. 2018;13:e0191528.CrossRefPubMedPubMedCentral
32.
go back to reference DeSouza SV, Singh RG, Yoon HD, Murphy R, Plank LD, Petrov MS. Pancreas volume in health and disease: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol. 2018;12:757–66.CrossRefPubMed DeSouza SV, Singh RG, Yoon HD, Murphy R, Plank LD, Petrov MS. Pancreas volume in health and disease: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol. 2018;12:757–66.CrossRefPubMed
33.
go back to reference Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14:619–33.CrossRefPubMed Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14:619–33.CrossRefPubMed
34.
go back to reference Geraghty EM, Boone JM, McGahan JP, Jain K. Normal organ volume assessment from abdominal CT. Abdom Imaging. 2004;29:482–90.CrossRefPubMed Geraghty EM, Boone JM, McGahan JP, Jain K. Normal organ volume assessment from abdominal CT. Abdom Imaging. 2004;29:482–90.CrossRefPubMed
35.
go back to reference Raeder H, Haldorsen IS, Ersland L, Grüner R, Taxt T, Søvik O, et al. Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl-ester lipase. Diabetes. 2007;56:444–9.CrossRefPubMed Raeder H, Haldorsen IS, Ersland L, Grüner R, Taxt T, Søvik O, et al. Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl-ester lipase. Diabetes. 2007;56:444–9.CrossRefPubMed
36.
go back to reference Van Dalem A, Demeester S, Balti EV, Keymeulen B, Gillard P, Lapauw B, et al. Prediction of impending type 1 diabetes through automated dual-label measurement of proinsulin:C-peptide ratio. PLoS One. 2016;11:e0166702.CrossRefPubMedPubMedCentral Van Dalem A, Demeester S, Balti EV, Keymeulen B, Gillard P, Lapauw B, et al. Prediction of impending type 1 diabetes through automated dual-label measurement of proinsulin:C-peptide ratio. PLoS One. 2016;11:e0166702.CrossRefPubMedPubMedCentral
37.
go back to reference Saisho Y. Pancreas volume and fat deposition in diabetes and Normal physiology: consideration of the interplay between endocrine and exocrine pancreas. Rev Diabet Stud. 2016;13:132–47.CrossRefPubMedPubMedCentral Saisho Y. Pancreas volume and fat deposition in diabetes and Normal physiology: consideration of the interplay between endocrine and exocrine pancreas. Rev Diabet Stud. 2016;13:132–47.CrossRefPubMedPubMedCentral
38.
go back to reference Hardt PD, Killinger A, Nalop J, Schnell-Kretschmer H, Zekorn T, Klör HU. Chronic pancreatitis and diabetes mellitus. A retrospective analysis of 156 ERCP investigations in patients with insulin-dependent and non-insulin-dependent diabetes mellitus. Pancreatology. 2002;2:30–3.CrossRefPubMed Hardt PD, Killinger A, Nalop J, Schnell-Kretschmer H, Zekorn T, Klör HU. Chronic pancreatitis and diabetes mellitus. A retrospective analysis of 156 ERCP investigations in patients with insulin-dependent and non-insulin-dependent diabetes mellitus. Pancreatology. 2002;2:30–3.CrossRefPubMed
39.
go back to reference Olsen TS. The incidence and clinical relevance of chronic inflammation in the pancreas in autopsy material. Acta Pathol Microbiol Scand A. 1978;86A:361–5.PubMed Olsen TS. The incidence and clinical relevance of chronic inflammation in the pancreas in autopsy material. Acta Pathol Microbiol Scand A. 1978;86A:361–5.PubMed
40.
go back to reference Waguri M, Hanafusa T, Itoh N, Miyagawa J, Imagawa A, Kuwajima M, et al. Histopathologic study of the pancreas shows a characteristic lymphocytic infiltration in Japanese patients with IDDM. Endocr J. 1997;44:23–33.CrossRefPubMed Waguri M, Hanafusa T, Itoh N, Miyagawa J, Imagawa A, Kuwajima M, et al. Histopathologic study of the pancreas shows a characteristic lymphocytic infiltration in Japanese patients with IDDM. Endocr J. 1997;44:23–33.CrossRefPubMed
41.
go back to reference Foulis AK, Stewart JA. The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia. 1984;26:456–61.CrossRefPubMed Foulis AK, Stewart JA. The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia. 1984;26:456–61.CrossRefPubMed
42.
go back to reference Diedisheim M, Mallone R, Boitard C, Larger E. β-Cell mass in nondiabetic autoantibody-positive subjects: an analysis based on the network for pancreatic organ donors database. J Clin Endocrinol Metab. 2016;101:1390–7.CrossRefPubMed Diedisheim M, Mallone R, Boitard C, Larger E. β-Cell mass in nondiabetic autoantibody-positive subjects: an analysis based on the network for pancreatic organ donors database. J Clin Endocrinol Metab. 2016;101:1390–7.CrossRefPubMed
43.
go back to reference Kopito LE, Shwachman H. The pancreas in cystic fibrosis: chemical composition and comparative morphology. Pediatr Res. 1976;10:742–9.PubMed Kopito LE, Shwachman H. The pancreas in cystic fibrosis: chemical composition and comparative morphology. Pediatr Res. 1976;10:742–9.PubMed
44.
go back to reference Mohapatra S, Majumder S, Smyrk TC, Zhang L, Matveyenko A, Kudva YC, et al. Diabetes mellitus is associated with an exocrine Pancreatopathy: conclusions from a review of literature. Pancreas. 2016;45:1104–10.CrossRefPubMedPubMedCentral Mohapatra S, Majumder S, Smyrk TC, Zhang L, Matveyenko A, Kudva YC, et al. Diabetes mellitus is associated with an exocrine Pancreatopathy: conclusions from a review of literature. Pancreas. 2016;45:1104–10.CrossRefPubMedPubMedCentral
45.
go back to reference Majumder S, Zhang L, Philip N, Sah R, Mohapatra S, Zamboni G, et al. 959 exocrine Pancreatopathy (EP) associated with diabetes mellitus (DM) is histologically distinct from chronic pancreatitis (CP): an international multi-reader blinded study. Gastroenterology. 2016;150:S191.CrossRef Majumder S, Zhang L, Philip N, Sah R, Mohapatra S, Zamboni G, et al. 959 exocrine Pancreatopathy (EP) associated with diabetes mellitus (DM) is histologically distinct from chronic pancreatitis (CP): an international multi-reader blinded study. Gastroenterology. 2016;150:S191.CrossRef
46.
go back to reference Bytzer P, Talley NJ, Leemon M, Young LJ, Jones MP, Horowitz M. Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch Intern Med. 2001;161:1989–96.CrossRefPubMed Bytzer P, Talley NJ, Leemon M, Young LJ, Jones MP, Horowitz M. Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch Intern Med. 2001;161:1989–96.CrossRefPubMed
47.
go back to reference Jones CM, Castle WB, Mulholland HB, Bailey F. Pancreatic and hepatic activity in diabetes mellitus: the alterations with some observations on the etiology of the disease. Arch Intern Med (Chic). 1925;35:315–36.CrossRef Jones CM, Castle WB, Mulholland HB, Bailey F. Pancreatic and hepatic activity in diabetes mellitus: the alterations with some observations on the etiology of the disease. Arch Intern Med (Chic). 1925;35:315–36.CrossRef
48.
go back to reference Löser C, Möllgaard A, Fölsch UR. Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test. Gut. 1996;39:580–6.CrossRefPubMedPubMedCentral Löser C, Möllgaard A, Fölsch UR. Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test. Gut. 1996;39:580–6.CrossRefPubMedPubMedCentral
49.
go back to reference Vanga RR, Tansel A, Sidiq S, El-Serag HB, Othman MO. Diagnostic performance of measurement of fecal Elastase-1 in detection of exocrine pancreatic insufficiency: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16:1220–1228.e4.CrossRefPubMedPubMedCentral Vanga RR, Tansel A, Sidiq S, El-Serag HB, Othman MO. Diagnostic performance of measurement of fecal Elastase-1 in detection of exocrine pancreatic insufficiency: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16:1220–1228.e4.CrossRefPubMedPubMedCentral
50.
go back to reference Lankisch PG, Schmidt I, König H, Lehnick D, Knollmann R, Löhr M, et al. Faecal elastase 1: not helpful in diagnosing chronic pancreatitis associated with mild to moderate exocrine pancreatic insufficiency. Gut. 1998;42:551–4.CrossRefPubMedPubMedCentral Lankisch PG, Schmidt I, König H, Lehnick D, Knollmann R, Löhr M, et al. Faecal elastase 1: not helpful in diagnosing chronic pancreatitis associated with mild to moderate exocrine pancreatic insufficiency. Gut. 1998;42:551–4.CrossRefPubMedPubMedCentral
51.
go back to reference Domínguez-Muñoz JE, Hieronymus C, Sauerbruch T, Malfertheiner P. Fecal elastase test: evaluation of a new noninvasive pancreatic function test. Am J Gastroenterol. 1995;90:1834–7.PubMed Domínguez-Muñoz JE, Hieronymus C, Sauerbruch T, Malfertheiner P. Fecal elastase test: evaluation of a new noninvasive pancreatic function test. Am J Gastroenterol. 1995;90:1834–7.PubMed
52.
go back to reference Leeds JS, Oppong K, Sanders DS. The role of fecal elastase-1 in detecting exocrine pancreatic disease. Nat Rev Gastroenterol Hepatol. 2011;8:405–15.CrossRefPubMed Leeds JS, Oppong K, Sanders DS. The role of fecal elastase-1 in detecting exocrine pancreatic disease. Nat Rev Gastroenterol Hepatol. 2011;8:405–15.CrossRefPubMed
53.
