Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2019

01-06-2019 | Metastasis | NON-THEMATIC REVIEW

Exosomes, metastases, and the miracle of cancer stem cell markers

Authors: Zhe Wang, Margot Zöller

Published in: Cancer and Metastasis Reviews | Issue 1-2/2019

Login to get access

Abstract

Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.
Appendix
Available only for authorised users
Footnotes
1
Full names of proteins and genes are listed in Table S1.
 
Literature
1.
go back to reference Steck, P. A., North, S. M., & Nicolson, G. L. (1987). Purification and partial characterization of a tumour-metastasis-associated high-Mr glycoprotein from rat 13762NF mammary adenocarcinoma cells. The Biochemical Journal, 242(3), 779–787.CrossRefPubMedPubMedCentral Steck, P. A., North, S. M., & Nicolson, G. L. (1987). Purification and partial characterization of a tumour-metastasis-associated high-Mr glycoprotein from rat 13762NF mammary adenocarcinoma cells. The Biochemical Journal, 242(3), 779–787.CrossRefPubMedPubMedCentral
2.
go back to reference Raz, A., Pazerini, G., & Carmi, P. (1989). Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Research, 49(13), 3489–3493.PubMed Raz, A., Pazerini, G., & Carmi, P. (1989). Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Research, 49(13), 3489–3493.PubMed
3.
go back to reference Rao, C. N., Castronovo, V., Schmitt, M. C., Wewer, U. M., Claysmith, A. P., Liotta, L. A., et al. (1989). Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry, 28(18), 7476–7486.CrossRefPubMed Rao, C. N., Castronovo, V., Schmitt, M. C., Wewer, U. M., Claysmith, A. P., Liotta, L. A., et al. (1989). Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry, 28(18), 7476–7486.CrossRefPubMed
5.
go back to reference Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.CrossRefPubMed Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.CrossRefPubMed
6.
go back to reference Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed
10.
go back to reference Zhang, Y. Y., Chen, B., & Ding, Y. Q. (2012). Metastasis-associated factors facilitating the progression of colorectal cancer. Asian Pacific Journal of Cancer Prevention, 13(6), 2437–2244.CrossRefPubMed Zhang, Y. Y., Chen, B., & Ding, Y. Q. (2012). Metastasis-associated factors facilitating the progression of colorectal cancer. Asian Pacific Journal of Cancer Prevention, 13(6), 2437–2244.CrossRefPubMed
11.
go back to reference Gupta, P. B., Mani, S., Yang, J., Hartwell, K., & Weinberg, R. A. (2005). The evolving portrait of cancer metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 70, 291–297.CrossRefPubMed Gupta, P. B., Mani, S., Yang, J., Hartwell, K., & Weinberg, R. A. (2005). The evolving portrait of cancer metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 70, 291–297.CrossRefPubMed
12.
go back to reference Dexter, T. M. (1979). Haemopoiesis in long-term bone marrow cultures. A review. Acta Haematologica, 62(5–6), 299–305.CrossRefPubMed Dexter, T. M. (1979). Haemopoiesis in long-term bone marrow cultures. A review. Acta Haematologica, 62(5–6), 299–305.CrossRefPubMed
13.
go back to reference Leventhal, B. G., & Konior, G. S. (1976). Leukemia: a critical review. Seminars in Oncology, 3(3), 319–325.PubMed Leventhal, B. G., & Konior, G. S. (1976). Leukemia: a critical review. Seminars in Oncology, 3(3), 319–325.PubMed
14.
go back to reference Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18(5), 460–466.CrossRefPubMed Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18(5), 460–466.CrossRefPubMed
20.
go back to reference Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–9420.PubMed Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–9420.PubMed
30.
31.
go back to reference Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics. CA: a Cancer Journal for Clinicians, 58(2), 71–96. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics. CA: a Cancer Journal for Clinicians, 58(2), 71–96.
33.
go back to reference Ahrendt, S. A., & Pitt, H. A. (2002). Surgical management of pancreatic cancer. Oncology (Williston Park), 16(6), 725–734 discussion 734, 736–728, 740, 743. Ahrendt, S. A., & Pitt, H. A. (2002). Surgical management of pancreatic cancer. Oncology (Williston Park), 16(6), 725–734 discussion 734, 736–728, 740, 743.
