Skip to main content
Top
Published in: Current Treatment Options in Gastroenterology 4/2017

01-12-2017 | Motility (H Parkman and R Schey, Section Editors)

Diabetes and the Small Intestine

Authors: Jonathan Gotfried, MD, Stephen Priest, PhD, Ron Schey, MD, FACG

Published in: Current Treatment Options in Gastroenterology | Issue 4/2017

Login to get access

Opinion statement

Diabetes mellitus (DM) and its associated complications are becoming increasingly prevalent. Gastrointestinal symptoms associated with diabetes is known as diabetic enteropathy (DE) and may manifest as either diarrhea, fecal incontinence, constipation, dyspepsia, nausea, and vomiting or a combination of symptoms. The long-held belief that vagal autonomic neuropathy is the primary cause of DE has recently been challenged by newer theories of disease development. Specifically, hyperglycemia and the resulting oxidative stress on neural networks, including the nitrergic neurons and interstitial cells of Cajal (ICC), are now believed to play a central role in the development of DE. DE occurs in the majority of patients with diabetes; however, tools for early diagnosis and targeted therapy to counter the detrimental and potentially irreversible effects on the small bowel are lacking. Delay in diagnosis is further compounded by the fact that DE symptoms overlap with those of gastroparesis or can be confused with side effects from diabetes medications. Still, early recognition of the presence of DE is essential to mitigating symptoms and preventing further progression of complications including dysmotility and malabsorption. Current diagnostic modalities include manometry, wireless motility capsule (SmartPill™), and scintigraphy; however, these are not regularly utilized in clinical practice due to limited availability. Several medications are available for symptom relief in DE patients including rifaximin for small intestinal bacterial overgrowth (SIBO) and somatostatin analogues for diarrhea. While rodent models on stem cell therapy and alteration of the microbiome are promising, there is still a great need for further research on the pathologic underpinnings and development of novel treatment modalities for DE.
Literature
4.
go back to reference Bytzer P, Talley NJ, Leemon M, Young LJ, Jones MP, Horowitz M. Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch Intern Med. 2001;161(16):1989–96.PubMedCrossRef Bytzer P, Talley NJ, Leemon M, Young LJ, Jones MP, Horowitz M. Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch Intern Med. 2001;161(16):1989–96.PubMedCrossRef
7.
go back to reference Bhor V, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol. 2004;36(1):89–97.PubMedCrossRef Bhor V, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol. 2004;36(1):89–97.PubMedCrossRef
8.
go back to reference Giron MD, Salto R, Gonzalez Y, et al. Modulation of hepatic and intestinal glutathione S-transferases and other antioxidant enzymes by dietary lipids in streptozotocin diabetic rats. Chemosphere. 1999;38(13):3003–13.PubMedCrossRef Giron MD, Salto R, Gonzalez Y, et al. Modulation of hepatic and intestinal glutathione S-transferases and other antioxidant enzymes by dietary lipids in streptozotocin diabetic rats. Chemosphere. 1999;38(13):3003–13.PubMedCrossRef
10.
go back to reference Qing Q, Zhang S, Chen Y, Li R, Mao H, Chen Q. High glucose-induced intestinal epithelial barrier damage is aggravated by syndecan-1 destruction and heparanase overexpression. J Cell Mol Med. 2015;19(6):1366–74.PubMedPubMedCentralCrossRef Qing Q, Zhang S, Chen Y, Li R, Mao H, Chen Q. High glucose-induced intestinal epithelial barrier damage is aggravated by syndecan-1 destruction and heparanase overexpression. J Cell Mol Med. 2015;19(6):1366–74.PubMedPubMedCentralCrossRef
11.
go back to reference Itoh H, Naganuma S, Takeda N, et al. Regeneration of injured intestinal mucosa is impaired in hepatocyte growth factor activator-deficient mice. Gastroenterology. 2004;127(5):1423–35.PubMedCrossRef Itoh H, Naganuma S, Takeda N, et al. Regeneration of injured intestinal mucosa is impaired in hepatocyte growth factor activator-deficient mice. Gastroenterology. 2004;127(5):1423–35.PubMedCrossRef
13.
go back to reference Camilleri M, MALAGELADA J. Abnormal intestinal motility in diabetics with the gastroparesis syndrome. Eur J Clin Investig. 1984;14(6):420–7.CrossRef Camilleri M, MALAGELADA J. Abnormal intestinal motility in diabetics with the gastroparesis syndrome. Eur J Clin Investig. 1984;14(6):420–7.CrossRef
14.
15.
go back to reference Beckett EA, Ro S, Bayguinov Y, Sanders KM, Ward SM. Kit signaling is essential for development and maintenance of interstitial cells of cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn. 2007;236(1):60–72.PubMedCrossRef Beckett EA, Ro S, Bayguinov Y, Sanders KM, Ward SM. Kit signaling is essential for development and maintenance of interstitial cells of cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn. 2007;236(1):60–72.PubMedCrossRef