go back to reference Conwell DL, Lee LS, Yadav D, Longnecker DS, Miller FH, Mortele KJ, et al. American pancreatic association practice guidelines in chronic pancreatitis: evidence-based report on diagnostic guidelines. Pancreas. 2014;43:1143–62.CrossRefPubMedPubMedCentral Conwell DL, Lee LS, Yadav D, Longnecker DS, Miller FH, Mortele KJ, et al. American pancreatic association practice guidelines in chronic pancreatitis: evidence-based report on diagnostic guidelines. Pancreas. 2014;43:1143–62.CrossRefPubMedPubMedCentral
56.
go back to reference Diamond JS, Siegel SA, Kantor JL. The secretin test in the diagnosis of pancreatic diseases with a report of one hundred thirty tests. Am J Dig Dis. 1940;7:435–42.CrossRef Diamond JS, Siegel SA, Kantor JL. The secretin test in the diagnosis of pancreatic diseases with a report of one hundred thirty tests. Am J Dig Dis. 1940;7:435–42.CrossRef
57.
go back to reference Pollard HM, Miller L, Brewer WA. The external secretion of the pancreas and diabetes mellitus. Am J Dig Dis. 1943;10:20–3.CrossRef Pollard HM, Miller L, Brewer WA. The external secretion of the pancreas and diabetes mellitus. Am J Dig Dis. 1943;10:20–3.CrossRef
58.
go back to reference Lankisch PG, Manthey G, Otto J, Koop H, Talaulicar M, Willms B, et al. Exocrine pancreatic function in insulin-dependent diabetes mellitus. Digestion. 1982;25:211–6.CrossRefPubMed Lankisch PG, Manthey G, Otto J, Koop H, Talaulicar M, Willms B, et al. Exocrine pancreatic function in insulin-dependent diabetes mellitus. Digestion. 1982;25:211–6.CrossRefPubMed
59.
go back to reference Frier BM, Adrian TE, Saunders JH, Bloom SR. Serum trypsin concentration and pancreatic trypsin secretion in insulin-dependent diabetes mellitus. Clin Chim Acta. 1980;105:297–300.CrossRefPubMed Frier BM, Adrian TE, Saunders JH, Bloom SR. Serum trypsin concentration and pancreatic trypsin secretion in insulin-dependent diabetes mellitus. Clin Chim Acta. 1980;105:297–300.CrossRefPubMed
61.
go back to reference Creutzfeldt W, Gleichmann D, Otto J, Stöckmann F, Maisonneuve P, Lankisch PG. Follow-up of exocrine pancreatic function in type-1 diabetes mellitus. Digestion. 2005;72:71–5.CrossRefPubMed Creutzfeldt W, Gleichmann D, Otto J, Stöckmann F, Maisonneuve P, Lankisch PG. Follow-up of exocrine pancreatic function in type-1 diabetes mellitus. Digestion. 2005;72:71–5.CrossRefPubMed
62.
go back to reference Frier BM, Faber OK, Binder C, Elliot HL. The effect of residual insulin secretion on exocrine pancreatic function in juvenile-onset diabetes mellitus. Diabetologia. 1978;14:301–4.CrossRefPubMed Frier BM, Faber OK, Binder C, Elliot HL. The effect of residual insulin secretion on exocrine pancreatic function in juvenile-onset diabetes mellitus. Diabetologia. 1978;14:301–4.CrossRefPubMed
63.
go back to reference Chey WY, Shay H, Shuman CR. External pancreatic secretion in diabetes mellitus. Ann Intern Med. 1963;59:812–21.CrossRefPubMed Chey WY, Shay H, Shuman CR. External pancreatic secretion in diabetes mellitus. Ann Intern Med. 1963;59:812–21.CrossRefPubMed
64.
go back to reference Dandona P, Freedman DB, Foo Y, Perkins J, Katrak A, Mikhailidis DP, et al. Exocrine pancreatic function in diabetes mellitus. J Clin Pathol. 1984;37:302–6.CrossRefPubMedPubMedCentral Dandona P, Freedman DB, Foo Y, Perkins J, Katrak A, Mikhailidis DP, et al. Exocrine pancreatic function in diabetes mellitus. J Clin Pathol. 1984;37:302–6.CrossRefPubMedPubMedCentral
65.
go back to reference Skrha J, Stĕpán J, Pacovský V. Serum lipase, isoamylase and pancreatic function test (PFT) in juvenile-onset insulin-dependent diabetes mellitus. Acta Diabetol Lat. 1983;20:357–61.CrossRefPubMed Skrha J, Stĕpán J, Pacovský V. Serum lipase, isoamylase and pancreatic function test (PFT) in juvenile-onset insulin-dependent diabetes mellitus. Acta Diabetol Lat. 1983;20:357–61.CrossRefPubMed
66.
go back to reference Li X, Campbell-Thompson M, Wasserfall CH, McGrail K, Posgai A, Schultz AR, et al. Serum Trypsinogen Levels in Type 1 Diabetes. Diabetes Care. 2017;40:577–82.CrossRefPubMedPubMedCentral Li X, Campbell-Thompson M, Wasserfall CH, McGrail K, Posgai A, Schultz AR, et al. Serum Trypsinogen Levels in Type 1 Diabetes. Diabetes Care. 2017;40:577–82.CrossRefPubMedPubMedCentral
67.
go back to reference Mohan V, Snehalatha C, Ahmed MR, Madanagopalan N, Chari S, Jayanthi V, et al. Exocrine pancreatic function in tropical fibrocalculous pancreatic diabetes. Diabetes Care. 1989;12:145–7.CrossRefPubMed Mohan V, Snehalatha C, Ahmed MR, Madanagopalan N, Chari S, Jayanthi V, et al. Exocrine pancreatic function in tropical fibrocalculous pancreatic diabetes. Diabetes Care. 1989;12:145–7.CrossRefPubMed
68.
go back to reference Adrian TE, Barnes AJ, Bloom SR. Hypotrypsinaemia in diabetes mellitus. Clin Chim Acta. 1979;97:213–6.CrossRefPubMed Adrian TE, Barnes AJ, Bloom SR. Hypotrypsinaemia in diabetes mellitus. Clin Chim Acta. 1979;97:213–6.CrossRefPubMed
69.
go back to reference Kamarýt J, Stejskal J, Osicková L. Urinary isoamylases in juvenile diabetics. J Clin Chem Clin Biochem. 1978;16:539–41.PubMed Kamarýt J, Stejskal J, Osicková L. Urinary isoamylases in juvenile diabetics. J Clin Chem Clin Biochem. 1978;16:539–41.PubMed
70.
go back to reference Keller J, Layer P, Brückel S, Jahr C, Rosien U. 13C-mixed triglyceride breath test for evaluation of pancreatic exocrine function in diabetes mellitus. Pancreas. 2014;43:842–8.CrossRefPubMed Keller J, Layer P, Brückel S, Jahr C, Rosien U. 13C-mixed triglyceride breath test for evaluation of pancreatic exocrine function in diabetes mellitus. Pancreas. 2014;43:842–8.CrossRefPubMed
71.
go back to reference Hardt PD, Hauenschild A, Nalop J, Marzeion AM, Jaeger C, Teichmann J, et al. High prevalence of exocrine pancreatic insufficiency in diabetes mellitus. A multicenter study screening fecal elastase 1 concentrations in 1,021 diabetic patients. Pancreatology. 2003;3:395–402.CrossRefPubMed Hardt PD, Hauenschild A, Nalop J, Marzeion AM, Jaeger C, Teichmann J, et al. High prevalence of exocrine pancreatic insufficiency in diabetes mellitus. A multicenter study screening fecal elastase 1 concentrations in 1,021 diabetic patients. Pancreatology. 2003;3:395–402.CrossRefPubMed
72.
go back to reference Shivaprasad C, Pulikkal AA, Kumar KMP. Pancreatic exocrine insufficiency in type 1 and type 2 diabetics of Indian origin. Pancreatology. 2015;15:616–9.CrossRefPubMed Shivaprasad C, Pulikkal AA, Kumar KMP. Pancreatic exocrine insufficiency in type 1 and type 2 diabetics of Indian origin. Pancreatology. 2015;15:616–9.CrossRefPubMed
73.
go back to reference Cavalot F, Bonomo K, Perna P, Bacillo E, Salacone P, Gallo M, et al. Pancreatic elastase-1 in stools, a marker of exocrine pancreas function, correlates with both residual beta-cell secretion and metabolic control in type 1 diabetic subjects. Diabetes Care. 2004;27:2052–4.CrossRefPubMed Cavalot F, Bonomo K, Perna P, Bacillo E, Salacone P, Gallo M, et al. Pancreatic elastase-1 in stools, a marker of exocrine pancreas function, correlates with both residual beta-cell secretion and metabolic control in type 1 diabetic subjects. Diabetes Care. 2004;27:2052–4.CrossRefPubMed
74.
go back to reference Bolado F, Prieto-Martínez C, Ruiz-Clavijo D, Urman J, Casi MA, Vila JJ. 918 low levels of pancreatic Elastase-1 may not reflect exocrine pancreatic insufficiency in type 1 diabetes mellitus. Gastroenterology. 2015;148:S-174.CrossRef Bolado F, Prieto-Martínez C, Ruiz-Clavijo D, Urman J, Casi MA, Vila JJ. 918 low levels of pancreatic Elastase-1 may not reflect exocrine pancreatic insufficiency in type 1 diabetes mellitus. Gastroenterology. 2015;148:S-174.CrossRef
75.