35.
go back to reference Del Chiaro, M., Segersvärd, R., Lohr, M., & Verbeke, C. (2014). Early detection and prevention of pancreatic cancer: is it really possible today? World Journal of Gastroenterology, 20, 12118–12131.CrossRefPubMedPubMedCentral Del Chiaro, M., Segersvärd, R., Lohr, M., & Verbeke, C. (2014). Early detection and prevention of pancreatic cancer: is it really possible today? World Journal of Gastroenterology, 20, 12118–12131.CrossRefPubMedPubMedCentral
36.
go back to reference Ajani, J. A., Song, S., Hochster, H. S., & Steinberg, I. B. (2015). Cancer stem cells: the promise and the potential. Seminars in Oncology, 42(Suppl 1), S3–S17. Ajani, J. A., Song, S., Hochster, H. S., & Steinberg, I. B. (2015). Cancer stem cells: the promise and the potential. Seminars in Oncology, 42(Suppl 1), S3–S17.
37.
go back to reference Weinstein, I. B. (1987). Growth factors, oncogenes, and multistage carcinogenesis. Journal of Cellular Biochemistry, 33(3), 213–224.CrossRefPubMed Weinstein, I. B. (1987). Growth factors, oncogenes, and multistage carcinogenesis. Journal of Cellular Biochemistry, 33(3), 213–224.CrossRefPubMed
43.
go back to reference Forsberg, E. C., Bhattacharya, D., & Weissman, I. L. (2006). Hematopoietic stem cells: expression profiling and beyond. Stem Cell Reviews, 2(1), 23–30.PubMed Forsberg, E. C., Bhattacharya, D., & Weissman, I. L. (2006). Hematopoietic stem cells: expression profiling and beyond. Stem Cell Reviews, 2(1), 23–30.PubMed
44.
go back to reference Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.CrossRefPubMed Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.CrossRefPubMed
45.
go back to reference Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMed Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMed
46.
go back to reference Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.CrossRefPubMed Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.CrossRefPubMed
47.
go back to reference Jonsson, J., Carlsson, L., Edlund, T., & Edlund, H. (1994). Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 371(6498), 606–609.CrossRefPubMed Jonsson, J., Carlsson, L., Edlund, T., & Edlund, H. (1994). Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 371(6498), 606–609.CrossRefPubMed
48.
go back to reference Gu, G., Dubauskaite, J., & Melton, D. A. (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129(10), 2447–2457.PubMed Gu, G., Dubauskaite, J., & Melton, D. A. (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129(10), 2447–2457.PubMed
61.
go back to reference Passegué, E., & Weisman, I. L. (2005). Leukemic stem cells: where do they come from? Stem Cell Reviews, 1(3), 181–188.CrossRefPubMed Passegué, E., & Weisman, I. L. (2005). Leukemic stem cells: where do they come from? Stem Cell Reviews, 1(3), 181–188.CrossRefPubMed
66.
go back to reference Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.CrossRefPubMed Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.CrossRefPubMed
67.
go back to reference Mantamadiotis, T., & Taraviras, S. (2011). Self-renewal mechanisms in neural cancer stem cells. Front Biosci (Landmark Ed), 16, 598–607.CrossRef Mantamadiotis, T., & Taraviras, S. (2011). Self-renewal mechanisms in neural cancer stem cells. Front Biosci (Landmark Ed), 16, 598–607.CrossRef
78.
go back to reference Smith, G. H., & Boulanger, C. A. (2003). Mammary epithelial stem cells: transplantation and self-renewal analysis. Cell Proliferation, 36(Suppl 1), 3–15.CrossRefPubMedPubMedCentral Smith, G. H., & Boulanger, C. A. (2003). Mammary epithelial stem cells: transplantation and self-renewal analysis. Cell Proliferation, 36(Suppl 1), 3–15.CrossRefPubMedPubMedCentral
80.
go back to reference Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.CrossRefPubMed Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.CrossRefPubMed
81.
go back to reference Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.CrossRefPubMedPubMedCentral Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.CrossRefPubMedPubMedCentral
90.
go back to reference Bao, B., Ahmad, A., Azmi, A.S., Ali, S., & Sarkar, F.H. (2013). Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol, Chapter 14:Unit 14.25. doi: 10.1002/0471141755.ph1425s61. Bao, B., Ahmad, A., Azmi, A.S., Ali, S., & Sarkar, F.H. (2013). Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol, Chapter 14:Unit 14.25. doi: 10.1002/0471141755.ph1425s61.