16.
go back to reference Klein S, Seidler B, Kettenberger A, et al. Interstitial cells of cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun. 2013;4:1630.PubMedCrossRef Klein S, Seidler B, Kettenberger A, et al. Interstitial cells of cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun. 2013;4:1630.PubMedCrossRef
17.
go back to reference Streutker C, Huizinga J, Driman D, Riddell R. Interstitial cells of cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology. 2007;50(2):176–89.PubMedCrossRef Streutker C, Huizinga J, Driman D, Riddell R. Interstitial cells of cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology. 2007;50(2):176–89.PubMedCrossRef
18.
go back to reference Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116(2):369–75.PubMed Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116(2):369–75.PubMed
19.
go back to reference Chandrasekharan B, Srinivasan S. Diabetes and the enteric nervous system. Neurogastroenterol Motil. 2007;19(12):951–60.PubMedPubMedCentral Chandrasekharan B, Srinivasan S. Diabetes and the enteric nervous system. Neurogastroenterol Motil. 2007;19(12):951–60.PubMedPubMedCentral
20.
go back to reference Vincent AM, Perrone L, Sullivan KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology. 2007;148(2):548–58.PubMedCrossRef Vincent AM, Perrone L, Sullivan KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology. 2007;148(2):548–58.PubMedCrossRef
21.
go back to reference Korenaga K, Micci M, Taglialatela G, Pasricha P. Suppression of nNOS expression in rat enteric neurones by the receptor for advanced glycation end-products. Neurogastroenterol Motil. 2006;18(5):392–400.PubMedCrossRef Korenaga K, Micci M, Taglialatela G, Pasricha P. Suppression of nNOS expression in rat enteric neurones by the receptor for advanced glycation end-products. Neurogastroenterol Motil. 2006;18(5):392–400.PubMedCrossRef
23.
go back to reference He CL, Soffer EE, Ferris CD, Walsh RM, Szurszewski JH, Farrugia G. Loss of interstitial cells of cajal and inhibitory innervation in insulin-dependent diabetes. Gastroenterology. 2001;121(2):427–34.PubMedCrossRef He CL, Soffer EE, Ferris CD, Walsh RM, Szurszewski JH, Farrugia G. Loss of interstitial cells of cajal and inhibitory innervation in insulin-dependent diabetes. Gastroenterology. 2001;121(2):427–34.PubMedCrossRef
24.
go back to reference Furlan MM, de Miranda Neto MH, Sant'ana Dde M, Molinari SL. Number and size of myenteric neurons of the duodenum of adult rats with acute diabetes. Arq Neuropsiquiatr. 1999;57(3B):740–5.PubMedCrossRef Furlan MM, de Miranda Neto MH, Sant'ana Dde M, Molinari SL. Number and size of myenteric neurons of the duodenum of adult rats with acute diabetes. Arq Neuropsiquiatr. 1999;57(3B):740–5.PubMedCrossRef
25.
go back to reference Zanoni JN, Buttow NC, Bazotte RB, Miranda Neto MH. Evaluation of the population of NADPH-diaphorase-stained and myosin-V myenteric neurons in the ileum of chronically streptozotocin-diabetic rats treated with ascorbic acid. Auton Neurosci. 2003;104(1):32–8.PubMedCrossRef Zanoni JN, Buttow NC, Bazotte RB, Miranda Neto MH. Evaluation of the population of NADPH-diaphorase-stained and myosin-V myenteric neurons in the ileum of chronically streptozotocin-diabetic rats treated with ascorbic acid. Auton Neurosci. 2003;104(1):32–8.PubMedCrossRef
26.
go back to reference Dujic T, Causevic A, Bego T, et al. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with type 2 diabetes. Diabetic Med. 2016;33(4):511–514. Dujic T, Causevic A, Bego T, et al. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with type 2 diabetes. Diabetic Med. 2016;33(4):511–514.
27.
go back to reference Scarpello J, Hodgson E, Howlett H. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabetic Med. 1998;15(8):651–6.PubMedCrossRef Scarpello J, Hodgson E, Howlett H. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabetic Med. 1998;15(8):651–6.PubMedCrossRef
28.
go back to reference Kurosaki E, Ogasawara H. Ipragliflozin and other sodium–glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther. 2013;139(1):51–9.PubMedCrossRef Kurosaki E, Ogasawara H. Ipragliflozin and other sodium–glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther. 2013;139(1):51–9.PubMedCrossRef
29.
go back to reference Napolitano A, Miller S, Nicholls AW, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One. 2014;9(7):e100778.PubMedPubMedCentralCrossRef Napolitano A, Miller S, Nicholls AW, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One. 2014;9(7):e100778.PubMedPubMedCentralCrossRef
32.