go back to reference Larger E, Philippe MF, Barbot-Trystram L, Radu A, Rotariu M, Nobécourt E, et al. Pancreatic exocrine function in patients with diabetes: pancreatic function in patients with diabetes. Diabet Med. 2012;29:1047–54.CrossRefPubMed Larger E, Philippe MF, Barbot-Trystram L, Radu A, Rotariu M, Nobécourt E, et al. Pancreatic exocrine function in patients with diabetes: pancreatic function in patients with diabetes. Diabet Med. 2012;29:1047–54.CrossRefPubMed
76.
go back to reference Canaway S, Phillips I, Betts P. Pancreatic exocrine insufficiency and type 1 diabetes mellitus. Br J Nurs. 2000;9:2030–2.CrossRefPubMed Canaway S, Phillips I, Betts P. Pancreatic exocrine insufficiency and type 1 diabetes mellitus. Br J Nurs. 2000;9:2030–2.CrossRefPubMed
77.
go back to reference Laass MW, Henker J, Thamm K, Neumeister V, Kuhlisch E. Exocrine pancreatic insufficiency and its consequences on physical development and metabolism in children and adolescents with type 1 diabetes mellitus. Eur J Pediatr. 2004;163:681–2.PubMed Laass MW, Henker J, Thamm K, Neumeister V, Kuhlisch E. Exocrine pancreatic insufficiency and its consequences on physical development and metabolism in children and adolescents with type 1 diabetes mellitus. Eur J Pediatr. 2004;163:681–2.PubMed
78.
go back to reference Hahn J-U, Kerner W, Maisonneuve P, Lowenfels AB, Lankisch PG. Low fecal elastase 1 levels do not indicate exocrine pancreatic insufficiency in type-1 diabetes mellitus. Pancreas. 2008;36:274–8.CrossRefPubMed Hahn J-U, Kerner W, Maisonneuve P, Lowenfels AB, Lankisch PG. Low fecal elastase 1 levels do not indicate exocrine pancreatic insufficiency in type-1 diabetes mellitus. Pancreas. 2008;36:274–8.CrossRefPubMed
79.
go back to reference Rodieux F, Dirlewanger M, Hanquinet S, Tempia-Caliera MG, Schwitzgebel V. P135 - L’insuffisance pancréatique exocrine est rare chez les enfants avec un diabète de type 1. /data/revues/12623636/v37i1sS1/S1262363611707613/ [Internet]. 2011 [cited 2018 Jun 11]; Available from: http://www.em-consulte.com/en/article/291510. Accessed 11 June 2018. Rodieux F, Dirlewanger M, Hanquinet S, Tempia-Caliera MG, Schwitzgebel V. P135 - L’insuffisance pancréatique exocrine est rare chez les enfants avec un diabète de type 1. /data/revues/12623636/v37i1sS1/S1262363611707613/ [Internet]. 2011 [cited 2018 Jun 11]; Available from: http://​www.​em-consulte.​com/​en/​article/​291510. Accessed 11 June 2018.
80.
go back to reference Vujasinovic M, Zaletel J, Tepes B, Popic B, Makuc J, Epsek Lenart M, et al. Low prevalence of exocrine pancreatic insufficiency in patients with diabetes mellitus. Pancreatology. 2013;13:343–6.CrossRefPubMed Vujasinovic M, Zaletel J, Tepes B, Popic B, Makuc J, Epsek Lenart M, et al. Low prevalence of exocrine pancreatic insufficiency in patients with diabetes mellitus. Pancreatology. 2013;13:343–6.CrossRefPubMed
81.
go back to reference Landin-Olsson M, Borgström A, Blom L, Sundkvist G, Lernmark A. Immunoreactive trypsin(ogen) in the sera of children with recent-onset insulin-dependent diabetes and matched controls. The Swedish childhood diabetes group. Pancreas. 1990;5:241–7.CrossRefPubMed Landin-Olsson M, Borgström A, Blom L, Sundkvist G, Lernmark A. Immunoreactive trypsin(ogen) in the sera of children with recent-onset insulin-dependent diabetes and matched controls. The Swedish childhood diabetes group. Pancreas. 1990;5:241–7.CrossRefPubMed
82.
go back to reference Sato M, Yamamoto K, Mayama H, Yamashiro Y. Exocrine pancreatic function in diabetic children. J Pediatr Gastroenterol Nutr. 1984;3:415–20.CrossRefPubMed Sato M, Yamamoto K, Mayama H, Yamashiro Y. Exocrine pancreatic function in diabetic children. J Pediatr Gastroenterol Nutr. 1984;3:415–20.CrossRefPubMed
83.
go back to reference Ewald N, Raspe A, Kaufmann C, Bretzel RG, Kloer HU, Hardt PD. Determinants of exocrine pancreatic function as measured by fecal Elastase-1 concentrations (FEC) in patients with diabetes mellitus. Eur J Med Res. 2009;14:118–22.PubMedPubMedCentral Ewald N, Raspe A, Kaufmann C, Bretzel RG, Kloer HU, Hardt PD. Determinants of exocrine pancreatic function as measured by fecal Elastase-1 concentrations (FEC) in patients with diabetes mellitus. Eur J Med Res. 2009;14:118–22.PubMedPubMedCentral
84.
go back to reference Domschke W, Tympner F, Domschke S, Demling L. Exocrine pancreatic function in juvenile diabetics. Am J Dig Dis. 1975;20:309–12.CrossRefPubMed Domschke W, Tympner F, Domschke S, Demling L. Exocrine pancreatic function in juvenile diabetics. Am J Dig Dis. 1975;20:309–12.CrossRefPubMed
86.
go back to reference Kondrashova A, Nurminen N, Lehtonen J, Hyöty M, Toppari J, Ilonen J, et al. Exocrine pancreas function decreases during the progression of the beta-cell damaging process in young prediabetic children. Pediatr Diabetes. 2017. Kondrashova A, Nurminen N, Lehtonen J, Hyöty M, Toppari J, Ilonen J, et al. Exocrine pancreas function decreases during the progression of the beta-cell damaging process in young prediabetic children. Pediatr Diabetes. 2017.
87.
go back to reference Fraser PA, Henderson JR. The arrangement of endocrine and exocrine pancreatic microcirculation observed in the living rabbit. Exp Physiol. 1980;65:151–8.CrossRef Fraser PA, Henderson JR. The arrangement of endocrine and exocrine pancreatic microcirculation observed in the living rabbit. Exp Physiol. 1980;65:151–8.CrossRef
88.
go back to reference Henderson JR, Moss MC. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol. 1985;70:347–56.CrossRefPubMed Henderson JR, Moss MC. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol. 1985;70:347–56.CrossRefPubMed
89.
go back to reference Cohrs CM, Chen C, Jahn SR, Stertmann J, Chmelova H, Weitz J, et al. Vessel network architecture of adult human islets promotes distinct cell-cell interactions in situ and is altered after transplantation. Endocrinology. 2017;158:1373–85.CrossRefPubMed Cohrs CM, Chen C, Jahn SR, Stertmann J, Chmelova H, Weitz J, et al. Vessel network architecture of adult human islets promotes distinct cell-cell interactions in situ and is altered after transplantation. Endocrinology. 2017;158:1373–85.CrossRefPubMed
90.
go back to reference Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest. 1970;49:837–48.CrossRefPubMedPubMedCentral Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest. 1970;49:837–48.CrossRefPubMedPubMedCentral
91.
go back to reference Walczak M, Mrozikiewicz D, Dmochowski K, Rewers M, Cichy W. Serum pancreatic polypeptide and glucagon immunoreactivity in fasting healthy and diabetic children. Mater Med Pol. 1989;21:38–42.PubMed Walczak M, Mrozikiewicz D, Dmochowski K, Rewers M, Cichy W. Serum pancreatic polypeptide and glucagon immunoreactivity in fasting healthy and diabetic children. Mater Med Pol. 1989;21:38–42.PubMed
92.
go back to reference Ertan A, Arimura A, Akdamar K, Shibata T, Groot K, Luciano M, et al. Pancreatic immunoreactive somatostatin and diabetes mellitus. Dig Dis Sci. 1984;29:625–30.CrossRefPubMed Ertan A, Arimura A, Akdamar K, Shibata T, Groot K, Luciano M, et al. Pancreatic immunoreactive somatostatin and diabetes mellitus. Dig Dis Sci. 1984;29:625–30.CrossRefPubMed
93.
go back to reference Hellman B, Wallgren A, Petersson B. Cytological characteristics of the exocrine pancreatic cells with regard to their position in relation to the islets of Langerhans. A study in normal and obese-hyperglycaemic mice. Acta Endocrinol. 1962;39:465–73.CrossRefPubMed Hellman B, Wallgren A, Petersson B. Cytological characteristics of the exocrine pancreatic cells with regard to their position in relation to the islets of Langerhans. A study in normal and obese-hyperglycaemic mice. Acta Endocrinol. 1962;39:465–73.CrossRefPubMed
94.
go back to reference Henderson JR, Daniel PM, Fraser PA. The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut. 1981;22:158–67.CrossRefPubMedPubMedCentral Henderson JR, Daniel PM, Fraser PA. The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut. 1981;22:158–67.CrossRefPubMedPubMedCentral
95.