98.
go back to reference Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.CrossRefPubMedPubMedCentral Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.CrossRefPubMedPubMedCentral
99.
go back to reference Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.CrossRefPubMed Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.CrossRefPubMed
103.
go back to reference Röper, K., Corbeil, D., & Huttner, W. B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biology, 2(9), 582–592.CrossRefPubMed Röper, K., Corbeil, D., & Huttner, W. B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biology, 2(9), 582–592.CrossRefPubMed
104.
go back to reference Giebel, B., Corbeil, D., Beckmann, J., Höhn, J., Freund, D., Giesen, K., et al. (2004). Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood, 104(8), 2332–2338.CrossRefPubMed Giebel, B., Corbeil, D., Beckmann, J., Höhn, J., Freund, D., Giesen, K., et al. (2004). Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood, 104(8), 2332–2338.CrossRefPubMed
105.
go back to reference Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology, 1(1), 31–39.CrossRefPubMed Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology, 1(1), 31–39.CrossRefPubMed
112.
go back to reference Idzerda, R. L., Carter, W. G., Nottenburg, C., Wayner, E. A., Gallatin, W. M., & John, T. (1989). Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proceedings of the National Academy of Sciences of the United States of America, 86, 4659–4663.CrossRefPubMedPubMedCentral Idzerda, R. L., Carter, W. G., Nottenburg, C., Wayner, E. A., Gallatin, W. M., & John, T. (1989). Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proceedings of the National Academy of Sciences of the United States of America, 86, 4659–4663.CrossRefPubMedPubMedCentral
113.
go back to reference Goldstein, L. A., & Butcher, E. C. (1990). Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics, 32, 389–397.CrossRefPubMed Goldstein, L. A., & Butcher, E. C. (1990). Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics, 32, 389–397.CrossRefPubMed
114.
go back to reference Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., & Bell, J. I. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proceedings of the National Academy of Sciences of the United States of America, 89, 12160–12164.CrossRefPubMedPubMedCentral Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., & Bell, J. I. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proceedings of the National Academy of Sciences of the United States of America, 89, 12160–12164.CrossRefPubMedPubMedCentral
115.
go back to reference Ishii, S., Ford, R., Thomas, P., Nachman, A., Steele, G., Jr., & Jessup, J. M. (1993). CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surgical Oncology, 2, 255–264.CrossRefPubMed Ishii, S., Ford, R., Thomas, P., Nachman, A., Steele, G., Jr., & Jessup, J. M. (1993). CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surgical Oncology, 2, 255–264.CrossRefPubMed
116.
go back to reference Bennett, K. L., Jackson, D. G., Simon, J. C., Tanczos, E., Peach, R., Modrell, B., et al. (1995). CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. The Journal of Cell Biology, 128, 687–698.CrossRefPubMed Bennett, K. L., Jackson, D. G., Simon, J. C., Tanczos, E., Peach, R., Modrell, B., et al. (1995). CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. The Journal of Cell Biology, 128, 687–698.CrossRefPubMed
117.
go back to reference Neame, S. J., & Isacke, C. M. (1993). The cytoplasmic tail of CD44 is required for basolateral localization in ephitelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. The Journal of Cell Biology, 121, 1299–1310.CrossRefPubMed Neame, S. J., & Isacke, C. M. (1993). The cytoplasmic tail of CD44 is required for basolateral localization in ephitelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. The Journal of Cell Biology, 121, 1299–1310.CrossRefPubMed
118.
go back to reference Liu, D., & Sy, M. S. (1997). Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. Journal of Immunology, 159, 2702–2711. Liu, D., & Sy, M. S. (1997). Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. Journal of Immunology, 159, 2702–2711.