go back to reference Williams JJ, Kaplan GG, Makhija S, et al. Microscopic colitis–defining incidence rates and risk factors: a population-based study. Clin Gastroenterol Hepatol. 2008;6(1):35–40.PubMedCrossRef Williams JJ, Kaplan GG, Makhija S, et al. Microscopic colitis–defining incidence rates and risk factors: a population-based study. Clin Gastroenterol Hepatol. 2008;6(1):35–40.PubMedCrossRef
38.
go back to reference Camilleri M, Bharucha AE, Di Lorenzo C, et al. American neurogastroenterology and motility society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. Neurogastroenterol Motil. 2008;20(12):1269–82.PubMedCrossRef Camilleri M, Bharucha AE, Di Lorenzo C, et al. American neurogastroenterology and motility society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. Neurogastroenterol Motil. 2008;20(12):1269–82.PubMedCrossRef
39.
go back to reference Garaventa AA, De Giorgio R, Cogliandro R, et al. Diagnosis of enteric dysmotility: are manometric disturbances predicable of hystopathological findings? Neurogastroenterol Motil. 2012;24:100.CrossRef Garaventa AA, De Giorgio R, Cogliandro R, et al. Diagnosis of enteric dysmotility: are manometric disturbances predicable of hystopathological findings? Neurogastroenterol Motil. 2012;24:100.CrossRef
40.
go back to reference Olausson EA, Brock C, Drewes A, et al. Measurement of gastric emptying by radiopaque markers in patients with diabetes: correlation with scintigraphy and upper gastrointestinal symptoms. Neurogastroenterol Motil. 2013;25(3):e224–32.PubMedCrossRef Olausson EA, Brock C, Drewes A, et al. Measurement of gastric emptying by radiopaque markers in patients with diabetes: correlation with scintigraphy and upper gastrointestinal symptoms. Neurogastroenterol Motil. 2013;25(3):e224–32.PubMedCrossRef
41.
go back to reference Faria M, Pavin EJ, Parisi MCR, et al. Delayed small intestinal transit in patients with long-standing type 1 diabetes mellitus: investigation of the relationships with clinical features, gastric emptying, psychological distress, and nutritional parameters. Diabetes Technol Ther. 2013;15(1):32–8.PubMedCrossRef Faria M, Pavin EJ, Parisi MCR, et al. Delayed small intestinal transit in patients with long-standing type 1 diabetes mellitus: investigation of the relationships with clinical features, gastric emptying, psychological distress, and nutritional parameters. Diabetes Technol Ther. 2013;15(1):32–8.PubMedCrossRef
42.
go back to reference Durmus-Altun G, Vatansever U, Arzu Vardar S, Altaner S, Dirlik B. Scintigraphic evaluation of small intestinal transit in the streptozotocin induced diabetic rats. Hippokratia. 2011;15(3):262–4.PubMedPubMedCentral Durmus-Altun G, Vatansever U, Arzu Vardar S, Altaner S, Dirlik B. Scintigraphic evaluation of small intestinal transit in the streptozotocin induced diabetic rats. Hippokratia. 2011;15(3):262–4.PubMedPubMedCentral
43.
go back to reference Díaz Tartera H, Webb D-L, Al-Saffar AK, et al. Validation of SmartPill® wireless motility capsule for gastrointestinal transit time: intra-subject variability, software accuracy and comparison with video capsule endoscopy. Neurogastroenterol Motil. 2017;00:e13107. https://doi.org/10.1111/nmo.13107 Díaz Tartera H, Webb D-L, Al-Saffar AK, et al. Validation of SmartPill® wireless motility capsule for gastrointestinal transit time: intra-subject variability, software accuracy and comparison with video capsule endoscopy. Neurogastroenterol Motil. 2017;00:e13107. https://​doi.​org/​10.​1111/​nmo.​13107
44.
go back to reference Rouphael C, Arora Z, Thota PN, et al. Role of wireless motility capsule in the assessment and management of gastrointestinal dysmotility in patients with diabetes mellitus. Neurogastroenterol Motil. 2017;29:e13087 Rouphael C, Arora Z, Thota PN, et al. Role of wireless motility capsule in the assessment and management of gastrointestinal dysmotility in patients with diabetes mellitus. Neurogastroenterol Motil. 2017;29:e13087
45.
go back to reference Haase A, Gregersen T, Schlageter V, et al. Pilot study trialling a new ambulatory method for the clinical assessment of regional gastrointestinal transit using multiple electromagnetic capsules. Neurogastroenterol Motil. 2014;26(12):1783–91.PubMedCrossRef Haase A, Gregersen T, Schlageter V, et al. Pilot study trialling a new ambulatory method for the clinical assessment of regional gastrointestinal transit using multiple electromagnetic capsules. Neurogastroenterol Motil. 2014;26(12):1783–91.PubMedCrossRef
46.
go back to reference Barba E, Quiroga S, Accarino A, et al. Mechanisms of abdominal distension in severe intestinal dysmotility: Abdomino-thoracic response to gut retention. Neurogastroenterol Motil. 2013;25(6):e389–94.PubMedCrossRef Barba E, Quiroga S, Accarino A, et al. Mechanisms of abdominal distension in severe intestinal dysmotility: Abdomino-thoracic response to gut retention. Neurogastroenterol Motil. 2013;25(6):e389–94.PubMedCrossRef