go back to reference Wallgren A, Hellman B. Influence of the islet a and B cells on the exocrine pancreatic tissue in the duck. Acta Anat (Basel). 1962;48:137–41.CrossRef Wallgren A, Hellman B. Influence of the islet a and B cells on the exocrine pancreatic tissue in the duck. Acta Anat (Basel). 1962;48:137–41.CrossRef
96.
go back to reference Kramer MF, Tan HT. The peri-insular acini of the pancreas of the rat. Z Zellforsch Mikrosk Anat. 1968;86:163–70.CrossRefPubMed Kramer MF, Tan HT. The peri-insular acini of the pancreas of the rat. Z Zellforsch Mikrosk Anat. 1968;86:163–70.CrossRefPubMed
97.
go back to reference Hegyi P, Takács T, Jármay K, Nagy I, Czakó L, Lonovics J. Spontaneous and cholecystokinin-octapeptide-promoted regeneration of the pancreas following L-arginine-induced pancreatitis in rat. Int J Pancreatol. 1997;22:193–200.PubMed Hegyi P, Takács T, Jármay K, Nagy I, Czakó L, Lonovics J. Spontaneous and cholecystokinin-octapeptide-promoted regeneration of the pancreas following L-arginine-induced pancreatitis in rat. Int J Pancreatol. 1997;22:193–200.PubMed
98.
go back to reference Mössner J, Logsdon CD, Williams JA, Goldfine ID. Insulin, via its own receptor, regulates growth and amylase synthesis in pancreatic acinar AR42J cells. Diabetes. 1985;34:891–7.CrossRefPubMed Mössner J, Logsdon CD, Williams JA, Goldfine ID. Insulin, via its own receptor, regulates growth and amylase synthesis in pancreatic acinar AR42J cells. Diabetes. 1985;34:891–7.CrossRefPubMed
99.
100.
go back to reference Korc M, Owerbach D, Quinto C, Rutter WJ. Pancreatic islet-acinar cell interaction: amylase messenger RNA levels ar determined by insulin. Science. 1981;213:351–3.CrossRefPubMed Korc M, Owerbach D, Quinto C, Rutter WJ. Pancreatic islet-acinar cell interaction: amylase messenger RNA levels ar determined by insulin. Science. 1981;213:351–3.CrossRefPubMed
101.
go back to reference Söling HD, Unger KO. The role of insulin in the regulation of -amylase synthesis in the rat pancreas. Eur J Clin Investig. 1972;2:199–212.CrossRef Söling HD, Unger KO. The role of insulin in the regulation of -amylase synthesis in the rat pancreas. Eur J Clin Investig. 1972;2:199–212.CrossRef
102.
go back to reference Lee KY, Zhou L, Ren XS, Chang TM, Chey WY. An important role of endogenous insulin on exocrine pancreatic secretion in rats. Am J Phys. 1990;258:G268–74. Lee KY, Zhou L, Ren XS, Chang TM, Chey WY. An important role of endogenous insulin on exocrine pancreatic secretion in rats. Am J Phys. 1990;258:G268–74.
103.
go back to reference Otsuki M, Williams JA. Effect of diabetes mellitus on the regulation of enzyme secretion by isolated rat pancreatic acini. J Clin Invest. 1982;70:148–56.CrossRefPubMedPubMedCentral Otsuki M, Williams JA. Effect of diabetes mellitus on the regulation of enzyme secretion by isolated rat pancreatic acini. J Clin Invest. 1982;70:148–56.CrossRefPubMedPubMedCentral
104.
go back to reference Adler G, Kern HF. Regulation of exocrine pancreatic secretory process by insulin in vivo. Horm Metab Res. 1975;7:290–6.CrossRefPubMed Adler G, Kern HF. Regulation of exocrine pancreatic secretory process by insulin in vivo. Horm Metab Res. 1975;7:290–6.CrossRefPubMed
105.
go back to reference Saito A, Williams JA, Kanno T. Potentiation of cholecystokinin-induced exocrine secretion by both exogenous and endogenous insulin in isolated and perfused rat pancreata. J Clin Invest. 1980;65:777–82.CrossRefPubMedPubMedCentral Saito A, Williams JA, Kanno T. Potentiation of cholecystokinin-induced exocrine secretion by both exogenous and endogenous insulin in isolated and perfused rat pancreata. J Clin Invest. 1980;65:777–82.CrossRefPubMedPubMedCentral
106.
go back to reference Benabdeljlil A, Palla JC, Desnuelle P. Effect of insulin on pancreatic amylase and chymotrypsinogen. Biochem Biophys Res Commun. 1965;18:71–5.CrossRefPubMed Benabdeljlil A, Palla JC, Desnuelle P. Effect of insulin on pancreatic amylase and chymotrypsinogen. Biochem Biophys Res Commun. 1965;18:71–5.CrossRefPubMed
107.
go back to reference Lam WF, Gielkens HA, Coenraad M, Souverijn JH, Lamers CB, Masclee AA. Effect of insulin and glucose on basal and cholecystokinin-stimulated exocrine pancreatic secretion in humans. Pancreas. 1999;18:252–8.CrossRefPubMed Lam WF, Gielkens HA, Coenraad M, Souverijn JH, Lamers CB, Masclee AA. Effect of insulin and glucose on basal and cholecystokinin-stimulated exocrine pancreatic secretion in humans. Pancreas. 1999;18:252–8.CrossRefPubMed
108.
go back to reference Patel R, Singh J, Yago MD, Vilchez JR, Martínez-Victoria E, Mañas M. Effect of insulin on exocrine pancreatic secretion in healthy and diabetic anaesthetised rats. Mol Cell Biochem. 2004;261:105–10.CrossRefPubMed Patel R, Singh J, Yago MD, Vilchez JR, Martínez-Victoria E, Mañas M. Effect of insulin on exocrine pancreatic secretion in healthy and diabetic anaesthetised rats. Mol Cell Biochem. 2004;261:105–10.CrossRefPubMed
109.
go back to reference Couture Y, Dunnigan J, null M. Stimulation of pancreatic amylase secretion and protein synthesis by insulin. Scand J Gastroenterol. 1972;7:257–63.CrossRefPubMed Couture Y, Dunnigan J, null M. Stimulation of pancreatic amylase secretion and protein synthesis by insulin. Scand J Gastroenterol. 1972;7:257–63.CrossRefPubMed
110.
go back to reference Sherr J, Tsalikian E, Fox L, Buckingham B, Weinzimer S, Tamborlane WV, et al. Evolution of abnormal plasma glucagon responses to mixed-meal feedings in youth with type 1 diabetes during the first 2 years after diagnosis. Diabetes Care. 2014;37:1741–4.CrossRefPubMedPubMedCentral Sherr J, Tsalikian E, Fox L, Buckingham B, Weinzimer S, Tamborlane WV, et al. Evolution of abnormal plasma glucagon responses to mixed-meal feedings in youth with type 1 diabetes during the first 2 years after diagnosis. Diabetes Care. 2014;37:1741–4.CrossRefPubMedPubMedCentral
111.
go back to reference Salter JM, Davidson IW, Best CH. The pathologic effects of large amounts of glucagon. Diabetes. 1957;6:248–52; discussion, 252–5.CrossRefPubMed Salter JM, Davidson IW, Best CH. The pathologic effects of large amounts of glucagon. Diabetes. 1957;6:248–52; discussion, 252–5.CrossRefPubMed
112.
go back to reference Cameron JM, Melrose AG. Changes in liver, pancreatic and stomach morphology following chronic glucagon administration in Guinea-pigs. Br J Exp Pathol. 1962;43:384–6.PubMedPubMedCentral Cameron JM, Melrose AG. Changes in liver, pancreatic and stomach morphology following chronic glucagon administration in Guinea-pigs. Br J Exp Pathol. 1962;43:384–6.PubMedPubMedCentral
113.
go back to reference Lazarus SS, Volk BW, Lofaro P. The effect of protracted glucagon administration on blood glucose and on pancreatic morphology. Endocrinology. 1958;63:359–71.CrossRefPubMed Lazarus SS, Volk BW, Lofaro P. The effect of protracted glucagon administration on blood glucose and on pancreatic morphology. Endocrinology. 1958;63:359–71.CrossRefPubMed
114.
go back to reference Necheles H. Effects of glucagon on external secretion of the pancreas. Am J Phys. 1957;191:595–7.CrossRef Necheles H. Effects of glucagon on external secretion of the pancreas. Am J Phys. 1957;191:595–7.CrossRef
115.
go back to reference Nakajima S, Magee DF. Inhibition of exocrine pancreatic secretion by glucagon and D-glucose given intravenously. Can J Physiol Pharmacol. 1970;48:299–305.CrossRefPubMed Nakajima S, Magee DF. Inhibition of exocrine pancreatic secretion by glucagon and D-glucose given intravenously. Can J Physiol Pharmacol. 1970;48:299–305.CrossRefPubMed
116.
go back to reference Dyck WP, Rudick J, Hoexter B, Janowitz HD. Influence of glucagon on pancreatic exocrine secretion. Gastroenterology. 1969;56:531–7.CrossRefPubMed Dyck WP, Rudick J, Hoexter B, Janowitz HD. Influence of glucagon on pancreatic exocrine secretion. Gastroenterology. 1969;56:531–7.CrossRefPubMed
117.
go back to reference Shaw HM, Heath TJ. The effect of glucagon on the formation of pancreatic juice and bile in the rat. Can J Physiol Pharmacol. 1973;51:1–5.CrossRefPubMed Shaw HM, Heath TJ. The effect of glucagon on the formation of pancreatic juice and bile in the rat. Can J Physiol Pharmacol. 1973;51:1–5.CrossRefPubMed
118.
go back to reference Liddle RC and RA. Regulation of Pancreatic Secretion. Pancreapedia: The Exocrine Pancreas Knowledge Base [Internet]. 2015 [cited 2018 Aug 22]; Available from: /reviews/regulation-of-pancreatic-secretion. Liddle RC and RA. Regulation of Pancreatic Secretion. Pancreapedia: The Exocrine Pancreas Knowledge Base [Internet]. 2015 [cited 2018 Aug 22]; Available from: /reviews/regulation-of-pancreatic-secretion.