119.
go back to reference Föger, N., Marhaba, R., & Zöller, M. (1999). Raft associated interaction of CD44 with the cytoskeleton. Journal of Cell Science, 114, 1169–1178. Föger, N., Marhaba, R., & Zöller, M. (1999). Raft associated interaction of CD44 with the cytoskeleton. Journal of Cell Science, 114, 1169–1178.
120.
go back to reference Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwärzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. The Journal of Cell Biology, 146, 843–854.CrossRefPubMedPubMedCentral Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwärzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. The Journal of Cell Biology, 146, 843–854.CrossRefPubMedPubMedCentral
121.
go back to reference Lokeshwar, V. B., Fregien, N., & Bourguignon, L. Y. (1994). Ankyrin-binding domain of CD44(Gp85) is required for the expression of hyaluronic acid-mediated adhesion function. The Journal of Cell Biology, 126, 1099–1109.CrossRefPubMed Lokeshwar, V. B., Fregien, N., & Bourguignon, L. Y. (1994). Ankyrin-binding domain of CD44(Gp85) is required for the expression of hyaluronic acid-mediated adhesion function. The Journal of Cell Biology, 126, 1099–1109.CrossRefPubMed
122.
go back to reference Ruiz, P., Schwärzler, C., & Günthert, U. (1995). CD44 isoforms during differentiation and development. Bioessays, 17, 17–24.CrossRefPubMed Ruiz, P., Schwärzler, C., & Günthert, U. (1995). CD44 isoforms during differentiation and development. Bioessays, 17, 17–24.CrossRefPubMed
123.
go back to reference Jalkanen, S., & Jalkanen, M. (1992). Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. The Journal of Cell Biology, 116, 817–825.CrossRefPubMed Jalkanen, S., & Jalkanen, M. (1992). Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. The Journal of Cell Biology, 116, 817–825.CrossRefPubMed
124.
go back to reference Toyama-Sorimachi, N., & Miyasaka, M. (1994). A novel ligand for CD44 is sulfated proteoglycan. International Immunology, 6, 655–660.CrossRefPubMed Toyama-Sorimachi, N., & Miyasaka, M. (1994). A novel ligand for CD44 is sulfated proteoglycan. International Immunology, 6, 655–660.CrossRefPubMed
125.
go back to reference Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., & Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313.CrossRefPubMed Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., & Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313.CrossRefPubMed
126.
go back to reference Greenfield, B., Wang, W. C., Marquardt, H., Piepkorn, M., Wolff, E. A., Aruffo, A., et al. (1999). Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. The Journal of Biological Chemistry, 274, 2511–2517.CrossRefPubMed Greenfield, B., Wang, W. C., Marquardt, H., Piepkorn, M., Wolff, E. A., Aruffo, A., et al. (1999). Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. The Journal of Biological Chemistry, 274, 2511–2517.CrossRefPubMed
127.
go back to reference Higman, V. A., Briggs, D. C., Mahoney, D. J., Blundell, C. D., Sattelle, B. M., Dyer, D. P., et al. (2014). A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. The Journal of Biological Chemistry, 289, 5619–5634. https://doi.org/10.1074/jbc.M113.542357.CrossRefPubMed Higman, V. A., Briggs, D. C., Mahoney, D. J., Blundell, C. D., Sattelle, B. M., Dyer, D. P., et al. (2014). A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. The Journal of Biological Chemistry, 289, 5619–5634. https://​doi.​org/​10.​1074/​jbc.​M113.​542357.CrossRefPubMed
128.
go back to reference Orian-Rousseau, V., & Ponta, H. (2008). Adhesion proteins meet receptors: a common theme? Advances in Cancer Research, 101, 63–92.CrossRefPubMed Orian-Rousseau, V., & Ponta, H. (2008). Adhesion proteins meet receptors: a common theme? Advances in Cancer Research, 101, 63–92.CrossRefPubMed
130.
go back to reference Kim, M. S., Park, M. J., Moon, E. J., Kim, S. J., Lee, C. H., Yoo, H., et al. (2005). Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells. Cancer Research, 65, 686–691.PubMed Kim, M. S., Park, M. J., Moon, E. J., Kim, S. J., Lee, C. H., Yoo, H., et al. (2005). Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells. Cancer Research, 65, 686–691.PubMed
132.