47.
go back to reference Sandberg TH, Nilsson M, Poulsen JL, et al. A novel semi-automatic segmentation method for volumetric assessment of the colon based on magnetic resonance imaging. Abdom Imaging. 2015;40(7):2232–41.PubMedCrossRef Sandberg TH, Nilsson M, Poulsen JL, et al. A novel semi-automatic segmentation method for volumetric assessment of the colon based on magnetic resonance imaging. Abdom Imaging. 2015;40(7):2232–41.PubMedCrossRef
48.
go back to reference Gray A. Nutritional recommendations for individuals with diabetes. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc; 2000. NBK279012 [bookaccession]. Gray A. Nutritional recommendations for individuals with diabetes. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc; 2000. NBK279012 [bookaccession].
49.
go back to reference Lembo AJ, Lacy BE, Zuckerman MJ, et al. Eluxadoline for irritable bowel syndrome with diarrhea. N Engl J Med. 2016;374(3):242–53.PubMedCrossRef Lembo AJ, Lacy BE, Zuckerman MJ, et al. Eluxadoline for irritable bowel syndrome with diarrhea. N Engl J Med. 2016;374(3):242–53.PubMedCrossRef
50.
go back to reference Deloose E, Janssen P, Depoortere I, Tack J. The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol. 2012;9(5):271–85.PubMedCrossRef Deloose E, Janssen P, Depoortere I, Tack J. The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol. 2012;9(5):271–85.PubMedCrossRef
51.
go back to reference Selby W. Complete small-bowel transit in patients undergoing capsule endoscopy: determining factors and improvement with metoclopramide. Gastrointest Endosc. 2005;61(1):80–5.PubMedCrossRef Selby W. Complete small-bowel transit in patients undergoing capsule endoscopy: determining factors and improvement with metoclopramide. Gastrointest Endosc. 2005;61(1):80–5.PubMedCrossRef
52.
go back to reference Aparicio JR, Martínez J, Casellas JA. Right lateral position does not affect gastric transit times of video capsule endoscopy: a prospective study. Gastrointest Endosc. 2009;69(1):34–7.PubMedCrossRef Aparicio JR, Martínez J, Casellas JA. Right lateral position does not affect gastric transit times of video capsule endoscopy: a prospective study. Gastrointest Endosc. 2009;69(1):34–7.PubMedCrossRef
53.
go back to reference Van Nueten JM, Ennis C, Helsen L, Laduron PM, Janssen PA. Inhibition of dopamine receptors in the stomach: an explanation of the gastrokinetic properties of domperidone. Life Sci. 1978;23(5):453–7.PubMedCrossRef Van Nueten JM, Ennis C, Helsen L, Laduron PM, Janssen PA. Inhibition of dopamine receptors in the stomach: an explanation of the gastrokinetic properties of domperidone. Life Sci. 1978;23(5):453–7.PubMedCrossRef
54.
go back to reference Malagelada C, Malagelada JR. Small bowel motility. Curr Gastroenterol Rep. 2017;19(6):26. Malagelada C, Malagelada JR. Small bowel motility. Curr Gastroenterol Rep. 2017;19(6):26.
55.
go back to reference Hauser RA, Factor SA, Marder SR, et al. KINECT 3: a phase 3 randomized, double-blind, placebo-controlled trial of valbenazine for tardive dyskinesia. Am J Psychiatry. 2017;174(5):476–84.PubMedCrossRef Hauser RA, Factor SA, Marder SR, et al. KINECT 3: a phase 3 randomized, double-blind, placebo-controlled trial of valbenazine for tardive dyskinesia. Am J Psychiatry. 2017;174(5):476–84.PubMedCrossRef
57.
go back to reference Medhus A, Bondi J, Gaustad P, Husebye E. Low-dose intravenous erythromycin: effects on postprandial and fasting motility of the small bowel. Aliment Pharmacol Ther. 2000;14(2):233–40.PubMedCrossRef Medhus A, Bondi J, Gaustad P, Husebye E. Low-dose intravenous erythromycin: effects on postprandial and fasting motility of the small bowel. Aliment Pharmacol Ther. 2000;14(2):233–40.PubMedCrossRef
58.
go back to reference Richards RD, Davenport K, McCallum RW. The treatment of idiopathic and diabetic gastroparesis with acute intravenous and chronic oral erythromycin. Am J Gastroenterol. 1993;88(2):203–7.PubMed Richards RD, Davenport K, McCallum RW. The treatment of idiopathic and diabetic gastroparesis with acute intravenous and chronic oral erythromycin. Am J Gastroenterol. 1993;88(2):203–7.PubMed
59.
go back to reference Hobson R, Farmer A, Dewit O, et al. The effects of camicinal, a novel motilin agonist, on gastro-esophageal function in healthy humans—a randomized placebo controlled trial. Neurogastroenterol Motil. 2015;27(11):1629–37.PubMedCrossRef Hobson R, Farmer A, Dewit O, et al. The effects of camicinal, a novel motilin agonist, on gastro-esophageal function in healthy humans—a randomized placebo controlled trial. Neurogastroenterol Motil. 2015;27(11):1629–37.PubMedCrossRef
60.