119.
go back to reference Gyr K, Beglinger C, Köhler E, Trautzl U, Keller U, Bloom SR. Circulating somatostatin. Physiological regulator of pancreatic function? J Clin Invest. 1987;79:1595–600.CrossRefPubMedPubMedCentral Gyr K, Beglinger C, Köhler E, Trautzl U, Keller U, Bloom SR. Circulating somatostatin. Physiological regulator of pancreatic function? J Clin Invest. 1987;79:1595–600.CrossRefPubMedPubMedCentral
120.
go back to reference Boden G, Sivitz MC, Owen OE, Essa-Koumar N, Landor JH. Somatostatin suppresses secretin and pancreatic exocrine secretion. Science. 1975;190:163–5.CrossRefPubMed Boden G, Sivitz MC, Owen OE, Essa-Koumar N, Landor JH. Somatostatin suppresses secretin and pancreatic exocrine secretion. Science. 1975;190:163–5.CrossRefPubMed
121.
go back to reference Heintges T, Lüthen R, Niederau C. Inhibition of exocrine pancreatic secretion by somatostatin and its analogues. Digestion. 1994;55:1–9.CrossRefPubMed Heintges T, Lüthen R, Niederau C. Inhibition of exocrine pancreatic secretion by somatostatin and its analogues. Digestion. 1994;55:1–9.CrossRefPubMed
122.
go back to reference Adrian TE. Pancreatic polypeptide. J Clin Pathol. 1978;43–50:s1–8. Adrian TE. Pancreatic polypeptide. J Clin Pathol. 1978;43–50:s1–8.
123.
go back to reference Greenberg GR, Mitznegg P, Bloom SR. Effect of pancreatic polypeptide on DNA-synthesis in the pancreas. Experientia. 1977;33:1332–3.CrossRefPubMed Greenberg GR, Mitznegg P, Bloom SR. Effect of pancreatic polypeptide on DNA-synthesis in the pancreas. Experientia. 1977;33:1332–3.CrossRefPubMed
124.
go back to reference Rahier J, Wallon J, Loozen S, Lefevre A, Gepts W, Haot J. The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab. 1983;56:441–4.CrossRefPubMed Rahier J, Wallon J, Loozen S, Lefevre A, Gepts W, Haot J. The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab. 1983;56:441–4.CrossRefPubMed
125.
go back to reference Luce S, Briet C, Bécourt C, Lemonnier F, Boitard C. The targeting of β-cells by T lymphocytes in human type 1 diabetes: clinical perspectives. Diabetes Obes Metab. 2013;15(Suppl 3):89–97.CrossRefPubMed Luce S, Briet C, Bécourt C, Lemonnier F, Boitard C. The targeting of β-cells by T lymphocytes in human type 1 diabetes: clinical perspectives. Diabetes Obes Metab. 2013;15(Suppl 3):89–97.CrossRefPubMed
126.
go back to reference Martin S, Kardorf J, Schulte B, Lampeter EF, Gries FA, Melchers I, et al. Autoantibodies to the islet antigen ICA69 occur in IDDM and in rheumatoid arthritis. Diabetologia. 1995;38:351–5.CrossRefPubMed Martin S, Kardorf J, Schulte B, Lampeter EF, Gries FA, Melchers I, et al. Autoantibodies to the islet antigen ICA69 occur in IDDM and in rheumatoid arthritis. Diabetologia. 1995;38:351–5.CrossRefPubMed
127.
go back to reference Mally MI, Cirulli V, Hayek A, Otonkoski T. ICA69 is expressed equally in the human endocrine and exocrine pancreas. Diabetologia. 1996;39:474–80.CrossRefPubMed Mally MI, Cirulli V, Hayek A, Otonkoski T. ICA69 is expressed equally in the human endocrine and exocrine pancreas. Diabetologia. 1996;39:474–80.CrossRefPubMed
128.
go back to reference Wiberg A, Granstam A, Ingvast S, Härkönen T, Knip M, Korsgren O, et al. Characterization of human organ donors testing positive for type 1 diabetes-associated autoantibodies. Clin Exp Immunol. 2015;182:278–88.CrossRefPubMedPubMedCentral Wiberg A, Granstam A, Ingvast S, Härkönen T, Knip M, Korsgren O, et al. Characterization of human organ donors testing positive for type 1 diabetes-associated autoantibodies. Clin Exp Immunol. 2015;182:278–88.CrossRefPubMedPubMedCentral
129.
go back to reference Endo T, Takizawa S, Tanaka S, Takahashi M, Fujii H, Kamisawa T, et al. Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes. 2009;58:732–7.CrossRefPubMedPubMedCentral Endo T, Takizawa S, Tanaka S, Takahashi M, Fujii H, Kamisawa T, et al. Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes. 2009;58:732–7.CrossRefPubMedPubMedCentral
130.
go back to reference Taniguchi T, Okazaki K, Okamoto M, Seko S, Tanaka J, Uchida K, et al. High prevalence of autoantibodies against carbonic anhydrase II and lactoferrin in type 1 diabetes: concept of autoimmune exocrinopathy and endocrinopathy of the pancreas. Pancreas. 2003;27:26–30.CrossRefPubMed Taniguchi T, Okazaki K, Okamoto M, Seko S, Tanaka J, Uchida K, et al. High prevalence of autoantibodies against carbonic anhydrase II and lactoferrin in type 1 diabetes: concept of autoimmune exocrinopathy and endocrinopathy of the pancreas. Pancreas. 2003;27:26–30.CrossRefPubMed
131.
go back to reference Hardt PD, Ewald N, Bröckling K, Tanaka S, Endo T, Kloer HU, et al. Distinct autoantibodies against exocrine pancreatic antigens in European patients with type 1 diabetes mellitus and non-alcoholic chronic pancreatitis. JOP. 2008;9:683–9.PubMed Hardt PD, Ewald N, Bröckling K, Tanaka S, Endo T, Kloer HU, et al. Distinct autoantibodies against exocrine pancreatic antigens in European patients with type 1 diabetes mellitus and non-alcoholic chronic pancreatitis. JOP. 2008;9:683–9.PubMed
132.
go back to reference di Cesare E, Previti M, Lombardo F, Mazzù N, di Benedetto A, Cucinotta D. Prevalence of autoantibodies to carbonic anhydrase II and lactoferrin in patients with type 1 diabetes. Ann N Y Acad Sci. 2004;1037:131–2.CrossRefPubMed di Cesare E, Previti M, Lombardo F, Mazzù N, di Benedetto A, Cucinotta D. Prevalence of autoantibodies to carbonic anhydrase II and lactoferrin in patients with type 1 diabetes. Ann N Y Acad Sci. 2004;1037:131–2.CrossRefPubMed
133.
go back to reference Kobayashi T, Nakanishi K, Kajio H, Morinaga S, Sugimoto T, Murase T, et al. Pancreatic cytokeratin: an antigen of pancreatic exocrine cell autoantibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1990;33:363–70.CrossRefPubMed Kobayashi T, Nakanishi K, Kajio H, Morinaga S, Sugimoto T, Murase T, et al. Pancreatic cytokeratin: an antigen of pancreatic exocrine cell autoantibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1990;33:363–70.CrossRefPubMed
134.
go back to reference Panicot L, Mas E, Thivolet C, Lombardo D. Circulating antibodies against an exocrine pancreatic enzyme in type 1 diabetes. Diabetes. 1999;48:2316–23.CrossRefPubMed Panicot L, Mas E, Thivolet C, Lombardo D. Circulating antibodies against an exocrine pancreatic enzyme in type 1 diabetes. Diabetes. 1999;48:2316–23.CrossRefPubMed
135.
go back to reference Yamada T, Hiraoka E, Miyazaki T, Sato J, Ban N. Diabetes as first manifestation of autoimmune pancreatitis. Am J Med Sci. 2017;353:498–9.CrossRefPubMed Yamada T, Hiraoka E, Miyazaki T, Sato J, Ban N. Diabetes as first manifestation of autoimmune pancreatitis. Am J Med Sci. 2017;353:498–9.CrossRefPubMed
136.
go back to reference Ennazk L, Mghari GE, Ansari NE. Association of newly diagnosed type 1 diabetes and autoimmune pancreatitis. Endocrinol Diabetes Metab Case Rep. 2016;2016. Ennazk L, Mghari GE, Ansari NE. Association of newly diagnosed type 1 diabetes and autoimmune pancreatitis. Endocrinol Diabetes Metab Case Rep. 2016;2016.
137.
go back to reference Papaccio G, Chieffi-Baccari G, Mezzogiorno V, Esposito V. Extraislet infiltration in NOD mouse pancreas: observations after immunomodulation. Pancreas. 1993;8:459–64.CrossRefPubMed Papaccio G, Chieffi-Baccari G, Mezzogiorno V, Esposito V. Extraislet infiltration in NOD mouse pancreas: observations after immunomodulation. Pancreas. 1993;8:459–64.CrossRefPubMed
138.
go back to reference Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TWH, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.CrossRefPubMedPubMedCentral Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TWH, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.CrossRefPubMedPubMedCentral
139.
go back to reference Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, et al. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol. 2018;3. Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, et al. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol. 2018;3.