go back to reference Mori, T., Kitano, K., Terawaki, S., Maesaki, R., Fukami, Y., & Hakoshima, T. (2008). Structural basis for CD44 recognition by ERM proteins. The Journal of Biological Chemistry, 283, 29602–29612.CrossRefPubMedPubMedCentral Mori, T., Kitano, K., Terawaki, S., Maesaki, R., Fukami, Y., & Hakoshima, T. (2008). Structural basis for CD44 recognition by ERM proteins. The Journal of Biological Chemistry, 283, 29602–29612.CrossRefPubMedPubMedCentral
133.
go back to reference Fehon, R. G., McClatchey, A. I., & Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nature Reviews. Molecular Cell Biology, 11, 276–287.CrossRefPubMedPubMedCentral Fehon, R. G., McClatchey, A. I., & Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nature Reviews. Molecular Cell Biology, 11, 276–287.CrossRefPubMedPubMedCentral
134.
go back to reference Stamenkovic, I., & Yu, Q. (2010). Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell. Motility, proliferation, and survival. Current Protein & Peptide Science, 11, 471–484.CrossRef Stamenkovic, I., & Yu, Q. (2010). Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell. Motility, proliferation, and survival. Current Protein & Peptide Science, 11, 471–484.CrossRef
136.
go back to reference Adamia, S., Maxwell, C. A., & Pilarski, L. M. (2005). Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Current Drug Targets. Cardiovascular & Haematological Disorders, 5, 3–14.CrossRef Adamia, S., Maxwell, C. A., & Pilarski, L. M. (2005). Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Current Drug Targets. Cardiovascular & Haematological Disorders, 5, 3–14.CrossRef
137.
go back to reference Misra, S., Toole, B. P., & Ghatak, S. (2006). Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. The Journal of Biological Chemistry, 281, 34936–34941.CrossRefPubMed Misra, S., Toole, B. P., & Ghatak, S. (2006). Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. The Journal of Biological Chemistry, 281, 34936–34941.CrossRefPubMed
140.
go back to reference Bourguignon, L. Y. (2008). Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology, 18, 251–259.CrossRefPubMedPubMedCentral Bourguignon, L. Y. (2008). Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology, 18, 251–259.CrossRefPubMedPubMedCentral
147.
go back to reference Stipp, C. S., Kolesnikova, T. V., & Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends in Biochemical Sciences, 28, 106–112.CrossRefPubMed Stipp, C. S., Kolesnikova, T. V., & Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends in Biochemical Sciences, 28, 106–112.CrossRefPubMed
148.
go back to reference Hemler, M. E. (2005). Tetraspanin functions and associated microdomains. Nature Reviews. Molecular Cell Biology, 6, 801–811.CrossRefPubMed Hemler, M. E. (2005). Tetraspanin functions and associated microdomains. Nature Reviews. Molecular Cell Biology, 6, 801–811.CrossRefPubMed
149.
go back to reference Levy, S., & Shoham, T. (2005). Protein-protein interactions in the tetraspanin web. Physiology (Bethesda), 20, 218–224. Levy, S., & Shoham, T. (2005). Protein-protein interactions in the tetraspanin web. Physiology (Bethesda), 20, 218–224.
151.
go back to reference Berditchevski, F., & Odintsova, E. (2007). Tetraspanins as regulators of protein trafficking. Traffic, 8, 89–96.CrossRefPubMed Berditchevski, F., & Odintsova, E. (2007). Tetraspanins as regulators of protein trafficking. Traffic, 8, 89–96.CrossRefPubMed
158.
go back to reference Fang, T., Lin, J., Wang, Y., Chen, G., Huang, J., Chen, J., et al. (2016). Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget, 7, 40630–40643. doi: 10.18632/oncotarget.9769. Fang, T., Lin, J., Wang, Y., Chen, G., Huang, J., Chen, J., et al. (2016). Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget, 7, 40630–40643. doi: 10.18632/oncotarget.9769.
159.
go back to reference Wie, L., Li, Y., & Suo, Z. (2015). TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. International Journal of Clinical and Experimental Medicine, 8(6), 8599–8607. Wie, L., Li, Y., & Suo, Z. (2015). TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. International Journal of Clinical and Experimental Medicine, 8(6), 8599–8607.