go back to reference •• Hellström PM, Tack J, Johnson LV, et al. The pharmacodynamics, safety and pharmacokinetics of single doses of the motilin agonist, camicinal, in type 1 diabetes mellitus with slow gastric emptying. Br J Pharmacol. 2016;173(11):1768–77. Review of novel agent for gastric motilityPubMedPubMedCentralCrossRef •• Hellström PM, Tack J, Johnson LV, et al. The pharmacodynamics, safety and pharmacokinetics of single doses of the motilin agonist, camicinal, in type 1 diabetes mellitus with slow gastric emptying. Br J Pharmacol. 2016;173(11):1768–77. Review of novel agent for gastric motilityPubMedPubMedCentralCrossRef
61.
62.
go back to reference Martelli L, Colard A, Fontaine F, Deflandre J, Bastens B, Louis E. Evaluation of the efficacy of octreotide LAR in the treatment of Crohn’s disease associated refractory diarrhea. Scand J Gastroenterol. 2017;52(5):564–9.PubMedCrossRef Martelli L, Colard A, Fontaine F, Deflandre J, Bastens B, Louis E. Evaluation of the efficacy of octreotide LAR in the treatment of Crohn’s disease associated refractory diarrhea. Scand J Gastroenterol. 2017;52(5):564–9.PubMedCrossRef
63.
go back to reference Edmunds M, Chen J, Soykan I, Lin Z, McCallum R. Effect of octreotide on gastric and small bowel motility in patients with gastroparesis. Aliment Pharmacol Ther. 1998;12:167–74.PubMedCrossRef Edmunds M, Chen J, Soykan I, Lin Z, McCallum R. Effect of octreotide on gastric and small bowel motility in patients with gastroparesis. Aliment Pharmacol Ther. 1998;12:167–74.PubMedCrossRef
64.
go back to reference Parthasarathy G, Ravi K, Camilleri M, et al. Effect of neostigmine on gastroduodenal motility in patients with suspected gastrointestinal motility disorders. Neurogastroenterol Motil. 2015;27(12):1736–46.PubMedPubMedCentralCrossRef Parthasarathy G, Ravi K, Camilleri M, et al. Effect of neostigmine on gastroduodenal motility in patients with suspected gastrointestinal motility disorders. Neurogastroenterol Motil. 2015;27(12):1736–46.PubMedPubMedCentralCrossRef
66.
67.
go back to reference Murray CD, Martin NM, Patterson M, et al. Ghrelin enhances gastric emptying in diabetic gastroparesis: a double blind, placebo controlled, crossover study. Gut. 2005;54(12):1693–8.PubMedPubMedCentralCrossRef Murray CD, Martin NM, Patterson M, et al. Ghrelin enhances gastric emptying in diabetic gastroparesis: a double blind, placebo controlled, crossover study. Gut. 2005;54(12):1693–8.PubMedPubMedCentralCrossRef
68.
go back to reference Acosta A, Camilleri M, Kolar G, et al. Relamorelin relieves constipation and accelerates colonic transit in a phase 2, placebo-controlled, randomized trial. Clin Gastroenterol Hepatol. 2015;13(13):2312–2319. e1.PubMedCrossRef Acosta A, Camilleri M, Kolar G, et al. Relamorelin relieves constipation and accelerates colonic transit in a phase 2, placebo-controlled, randomized trial. Clin Gastroenterol Hepatol. 2015;13(13):2312–2319. e1.PubMedCrossRef
69.
go back to reference Venkova K, Fraser G, Hoveyda HR, Greenwood-Van MB. Prokinetic effects of a new ghrelin receptor agonist TZP-101 in a rat model of postoperative ileus. Dig Dis Sci. 2007;52(9):2241–8.PubMedCrossRef Venkova K, Fraser G, Hoveyda HR, Greenwood-Van MB. Prokinetic effects of a new ghrelin receptor agonist TZP-101 in a rat model of postoperative ileus. Dig Dis Sci. 2007;52(9):2241–8.PubMedCrossRef
71.
go back to reference Avau B, Carbone F, Tack J, Depoortere I. Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol Motil. 2013;25(9):720–32.PubMedCrossRef Avau B, Carbone F, Tack J, Depoortere I. Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol Motil. 2013;25(9):720–32.PubMedCrossRef
72.
go back to reference Shin A, Camilleri M, Busciglio I, et al. The ghrelin agonist RM-131 accelerates gastric emptying of solids and reduces symptoms in patients with type 1 diabetes mellitus. Clin Gastroenterol Hepatol. 2013;11(11):1453–1459. e4.PubMedPubMedCentralCrossRef Shin A, Camilleri M, Busciglio I, et al. The ghrelin agonist RM-131 accelerates gastric emptying of solids and reduces symptoms in patients with type 1 diabetes mellitus. Clin Gastroenterol Hepatol. 2013;11(11):1453–1459. e4.PubMedPubMedCentralCrossRef
74.
go back to reference Emmanuel A, Butt S. Small intestine and colon motility. Medicine. 2015;43(5):271–5.CrossRef Emmanuel A, Butt S. Small intestine and colon motility. Medicine. 2015;43(5):271–5.CrossRef
75.
go back to reference Bouras EP, Camilleri M, Burton DD, Thomforde G, McKinzie S, Zinsmeister AR. Prucalopride accelerates gastrointestinal and colonic transit in patients with constipation without a rectal evacuation disorder. Gastroenterology. 2001;120(2):354–60.PubMedCrossRef Bouras EP, Camilleri M, Burton DD, Thomforde G, McKinzie S, Zinsmeister AR. Prucalopride accelerates gastrointestinal and colonic transit in patients with constipation without a rectal evacuation disorder. Gastroenterology. 2001;120(2):354–60.PubMedCrossRef