140.
go back to reference Gonzalez-Duque S, Azoury ME, Colli ML, Afonso G, Turatsinze J-V, Nigi L, et al. Conventional and neo-antigenic peptides presented by β cells are targeted by circulating Naïve CD8+ T cells in type 1 diabetic and healthy donors. Cell Metab. 2018. Gonzalez-Duque S, Azoury ME, Colli ML, Afonso G, Turatsinze J-V, Nigi L, et al. Conventional and neo-antigenic peptides presented by β cells are targeted by circulating Naïve CD8+ T cells in type 1 diabetic and healthy donors. Cell Metab. 2018.
141.
go back to reference Radenkovic M, Silver C, Arvastsson J, Lynch K, Lernmark Å, Harris RA, et al. Altered regulatory T cell phenotype in latent autoimmune diabetes of the adults (LADA). Clin Exp Immunol. 2016;186:46–56.CrossRefPubMedPubMedCentral Radenkovic M, Silver C, Arvastsson J, Lynch K, Lernmark Å, Harris RA, et al. Altered regulatory T cell phenotype in latent autoimmune diabetes of the adults (LADA). Clin Exp Immunol. 2016;186:46–56.CrossRefPubMedPubMedCentral
143.
go back to reference Valle A, Giamporcaro GM, Scavini M, Stabilini A, Grogan P, Bianconi E, et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes. 2013;62:2072–7.CrossRefPubMedPubMedCentral Valle A, Giamporcaro GM, Scavini M, Stabilini A, Grogan P, Bianconi E, et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes. 2013;62:2072–7.CrossRefPubMedPubMedCentral
144.
go back to reference Semakula C, Vandewalle CL, Van Schravendijk CF, Sodoyez JC, Schuit FC, Foriers A, et al. Abnormal circulating pancreatic enzyme activities in more than twenty-five percent of recent-onset insulin-dependent diabetic patients: association of hyperlipasemia with high-titer islet cell antibodies. Belgian diabetes registry. Pancreas. 1996;12:321–33.CrossRefPubMed Semakula C, Vandewalle CL, Van Schravendijk CF, Sodoyez JC, Schuit FC, Foriers A, et al. Abnormal circulating pancreatic enzyme activities in more than twenty-five percent of recent-onset insulin-dependent diabetic patients: association of hyperlipasemia with high-titer islet cell antibodies. Belgian diabetes registry. Pancreas. 1996;12:321–33.CrossRefPubMed
145.
go back to reference Rowe P, Wasserfall C, Croker B, Campbell-Thompson M, Pugliese A, Atkinson M, et al. Increased complement activation in human type 1 diabetes pancreata. Diabetes Care. 2013;36:3815–7.CrossRefPubMedPubMedCentral Rowe P, Wasserfall C, Croker B, Campbell-Thompson M, Pugliese A, Atkinson M, et al. Increased complement activation in human type 1 diabetes pancreata. Diabetes Care. 2013;36:3815–7.CrossRefPubMedPubMedCentral
146.
go back to reference Sarkar SA, Lee CE, Victorino F, Nguyen TT, Walters JA, Burrack A, et al. Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes. 2012;61:436–46.CrossRefPubMedPubMedCentral Sarkar SA, Lee CE, Victorino F, Nguyen TT, Walters JA, Burrack A, et al. Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes. 2012;61:436–46.CrossRefPubMedPubMedCentral
147.
go back to reference Zhang Q, Fillmore TL, Schepmoes AA, Clauss TRW, Gritsenko MA, Mueller PW, et al. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med. 2013;210:191–203.CrossRefPubMedPubMedCentral Zhang Q, Fillmore TL, Schepmoes AA, Clauss TRW, Gritsenko MA, Mueller PW, et al. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med. 2013;210:191–203.CrossRefPubMedPubMedCentral
148.
go back to reference Burch TC, Morris MA, Campbell-Thompson M, Pugliese A, Nadler JL, Nyalwidhe JO. Proteomic analysis of disease stratified human pancreas tissue indicates unique signature of type 1 diabetes. PLoS One. 2015;10:e0135663.CrossRefPubMedPubMedCentral Burch TC, Morris MA, Campbell-Thompson M, Pugliese A, Nadler JL, Nyalwidhe JO. Proteomic analysis of disease stratified human pancreas tissue indicates unique signature of type 1 diabetes. PLoS One. 2015;10:e0135663.CrossRefPubMedPubMedCentral
149.
go back to reference Lewis MP, Reber HA, Ashley SW. Pancreatic blood flow and its role in the pathophysiology of pancreatitis. J Surg Res. 1998;75:81–9.CrossRefPubMed Lewis MP, Reber HA, Ashley SW. Pancreatic blood flow and its role in the pathophysiology of pancreatitis. J Surg Res. 1998;75:81–9.CrossRefPubMed
150.
go back to reference El-Gohary Y, Tulachan S, Branca M, Sims-Lucas S, Guo P, Prasadan K, et al. Whole-mount imaging demonstrates hypervascularity of the pancreatic ducts and other pancreatic structures. Anat Rec (Hoboken). 2012;295:465–73.CrossRef El-Gohary Y, Tulachan S, Branca M, Sims-Lucas S, Guo P, Prasadan K, et al. Whole-mount imaging demonstrates hypervascularity of the pancreatic ducts and other pancreatic structures. Anat Rec (Hoboken). 2012;295:465–73.CrossRef
151.
go back to reference Saladino CFJ. Age changes in the canine pancreas: histomorphological, electron microscopic, and biochemical study. 1971;246. Saladino CFJ. Age changes in the canine pancreas: histomorphological, electron microscopic, and biochemical study. 1971;246.
152.
153.
go back to reference Levy BI, Schiffrin EL, Mourad J-J, Agostini D, Vicaut E, Safar ME, et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118:968–76.CrossRefPubMed Levy BI, Schiffrin EL, Mourad J-J, Agostini D, Vicaut E, Safar ME, et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118:968–76.CrossRefPubMed
155.
go back to reference Blumenthal HT, Probstein JG, Berns AW. Interrelationship of diabetes mellitus and pancreatitis. Arch Surg. 1963;87:844–50.CrossRefPubMed Blumenthal HT, Probstein JG, Berns AW. Interrelationship of diabetes mellitus and pancreatitis. Arch Surg. 1963;87:844–50.CrossRefPubMed
156.
go back to reference Berns AW, Owens CT, Blumenthal HT. A histo- and immunopathologic study of the vessels and islets of langerhans of the pancreas in diabetes mellitus. J Gerontol. 1964;19:179–89.CrossRefPubMed Berns AW, Owens CT, Blumenthal HT. A histo- and immunopathologic study of the vessels and islets of langerhans of the pancreas in diabetes mellitus. J Gerontol. 1964;19:179–89.CrossRefPubMed
157.
go back to reference Reiner L, Jimenez FA, Rodriguez FL. Atherosclerosis in the mesenteric circulation. Observations and correlations with aortic and coronary atherosclerosis. Am Heart J. 1963;66:200–9.CrossRefPubMed Reiner L, Jimenez FA, Rodriguez FL. Atherosclerosis in the mesenteric circulation. Observations and correlations with aortic and coronary atherosclerosis. Am Heart J. 1963;66:200–9.CrossRefPubMed
158.
go back to reference Clair JRS, Ramirez D, Passman S, Benninger RKP. Contrast-enhanced ultrasound measurement of pancreatic blood flow dynamics predicts type 1 diabetes progression in preclinical models. Nat Commun. 2018;9:1742.CrossRef Clair JRS, Ramirez D, Passman S, Benninger RKP. Contrast-enhanced ultrasound measurement of pancreatic blood flow dynamics predicts type 1 diabetes progression in preclinical models. Nat Commun. 2018;9:1742.CrossRef
159.
go back to reference Kivisaari L. The effect of experimental pancreatitis and diabetes on the microvasculature of the rat pancreas. Scand J Gastroenterol. 1979;14:689–95.CrossRefPubMed Kivisaari L. The effect of experimental pancreatitis and diabetes on the microvasculature of the rat pancreas. Scand J Gastroenterol. 1979;14:689–95.CrossRefPubMed
160.
go back to reference Canzano JS, Nasif LH, Butterworth EA, Fu DA, Atkinson MA, Campbell-Thompson M. Islet Microvasculature Alterations With Loss of Beta-cells in Patients With Type 1 Diabetes. J Histochem Cytochem. 2018;22155418778546. Canzano JS, Nasif LH, Butterworth EA, Fu DA, Atkinson MA, Campbell-Thompson M. Islet Microvasculature Alterations With Loss of Beta-cells in Patients With Type 1 Diabetes. J Histochem Cytochem. 2018;22155418778546.