163.
go back to reference Madhavan, B., Yue, S., Galli, U., Rana, S., Groß, W., Müller, M., et al. (2015). Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. International Journal of Cancer, 136(11), 2616–2627. https://doi.org/10.1002/ijc.29324.CrossRefPubMed Madhavan, B., Yue, S., Galli, U., Rana, S., Groß, W., Müller, M., et al. (2015). Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. International Journal of Cancer, 136(11), 2616–2627. https://​doi.​org/​10.​1002/​ijc.​29324.CrossRefPubMed
171.
go back to reference Gesierich, S., Berezovskiy, I., Ryschich, E., & Zöller, M. (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Research, 66, 7083–7094.CrossRefPubMed Gesierich, S., Berezovskiy, I., Ryschich, E., & Zöller, M. (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Research, 66, 7083–7094.CrossRefPubMed
174.
go back to reference Litvinov, S. V., Velders, M. P., Bakker, H. A., Fleuren, G. J., & Warnaar, S. O. (1994). Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. The Journal of Cell Biology, 125(2), 437–446.CrossRefPubMed Litvinov, S. V., Velders, M. P., Bakker, H. A., Fleuren, G. J., & Warnaar, S. O. (1994). Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. The Journal of Cell Biology, 125(2), 437–446.CrossRefPubMed
176.
go back to reference Imrich, S., Hachmeister, M., & Gires, O. (2012). EpCAM and its potential role in tumor-initiating cells. Cell Adhesion & Migration, 6, 30–38.CrossRef Imrich, S., Hachmeister, M., & Gires, O. (2012). EpCAM and its potential role in tumor-initiating cells. Cell Adhesion & Migration, 6, 30–38.CrossRef
177.
go back to reference Maghzal, N., Vogt, E., Reintsch, W., Fraser, J. S., & Fagotto, F. (2010). The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. The Journal of Cell Biology, 191, 645–659.CrossRefPubMedPubMedCentral Maghzal, N., Vogt, E., Reintsch, W., Fraser, J. S., & Fagotto, F. (2010). The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. The Journal of Cell Biology, 191, 645–659.CrossRefPubMedPubMedCentral
178.
go back to reference Maetzel, D., Denzel, S., Mack, B., Eggert, C., Bärr, G., & Gires, O. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.CrossRefPubMed Maetzel, D., Denzel, S., Mack, B., Eggert, C., Bärr, G., & Gires, O. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.CrossRefPubMed
179.
go back to reference Lin, C. W., Liao, M. Y., Lin, W. W., Wang, Y. P., Lu, T. Y., & Wu, H. C. (2012). Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition genes expression in colon cancer. The Journal of Biological Chemistry, 287, 39449–39459.CrossRefPubMedPubMedCentral Lin, C. W., Liao, M. Y., Lin, W. W., Wang, Y. P., Lu, T. Y., & Wu, H. C. (2012). Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition genes expression in colon cancer. The Journal of Biological Chemistry, 287, 39449–39459.CrossRefPubMedPubMedCentral
192.
go back to reference Sjö, A., Magnusson, K. E., & Peterson, K. H. (2010). Protein kinase C activation has distinct effects on the localization, phosphorylation and detergent solubility of the claudin protein family in tight and leaky epithelial cells. The Journal of Membrane Biology, 236, 181–189.CrossRefPubMedPubMedCentral Sjö, A., Magnusson, K. E., & Peterson, K. H. (2010). Protein kinase C activation has distinct effects on the localization, phosphorylation and detergent solubility of the claudin protein family in tight and leaky epithelial cells. The Journal of Membrane Biology, 236, 181–189.CrossRefPubMedPubMedCentral
194.
go back to reference Shen, L. (2012). Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Annals of the New York Academy of Sciences, 1258, 9–12518.CrossRefPubMedPubMedCentral Shen, L. (2012). Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Annals of the New York Academy of Sciences, 1258, 9–12518.CrossRefPubMedPubMedCentral
196.
go back to reference Heiler, S., Mu, W., Zöller, M., & Thuma, F. (2015). The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Communication and Signaling: CCS, 13, 29.CrossRefPubMedCentral Heiler, S., Mu, W., Zöller, M., & Thuma, F. (2015). The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Communication and Signaling: CCS, 13, 29.CrossRefPubMedCentral
199.