76.
go back to reference Christie J, Shroff S, Shahnavaz N, et al. A randomized, double-blind, placebo-controlled trial to examine the effectiveness of lubiprostone on constipation symptoms and colon transit time in diabetic patients. Am J Gastroenterol. 2017;112(2):356–64.PubMedCrossRef Christie J, Shroff S, Shahnavaz N, et al. A randomized, double-blind, placebo-controlled trial to examine the effectiveness of lubiprostone on constipation symptoms and colon transit time in diabetic patients. Am J Gastroenterol. 2017;112(2):356–64.PubMedCrossRef
77.
go back to reference Sarosiek I, Bashashati M, Alvarez A, et al. Lubiprostone accelerates intestinal transit and alleviates small intestinal bacterial overgrowth in patients with chronic constipation. Am J Med Sci. 2016;352(3):231–8.PubMedCrossRef Sarosiek I, Bashashati M, Alvarez A, et al. Lubiprostone accelerates intestinal transit and alleviates small intestinal bacterial overgrowth in patients with chronic constipation. Am J Med Sci. 2016;352(3):231–8.PubMedCrossRef
80.
go back to reference RW MC, Lin Z, Forster J, Roeser K, Hou Q, Sarosiek I. Gastric electrical stimulation improves outcomes of patients with gastroparesis for up to 10 years. Clin Gastroenterol Hepatol. 2011;9(4):314–319. e1.CrossRef RW MC, Lin Z, Forster J, Roeser K, Hou Q, Sarosiek I. Gastric electrical stimulation improves outcomes of patients with gastroparesis for up to 10 years. Clin Gastroenterol Hepatol. 2011;9(4):314–319. e1.CrossRef
81.
go back to reference Fassov J, Lundby L, Worsøe J, Buntzen S, Laurberg S, Krogh K. A randomised, controlled study of small intestinal motility in patients treated with sacral nerve stimulation for irritable bowel syndrome. BMC Gastroenterol. 2014;14(1):111.PubMedPubMedCentralCrossRef Fassov J, Lundby L, Worsøe J, Buntzen S, Laurberg S, Krogh K. A randomised, controlled study of small intestinal motility in patients treated with sacral nerve stimulation for irritable bowel syndrome. BMC Gastroenterol. 2014;14(1):111.PubMedPubMedCentralCrossRef
82.
go back to reference Frøkjaer JB, Bergmann S, Brock C, et al. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol Motil. 2016. 28:592–598. Frøkjaer JB, Bergmann S, Brock C, et al. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol Motil. 2016. 28:592–598.
83.
go back to reference •• Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology. 2017;152(7):1671–8. Important review article highlighting the function of the gut microbiome and its contribution to metabolic dysfunction.PubMedCrossRef •• Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology. 2017;152(7):1671–8. Important review article highlighting the function of the gut microbiome and its contribution to metabolic dysfunction.PubMedCrossRef
85.
go back to reference Plovier H, Everard A, Druart C, et al. A purified membrane protein from akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–113.PubMedCrossRef Plovier H, Everard A, Druart C, et al. A purified membrane protein from akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–113.PubMedCrossRef
86.
go back to reference Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRef Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRef
89.
go back to reference Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111(07):1147–61.PubMedCrossRef Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111(07):1147–61.PubMedCrossRef
90.
go back to reference Lambert JE, Parnell JA, Tunnicliffe JM, Han J, Sturzenegger T, Reimer RA. Consuming yellow pea fiber reduces voluntary energy intake and body fat in overweight/obese adults in a 12-week randomized controlled trial. Clin Nutr. 2017;36(1):126–33.PubMedCrossRef Lambert JE, Parnell JA, Tunnicliffe JM, Han J, Sturzenegger T, Reimer RA. Consuming yellow pea fiber reduces voluntary energy intake and body fat in overweight/obese adults in a 12-week randomized controlled trial. Clin Nutr. 2017;36(1):126–33.PubMedCrossRef
91.
go back to reference de Groot P, Frissen M, de Clercq N, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes 2017:4;8(3):253–267. de Groot P, Frissen M, de Clercq N, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes 2017:4;8(3):253–267.
92.
go back to reference Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.PubMedPubMedCentralCrossRef Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.PubMedPubMedCentralCrossRef
94.
go back to reference Rana S, Malik A, Bhadada SK, Sachdeva N, Morya RK, Sharma G. Malabsorption, orocecal transit time and small intestinal bacterial overgrowth in type 2 diabetic patients: a connection. Indian J Clin Biochem 2017;32(1):84–89. Rana S, Malik A, Bhadada SK, Sachdeva N, Morya RK, Sharma G. Malabsorption, orocecal transit time and small intestinal bacterial overgrowth in type 2 diabetic patients: a connection. Indian J Clin Biochem 2017;32(1):84–89.