161.
go back to reference Sasson A, Rachi E, Sakhneny L, Baer D, Lisnyansky M, Epshtein A, et al. Islet Pericytes are required for β-cell maturity. Diabetes. 2016;65:3008–14.CrossRefPubMed Sasson A, Rachi E, Sakhneny L, Baer D, Lisnyansky M, Epshtein A, et al. Islet Pericytes are required for β-cell maturity. Diabetes. 2016;65:3008–14.CrossRefPubMed
162.
go back to reference Almaça J, Weitz J, Rodriguez-Diaz R, Pereira E, Caicedo A. The Pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab. 2018;27:630–644.e4.CrossRefPubMedPubMedCentral Almaça J, Weitz J, Rodriguez-Diaz R, Pereira E, Caicedo A. The Pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab. 2018;27:630–644.e4.CrossRefPubMedPubMedCentral
163.
go back to reference Babic T, Browning KN, Kawaguchi Y, Tang X, Travagli RA. Pancreatic insulin and exocrine secretion are under the modulatory control of distinct subpopulations of vagal motoneurones in the rat. J Physiol Lond. 2012;590:3611–22.CrossRefPubMedPubMedCentral Babic T, Browning KN, Kawaguchi Y, Tang X, Travagli RA. Pancreatic insulin and exocrine secretion are under the modulatory control of distinct subpopulations of vagal motoneurones in the rat. J Physiol Lond. 2012;590:3611–22.CrossRefPubMedPubMedCentral
164.
go back to reference Love JA, Yi E, Smith TG. Autonomic pathways regulating pancreatic exocrine secretion. Auton Neurosci. 2007;133:19–34.CrossRefPubMed Love JA, Yi E, Smith TG. Autonomic pathways regulating pancreatic exocrine secretion. Auton Neurosci. 2007;133:19–34.CrossRefPubMed
165.
go back to reference Solomon TE, Grossman MI. Effect of atropine and vagotomy on response of transplanted pancreas. Am J Phys. 1979;236:E186–90. Solomon TE, Grossman MI. Effect of atropine and vagotomy on response of transplanted pancreas. Am J Phys. 1979;236:E186–90.
166.
go back to reference Valenzuela JE, Weiner K, Saad C. Cholinergic stimulation of human pancreatic secretion. Dig Dis Sci. 1986;31:615–9.CrossRefPubMed Valenzuela JE, Weiner K, Saad C. Cholinergic stimulation of human pancreatic secretion. Dig Dis Sci. 1986;31:615–9.CrossRefPubMed
167.
go back to reference Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, et al. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell. 2006;127:1123–35.CrossRefPubMed Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, et al. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell. 2006;127:1123–35.CrossRefPubMed
168.
go back to reference Lundberg M, Lindqvist A, Wierup N, Krogvold L, Dahl-Jørgensen K, Skog O. The density of parasympathetic axons is reduced in the exocrine pancreas of individuals recently diagnosed with type 1 diabetes. PLoS One. 2017;12:e0179911.CrossRefPubMedPubMedCentral Lundberg M, Lindqvist A, Wierup N, Krogvold L, Dahl-Jørgensen K, Skog O. The density of parasympathetic axons is reduced in the exocrine pancreas of individuals recently diagnosed with type 1 diabetes. PLoS One. 2017;12:e0179911.CrossRefPubMedPubMedCentral
169.
go back to reference Masamune A, Watanabe T, Kikuta K, Shimosegawa T. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol. 2009;7:S48–54.CrossRefPubMed Masamune A, Watanabe T, Kikuta K, Shimosegawa T. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol. 2009;7:S48–54.CrossRefPubMed
170.
go back to reference Czakó L, Hegyi P, Rakonczay Z, Wittmann T, Otsuki M. Interactions between the endocrine and exocrine pancreas and their clinical relevance. Pancreatology. 2009;9:351–9.CrossRefPubMed Czakó L, Hegyi P, Rakonczay Z, Wittmann T, Otsuki M. Interactions between the endocrine and exocrine pancreas and their clinical relevance. Pancreatology. 2009;9:351–9.CrossRefPubMed
171.
go back to reference Nomiyama Y, Tashiro M, Yamaguchi T, Watanabe S, Taguchi M, Asaumi H, et al. High glucose activates rat pancreatic stellate cells through protein kinase C and p38 mitogen-activated protein kinase pathway. Pancreas. 2007;34:364–72.CrossRefPubMed Nomiyama Y, Tashiro M, Yamaguchi T, Watanabe S, Taguchi M, Asaumi H, et al. High glucose activates rat pancreatic stellate cells through protein kinase C and p38 mitogen-activated protein kinase pathway. Pancreas. 2007;34:364–72.CrossRefPubMed
172.
go back to reference Watanabe S, Nagashio Y, Asaumi H, Nomiyama Y, Taguchi M, Tashiro M, et al. Pressure activates rat pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1175–81.CrossRefPubMed Watanabe S, Nagashio Y, Asaumi H, Nomiyama Y, Taguchi M, Tashiro M, et al. Pressure activates rat pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1175–81.CrossRefPubMed
173.
go back to reference Zang G, Sandberg M, Carlsson P-O, Welsh N, Jansson L, Barbu A. Activated pancreatic stellate cells can impair pancreatic islet function in mice. Ups J Med Sci. 2015;120:169–80.CrossRefPubMedPubMedCentral Zang G, Sandberg M, Carlsson P-O, Welsh N, Jansson L, Barbu A. Activated pancreatic stellate cells can impair pancreatic islet function in mice. Ups J Med Sci. 2015;120:169–80.CrossRefPubMedPubMedCentral
174.
go back to reference Foulis AK, Farquharson MA, Hardman R. Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1987;30:333–43.CrossRefPubMed Foulis AK, Farquharson MA, Hardman R. Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1987;30:333–43.CrossRefPubMed
175.
go back to reference Skog O, Korsgren S, Wiberg A, Danielsson A, Edwin B, Buanes T, et al. Expression of human leukocyte antigen class I in endocrine and exocrine pancreatic tissue at onset of type 1 diabetes. Am J Pathol. 2015;185:129–38.CrossRefPubMed Skog O, Korsgren S, Wiberg A, Danielsson A, Edwin B, Buanes T, et al. Expression of human leukocyte antigen class I in endocrine and exocrine pancreatic tissue at onset of type 1 diabetes. Am J Pathol. 2015;185:129–38.CrossRefPubMed
177.
go back to reference Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest. 2015;125:1752–62.CrossRefPubMedPubMedCentral Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest. 2015;125:1752–62.CrossRefPubMedPubMedCentral
178.
go back to reference Kuric E, Krogvold L, Hanssen KF, Dahl-Jørgensen K, Skog O, Korsgren O. No evidence for presence of mucosal-associated invariant T cells in the Insulitic lesions in patients recently diagnosed with type 1 diabetes. Am J Pathol. 2018;188:1744–8.CrossRefPubMed Kuric E, Krogvold L, Hanssen KF, Dahl-Jørgensen K, Skog O, Korsgren O. No evidence for presence of mucosal-associated invariant T cells in the Insulitic lesions in patients recently diagnosed with type 1 diabetes. Am J Pathol. 2018;188:1744–8.CrossRefPubMed
179.
go back to reference Stechova K, Kolouskova S, Sumnik Z, Cinek O, Kverka M, Faresjo MK, et al. Anti-GAD65 reactive peripheral blood mononuclear cells in the pathogenesis of cystic fibrosis related diabetes mellitus. Autoimmunity. 2005;38:319–23.CrossRefPubMed Stechova K, Kolouskova S, Sumnik Z, Cinek O, Kverka M, Faresjo MK, et al. Anti-GAD65 reactive peripheral blood mononuclear cells in the pathogenesis of cystic fibrosis related diabetes mellitus. Autoimmunity. 2005;38:319–23.CrossRefPubMed
180.
go back to reference Bizzarri C, Giannone G, Benevento D, Montemitro E, Alghisi F, Cappa M, et al. ZnT8 antibodies in patients with cystic fibrosis: an expression of secondary beta-cell damage? J Cyst Fibros. 2013;12:803–5.CrossRefPubMed Bizzarri C, Giannone G, Benevento D, Montemitro E, Alghisi F, Cappa M, et al. ZnT8 antibodies in patients with cystic fibrosis: an expression of secondary beta-cell damage? J Cyst Fibros. 2013;12:803–5.CrossRefPubMed
181.
go back to reference Scuro LA, Bovo P, Sandrini T, Angelini G, Cavallini G, Mirakian R. Autoimmunity and diabetes associated with chronic pancreatitis. Lancet. 1983;1:424.CrossRefPubMed Scuro LA, Bovo P, Sandrini T, Angelini G, Cavallini G, Mirakian R. Autoimmunity and diabetes associated with chronic pancreatitis. Lancet. 1983;1:424.CrossRefPubMed
182.
go back to reference Cummings MH, Chong L, Hunter V, Kar PS, Meeking DR, Cranston IC. Gastrointestinal symptoms and pancreatic exocrine insufficiency in type 1 and type 2 diabetes. Practical Diabetes. 2015;32:54–8.CrossRef Cummings MH, Chong L, Hunter V, Kar PS, Meeking DR, Cranston IC. Gastrointestinal symptoms and pancreatic exocrine insufficiency in type 1 and type 2 diabetes. Practical Diabetes. 2015;32:54–8.CrossRef
183.
go back to reference Gotfried J, Priest S, Schey R. Diabetes and the small intestine. Curr Treat Options Gastroenterol. 2017;15:490–507.CrossRefPubMed Gotfried J, Priest S, Schey R. Diabetes and the small intestine. Curr Treat Options Gastroenterol. 2017;15:490–507.CrossRefPubMed
184.
go back to reference Cavalot F, Bonomo K, Fiora E, Bacillo E, Salacone P, Chirio M, et al. Does pancreatic elastase-1 in stools predict steatorrhea in type 1 diabetes? Diabetes Care. 2006;29:719–21.CrossRefPubMed Cavalot F, Bonomo K, Fiora E, Bacillo E, Salacone P, Chirio M, et al. Does pancreatic elastase-1 in stools predict steatorrhea in type 1 diabetes? Diabetes Care. 2006;29:719–21.CrossRefPubMed
185.