go back to reference Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics, 12, 587–598.CrossRef Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics, 12, 587–598.CrossRef
212.
go back to reference Batsaikhan, B. E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H., et al. (2014). Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Research, 34(11), 6339–6344.PubMed Batsaikhan, B. E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H., et al. (2014). Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Research, 34(11), 6339–6344.PubMed
213.
go back to reference Whissell, G., Montagni, E., Martinelli, P., Hernando-Momblona, X., Sevillano, M., Jung, P., et al. (2014). The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nature Cell Biology, 16(7), 695–707. https://doi.org/10.1038/ncb2992.CrossRefPubMed Whissell, G., Montagni, E., Martinelli, P., Hernando-Momblona, X., Sevillano, M., Jung, P., et al. (2014). The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nature Cell Biology, 16(7), 695–707. https://​doi.​org/​10.​1038/​ncb2992.CrossRefPubMed
218.
go back to reference Apostolou, P., Toloudi, M., Ioannou, E., Kourtidou, E., Chatziioannou, M., Kopic, A., et al. (2013). Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells. Journal of Receptor and Signal Transduction Research, 33(6), 353–358. https://doi.org/10.3109/10799893.2013.828072.CrossRefPubMed Apostolou, P., Toloudi, M., Ioannou, E., Kourtidou, E., Chatziioannou, M., Kopic, A., et al. (2013). Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells. Journal of Receptor and Signal Transduction Research, 33(6), 353–358. https://​doi.​org/​10.​3109/​10799893.​2013.​828072.CrossRefPubMed
221.
229.
go back to reference Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.CrossRefPubMed Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.CrossRefPubMed
235.
go back to reference Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed
236.
go back to reference Basyuk, E., Suavet, F., Doglio, A., Bordonné, R., & Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Research, 31(22), 6593–6597.CrossRefPubMedPubMedCentral Basyuk, E., Suavet, F., Doglio, A., Bordonné, R., & Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Research, 31(22), 6593–6597.CrossRefPubMedPubMedCentral
237.
go back to reference Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.CrossRefPubMed Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.CrossRefPubMed
238.
go back to reference Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.CrossRefPubMedPubMedCentral Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.CrossRefPubMedPubMedCentral
239.
go back to reference Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432(7014), 231–235.CrossRefPubMed Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432(7014), 231–235.CrossRefPubMed
244.
go back to reference Liu, X., Fu, Q., Du, Y., Yang, Y., & Cho, W. C. (2016). MicroRNA as regulators of cancer stem cells and chemoresistance in colorectal cancer. Current Cancer Drug Targets, 16(9), 738–754.CrossRefPubMed Liu, X., Fu, Q., Du, Y., Yang, Y., & Cho, W. C. (2016). MicroRNA as regulators of cancer stem cells and chemoresistance in colorectal cancer. Current Cancer Drug Targets, 16(9), 738–754.CrossRefPubMed
248.
go back to reference Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W. O., Corcoran, M., Grandér, D., et al. (2013). A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nature Structural & Molecular Biology, 20(4), 440–446. https://doi.org/10.1038/nsmb.2516.CrossRef Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W. O., Corcoran, M., Grandér, D., et al. (2013). A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nature Structural & Molecular Biology, 20(4), 440–446. https://​doi.​org/​10.​1038/​nsmb.​2516.CrossRef
251.
go back to reference Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.CrossRefPubMed Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.CrossRefPubMed
253.
go back to reference Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.CrossRefPubMedPubMedCentral Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.CrossRefPubMedPubMedCentral
261.
go back to reference Han, T., Hu, H., Zhuo, M., Wang, L., Cui, J. J., Jiao, F., et al. (2016). Long non-coding RNA: an emerging paradigm of pancreatic cancer. Current Molecular Medicine, 16(8), 702–709.CrossRefPubMed Han, T., Hu, H., Zhuo, M., Wang, L., Cui, J. J., Jiao, F., et al. (2016). Long non-coding RNA: an emerging paradigm of pancreatic cancer. Current Molecular Medicine, 16(8), 702–709.CrossRefPubMed
269.