95.
go back to reference Adamska A, Nowak M, Pilacinski S, et al. Small intestinal bacterial overgrowth in adult patients with type 1 diabetes: its prevalence and relationship with metabolic control and the presence of chronic complications of the disease. Pol Arch Med Wewn. 2016;126(9):628–34. 10.20452/pamw.3501.PubMed Adamska A, Nowak M, Pilacinski S, et al. Small intestinal bacterial overgrowth in adult patients with type 1 diabetes: its prevalence and relationship with metabolic control and the presence of chronic complications of the disease. Pol Arch Med Wewn. 2016;126(9):628–34. 10.​20452/​pamw.​3501.PubMed
97.
go back to reference Pimentel M. Review of rifaximin as treatment for SIBO and IBS. Expert Opin Investig Drugs. 2009;18(3):349–58.PubMedCrossRef Pimentel M. Review of rifaximin as treatment for SIBO and IBS. Expert Opin Investig Drugs. 2009;18(3):349–58.PubMedCrossRef
98.
go back to reference Saad RJ, Chey WD. Breath testing for small intestinal bacterial overgrowth: maximizing test accuracy. Clin Gastroenterol Hepatol. 2014;12(12):1964–72.PubMedCrossRef Saad RJ, Chey WD. Breath testing for small intestinal bacterial overgrowth: maximizing test accuracy. Clin Gastroenterol Hepatol. 2014;12(12):1964–72.PubMedCrossRef
100.
go back to reference Shah SC, Day LW, Somsouk M, Sewell JL. Meta-analysis: antibiotic therapy for small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2013;38(8):925–34.PubMedCrossRef Shah SC, Day LW, Somsouk M, Sewell JL. Meta-analysis: antibiotic therapy for small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2013;38(8):925–34.PubMedCrossRef
102.
go back to reference Thazhath SS, Marathe CS, Wu T, et al. The glucagon-like peptide 1 receptor agonist exenatide inhibits small intestinal motility, flow, transit, and absorption of glucose in healthy subjects and patients with type 2 diabetes: a randomized controlled trial. Diabetes. 2016;65(1):269–75. https://doi.org/10.2337/db15-0893.PubMed Thazhath SS, Marathe CS, Wu T, et al. The glucagon-like peptide 1 receptor agonist exenatide inhibits small intestinal motility, flow, transit, and absorption of glucose in healthy subjects and patients with type 2 diabetes: a randomized controlled trial. Diabetes. 2016;65(1):269–75. https://​doi.​org/​10.​2337/​db15-0893.PubMed
103.
go back to reference Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin. 2011;27(3):547–58.PubMedCrossRef Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin. 2011;27(3):547–58.PubMedCrossRef
104.
go back to reference Imeryuz N, Bozkurt A, Alican I, Ulusoy N, Yegen B. The role of GLP-1 in glucose-induced inhibition of gastric emptying in conscious rats. . 1997;112(4):A753-A753. Imeryuz N, Bozkurt A, Alican I, Ulusoy N, Yegen B. The role of GLP-1 in glucose-induced inhibition of gastric emptying in conscious rats. . 1997;112(4):A753-A753.
106.
go back to reference Prather CM, Camilleri M, Zinsmeister AR, McKinzie S, Thomforde G. Tegaserod accelerates orocecal transit in patients with constipation-predominant irritable bowel syndrome. Gastroenterology. 2000;118(3):463–8.PubMedCrossRef Prather CM, Camilleri M, Zinsmeister AR, McKinzie S, Thomforde G. Tegaserod accelerates orocecal transit in patients with constipation-predominant irritable bowel syndrome. Gastroenterology. 2000;118(3):463–8.PubMedCrossRef
107.
go back to reference Mangel AW, Northcutt AR. Review article: the safety and efficacy of alosetron, a 5-HT3 receptor antagonist, in female irritable bowel syndrome patients. Aliment Pharmacol Ther. 1999;13(Suppl 2):77–82.PubMedCrossRef Mangel AW, Northcutt AR. Review article: the safety and efficacy of alosetron, a 5-HT3 receptor antagonist, in female irritable bowel syndrome patients. Aliment Pharmacol Ther. 1999;13(Suppl 2):77–82.PubMedCrossRef
111.
go back to reference Rivera L, Poole D, Thacker M, Furness J. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil. 2011;23(11):980–8.PubMedCrossRef Rivera L, Poole D, Thacker M, Furness J. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil. 2011;23(11):980–8.PubMedCrossRef
113.
go back to reference Bravenboer B, Kappelle AC, Hamers FP, van Buren T, Erkelens DW, Gispen WH. Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. Diabetologia. 1992;35(9):813–7.PubMedCrossRef Bravenboer B, Kappelle AC, Hamers FP, van Buren T, Erkelens DW, Gispen WH. Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. Diabetologia. 1992;35(9):813–7.PubMedCrossRef
116.
go back to reference Zanoni JN, Tronchini EA, Moure SA, da Silva Souza ID. Effects of L-glutamine supplementation on the myenteric neurons from the duodenum and cecum of diabetic rats. Arq Gastroenterol. 2011;48(1):66–71.PubMedCrossRef Zanoni JN, Tronchini EA, Moure SA, da Silva Souza ID. Effects of L-glutamine supplementation on the myenteric neurons from the duodenum and cecum of diabetic rats. Arq Gastroenterol. 2011;48(1):66–71.PubMedCrossRef