go back to reference Hardt PD, Hauenschild A, Jaeger C, Teichmann J, Bretzel RG, Kloer HU, et al. High prevalence of steatorrhea in 101 diabetic patients likely to suffer from exocrine pancreatic insufficiency according to low fecal elastase 1 concentrations: a prospective multicenter study. Dig Dis Sci. 2003;48:1688–92.CrossRefPubMed Hardt PD, Hauenschild A, Jaeger C, Teichmann J, Bretzel RG, Kloer HU, et al. High prevalence of steatorrhea in 101 diabetic patients likely to suffer from exocrine pancreatic insufficiency according to low fecal elastase 1 concentrations: a prospective multicenter study. Dig Dis Sci. 2003;48:1688–92.CrossRefPubMed
186.
go back to reference Lindkvist B, Domínguez-Muñoz JE, Luaces-Regueira M, Castiñeiras-Alvariño M, Nieto-Garcia L, Iglesias-Garcia J. Serum nutritional markers for prediction of pancreatic exocrine insufficiency in chronic pancreatitis. Pancreatology. 2012;12:305–10.CrossRefPubMed Lindkvist B, Domínguez-Muñoz JE, Luaces-Regueira M, Castiñeiras-Alvariño M, Nieto-Garcia L, Iglesias-Garcia J. Serum nutritional markers for prediction of pancreatic exocrine insufficiency in chronic pancreatitis. Pancreatology. 2012;12:305–10.CrossRefPubMed
187.
go back to reference Lindkvist B, Nilsson C, Kvarnström M, Oscarsson J. Importance of pancreatic exocrine dysfunction in patients with type 2 diabetes: a randomized crossover study. Pancreatology. 2018. Lindkvist B, Nilsson C, Kvarnström M, Oscarsson J. Importance of pancreatic exocrine dysfunction in patients with type 2 diabetes: a randomized crossover study. Pancreatology. 2018.
188.
go back to reference Alexandre-Heymann L, Lemoine AY, Nakib S, Kapel N, Ledoux S, Larger E. Nutritional markers in patients with diabetes and pancreatic exocrine failure. Acta Diabetol. 2019. Alexandre-Heymann L, Lemoine AY, Nakib S, Kapel N, Ledoux S, Larger E. Nutritional markers in patients with diabetes and pancreatic exocrine failure. Acta Diabetol. 2019.
189.
go back to reference Tignor AS, Wu BU, Whitlock TL, Lopez R, Repas K, Banks PA, et al. High prevalence of low-trauma fracture in chronic pancreatitis. Am J Gastroenterol. 2010;105:2680–6.CrossRefPubMed Tignor AS, Wu BU, Whitlock TL, Lopez R, Repas K, Banks PA, et al. High prevalence of low-trauma fracture in chronic pancreatitis. Am J Gastroenterol. 2010;105:2680–6.CrossRefPubMed
190.
go back to reference Mohan V, Poongothai S, Pitchumoni CS. Oral pancreatic enzyme therapy in the control of diabetes mellitus in tropical calculous pancreatitis. Int J Pancreatol. 1998;24:19–22.PubMed Mohan V, Poongothai S, Pitchumoni CS. Oral pancreatic enzyme therapy in the control of diabetes mellitus in tropical calculous pancreatitis. Int J Pancreatol. 1998;24:19–22.PubMed
191.
go back to reference Whitcomb DC, Bodhani A, Beckmann K, Sander-Struckmeier S, Liu S, Fuldeore M, et al. Efficacy and safety of Pancrelipase/Pancreatin in patients with exocrine pancreatic insufficiency and a medical history of diabetes mellitus. Pancreas. 2016;45:679–86.CrossRefPubMed Whitcomb DC, Bodhani A, Beckmann K, Sander-Struckmeier S, Liu S, Fuldeore M, et al. Efficacy and safety of Pancrelipase/Pancreatin in patients with exocrine pancreatic insufficiency and a medical history of diabetes mellitus. Pancreas. 2016;45:679–86.CrossRefPubMed
192.
go back to reference Knop FK, Vilsbøll T, Larsen S, Højberg PV, Vølund A, Madsbad S, et al. Increased postprandial responses of GLP-1 and GIP in patients with chronic pancreatitis and steatorrhea following pancreatic enzyme substitution. Am J Physiol Endocrinol Metab. 2007;292:E324–30.CrossRefPubMed Knop FK, Vilsbøll T, Larsen S, Højberg PV, Vølund A, Madsbad S, et al. Increased postprandial responses of GLP-1 and GIP in patients with chronic pancreatitis and steatorrhea following pancreatic enzyme substitution. Am J Physiol Endocrinol Metab. 2007;292:E324–30.CrossRefPubMed
193.
go back to reference Ebert R, Creutzfeldt W. Reversal of impaired GIP and insulin secretion in patients with pancreatogenic steatorrhea following enzyme substitution. Diabetologia. 1980;19:198–204.CrossRefPubMed Ebert R, Creutzfeldt W. Reversal of impaired GIP and insulin secretion in patients with pancreatogenic steatorrhea following enzyme substitution. Diabetologia. 1980;19:198–204.CrossRefPubMed
194.
go back to reference Suzuki S, Miura J, Shimizu K, Tokushige K, Uchigata Y, Yamamoto M. Clinicophysiological outcomes after total pancreatectomy. Scand J Gastroenterol. 2016;51:1526–31.CrossRefPubMed Suzuki S, Miura J, Shimizu K, Tokushige K, Uchigata Y, Yamamoto M. Clinicophysiological outcomes after total pancreatectomy. Scand J Gastroenterol. 2016;51:1526–31.CrossRefPubMed
195.
go back to reference Ewald N, Bretzel RG, Fantus IG, Hollenhorst M, Kloer HU, Hardt PD, et al. Pancreatin therapy in patients with insulin-treated diabetes mellitus and exocrine pancreatic insufficiency according to low fecal elastase 1 concentrations. Results of a prospective multi-Centre trial. Diabetes Metab Res Rev. 2007;23:386–91.CrossRefPubMed Ewald N, Bretzel RG, Fantus IG, Hollenhorst M, Kloer HU, Hardt PD, et al. Pancreatin therapy in patients with insulin-treated diabetes mellitus and exocrine pancreatic insufficiency according to low fecal elastase 1 concentrations. Results of a prospective multi-Centre trial. Diabetes Metab Res Rev. 2007;23:386–91.CrossRefPubMed
196.
go back to reference Keller J, Aghdassi AA, Lerch MM, Mayerle JV, Layer P. Tests of pancreatic exocrine function - clinical significance in pancreatic and non-pancreatic disorders. Best Pract Res Clin Gastroenterol. 2009;23:425–39.CrossRefPubMed Keller J, Aghdassi AA, Lerch MM, Mayerle JV, Layer P. Tests of pancreatic exocrine function - clinical significance in pancreatic and non-pancreatic disorders. Best Pract Res Clin Gastroenterol. 2009;23:425–39.CrossRefPubMed
197.
go back to reference Zsóri G, Illés D, Terzin V, Ivány E, Czakó L. Exocrine pancreatic insufficiency in type 1 and type 2 diabetes mellitus: do we need to treat it? A systematic review. Pancreatology. 2018; Zsóri G, Illés D, Terzin V, Ivány E, Czakó L. Exocrine pancreatic insufficiency in type 1 and type 2 diabetes mellitus: do we need to treat it? A systematic review. Pancreatology. 2018;
198.
199.
200.
go back to reference Working Party of the Australasian Pancreatic Club, Smith RC, Smith SF, Wilson J, Pearce C, Wray N, et al. Summary and recommendations from the Australasian guidelines for the management of pancreatic exocrine insufficiency. Pancreatology. 2016;16:164–80.CrossRef Working Party of the Australasian Pancreatic Club, Smith RC, Smith SF, Wilson J, Pearce C, Wray N, et al. Summary and recommendations from the Australasian guidelines for the management of pancreatic exocrine insufficiency. Pancreatology. 2016;16:164–80.CrossRef
201.
go back to reference Piciucchi M, Capurso G, Archibugi L, Delle Fave MM, Capasso M, Delle Fave G. Exocrine pancreatic insufficiency in diabetic patients: prevalence, mechanisms, and treatment. Int J Endocrinol. 2015;2015:595649.CrossRefPubMedPubMedCentral Piciucchi M, Capurso G, Archibugi L, Delle Fave MM, Capasso M, Delle Fave G. Exocrine pancreatic insufficiency in diabetic patients: prevalence, mechanisms, and treatment. Int J Endocrinol. 2015;2015:595649.CrossRefPubMedPubMedCentral
202.
go back to reference O’Keefe SJ, Cariem AK, Levy M. The exacerbation of pancreatic endocrine dysfunction by potent pancreatic exocrine supplements in patients with chronic pancreatitis. J Clin Gastroenterol. 2001;32:319–23.CrossRefPubMed O’Keefe SJ, Cariem AK, Levy M. The exacerbation of pancreatic endocrine dysfunction by potent pancreatic exocrine supplements in patients with chronic pancreatitis. J Clin Gastroenterol. 2001;32:319–23.CrossRefPubMed
Metadata
Title
Structure and function of the exocrine pancreas in patients with type 1 diabetes
Authors
Laure Alexandre-Heymann
Roberto Mallone
Christian Boitard
Raphaël Scharfmann
Etienne Larger
Publication date
01-06-2019
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 2/2019
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-019-09501-3

Other articles of this Issue 2/2019

Reviews in Endocrine and Metabolic Disorders 2/2019 Go to the issue