117.
go back to reference Shotton HR, Broadbent S, Lincoln J. Prevention and partial reversal of diabetes-induced changes in enteric nerves of the rat ileum by combined treatment with α-lipoic acid and evening primrose oil. Auton Neurosci. 2004;111(1):57–65.PubMedCrossRef Shotton HR, Broadbent S, Lincoln J. Prevention and partial reversal of diabetes-induced changes in enteric nerves of the rat ileum by combined treatment with α-lipoic acid and evening primrose oil. Auton Neurosci. 2004;111(1):57–65.PubMedCrossRef
118.
go back to reference Micci M, Kahrig KM, Simmons RS, Sarna SK, Espejo-Navarro MR, Pasricha PJ. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase–deficient mice. Gastroenterology. 2005;129(6):1817–24.PubMedCrossRef Micci M, Kahrig KM, Simmons RS, Sarna SK, Espejo-Navarro MR, Pasricha PJ. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase–deficient mice. Gastroenterology. 2005;129(6):1817–24.PubMedCrossRef
122.
go back to reference Ciampa BP, Reyes Ramos E, Borum M, Doman DB. The emerging therapeutic role of medical foods for gastrointestinal disorders. Gastroenterol Hepatol (N Y). 2017;13(2):104–15. Ciampa BP, Reyes Ramos E, Borum M, Doman DB. The emerging therapeutic role of medical foods for gastrointestinal disorders. Gastroenterol Hepatol (N Y). 2017;13(2):104–15.
123.
go back to reference Medagama AB, Bandara R. The use of complementary and alternative medicines (CAMs) in the treatment of diabetes mellitus: is continued use safe and effective? Nutr J. 2014;13(1):102.PubMedPubMedCentralCrossRef Medagama AB, Bandara R. The use of complementary and alternative medicines (CAMs) in the treatment of diabetes mellitus: is continued use safe and effective? Nutr J. 2014;13(1):102.PubMedPubMedCentralCrossRef
127.
go back to reference Cheifetz AS, Gianotti R, Luber R, Gibson PR. Complementary and alternative medicines used by patients with inflammatory bowel diseases. Gastroenterology. 2017;152(2):415–429.e15.PubMedCrossRef Cheifetz AS, Gianotti R, Luber R, Gibson PR. Complementary and alternative medicines used by patients with inflammatory bowel diseases. Gastroenterology. 2017;152(2):415–429.e15.PubMedCrossRef
129.
go back to reference Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.PubMedPubMedCentralCrossRef Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.PubMedPubMedCentralCrossRef
130.
go back to reference Cavin J, Couvelard A, Lebtahi R, et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose after roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology. 2016;150(2):454–464. e9.PubMedCrossRef Cavin J, Couvelard A, Lebtahi R, et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose after roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology. 2016;150(2):454–464. e9.PubMedCrossRef
131.
go back to reference Thomas H. Surgery: gut metabolism differentially altered by bariatric surgeries. Nat Rev Gastroenterol Hepatol. 2015;12(12):670–0. Thomas H. Surgery: gut metabolism differentially altered by bariatric surgeries. Nat Rev Gastroenterol Hepatol. 2015;12(12):670–0.
134.
go back to reference Betzel B, Koehestanie P, Homan J, et al. Changes in glycemic control and body weight after explantation of the duodenal-jejunal bypass liner. Gastrointest Endosc. 2017;85(2):409–15.PubMedCrossRef Betzel B, Koehestanie P, Homan J, et al. Changes in glycemic control and body weight after explantation of the duodenal-jejunal bypass liner. Gastrointest Endosc. 2017;85(2):409–15.PubMedCrossRef
135.
go back to reference Rajagopalan H, Cherrington AD, Thompson CC, et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes: 6-month interim analysis from the first-in-human proof-of-concept study. Diabetes Care. 2016;39(12):2254–61.PubMedCrossRef Rajagopalan H, Cherrington AD, Thompson CC, et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes: 6-month interim analysis from the first-in-human proof-of-concept study. Diabetes Care. 2016;39(12):2254–61.PubMedCrossRef
Metadata
Title
Diabetes and the Small Intestine
Authors
Jonathan Gotfried, MD
Stephen Priest, PhD
Ron Schey, MD, FACG
Publication date
01-12-2017
Publisher
Springer US
Published in
Current Treatment Options in Gastroenterology / Issue 4/2017
Print ISSN: 1092-8472
Electronic ISSN: 1534-309X
DOI
https://doi.org/10.1007/s11938-017-0155-x

Other articles of this Issue 4/2017

Current Treatment Options in Gastroenterology 4/2017 Go to the issue

Stomach (DA Johnson, Section Editor)

Endoscopic Treatments for Obesity

Pancreas (V Chandrasekhara, Section Editor)

Diagnosis and Management of Pancreatic Cystic Neoplasms

Motility (H Parkman and R Schey, Section Editors)

Diabetes and the Pancreatobiliary Diseases