go back to reference Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.CrossRefPubMed Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.CrossRefPubMed
286.
go back to reference Vedeler, A., Hollås, H., Grindheim, A. K., & Raddum, A. M. (2012). Multiple roles of annexin A2 in post-transcriptional regulation of gene expression. Current Protein & Peptide Science, 13, 401–412.CrossRef Vedeler, A., Hollås, H., Grindheim, A. K., & Raddum, A. M. (2012). Multiple roles of annexin A2 in post-transcriptional regulation of gene expression. Current Protein & Peptide Science, 13, 401–412.CrossRef
288.
go back to reference Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980. https://doi.org/10.1038/ncomms3980.CrossRefPubMed Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980. https://​doi.​org/​10.​1038/​ncomms3980.CrossRefPubMed
291.
go back to reference Ji, H., Greening, D. W., Barnes, T. W., Lim, J. W., Tauro, B. J., Rai, A., et al. (2013). Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 13, 1672–1686. https://doi.org/10.1002/pmic.201200562.CrossRefPubMed Ji, H., Greening, D. W., Barnes, T. W., Lim, J. W., Tauro, B. J., Rai, A., et al. (2013). Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 13, 1672–1686. https://​doi.​org/​10.​1002/​pmic.​201200562.CrossRefPubMed
293.
go back to reference Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 51, 2105–2120.CrossRefPubMedPubMedCentral Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 51, 2105–2120.CrossRefPubMedPubMedCentral
294.
302.
go back to reference Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., et al. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 4(12), 4019–4031.CrossRefPubMed Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., et al. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 4(12), 4019–4031.CrossRefPubMed
305.
go back to reference Marhaba, R., Klingbeil, P., Nuebel, T., Nazarenko, I., Buechler, M. W., & Zöller, M. (2008). CD44 and EpCAM: cancer-initiating cell markers. Current Molecular Medicine, 8(8), 784–804.CrossRefPubMed Marhaba, R., Klingbeil, P., Nuebel, T., Nazarenko, I., Buechler, M. W., & Zöller, M. (2008). CD44 and EpCAM: cancer-initiating cell markers. Current Molecular Medicine, 8(8), 784–804.CrossRefPubMed
307.
go back to reference Demory Beckler, M., Higginbotham, J. N., Franklin, J. L., Ham, A. J., Halvey, P. J., Imasuen, I. E., et al. (2013). Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Molecular & Cellular Proteomics, 12, 343–355. https://doi.org/10.1074/mcp.M112.022806.CrossRef Demory Beckler, M., Higginbotham, J. N., Franklin, J. L., Ham, A. J., Halvey, P. J., Imasuen, I. E., et al. (2013). Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Molecular & Cellular Proteomics, 12, 343–355. https://​doi.​org/​10.​1074/​mcp.​M112.​022806.CrossRef
308.
go back to reference Jung, T., Castellana, D., Klingbeil, P., Cuesta Hernández, I., Vitacolonna, M., Orlicky, D. J., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.CrossRefPubMedPubMedCentral Jung, T., Castellana, D., Klingbeil, P., Cuesta Hernández, I., Vitacolonna, M., Orlicky, D. J., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.CrossRefPubMedPubMedCentral
312.
go back to reference Philip, R., Heiler, S., Mu, W., Büchler, M. W., Zöller, M., & Thuma, F. (2015). Claudin-7 promotes the epithelial-mesenchymal transition in human colorectal cancer. Oncotarget, 6(4), 2046–2063.CrossRefPubMed Philip, R., Heiler, S., Mu, W., Büchler, M. W., Zöller, M., & Thuma, F. (2015). Claudin-7 promotes the epithelial-mesenchymal transition in human colorectal cancer. Oncotarget, 6(4), 2046–2063.CrossRefPubMed
315.
go back to reference Kumar, D., Gupta, D., Shankar, S., & Srivastava, R. K. (2015). Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer. Oncotarget, 10.18632/oncotarget.2462, 6, 3280, 3291. Kumar, D., Gupta, D., Shankar, S., & Srivastava, R. K. (2015). Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer. Oncotarget, 10.18632/oncotarget.2462, 6, 3280, 3291.
321.
340.
343.
go back to reference Svensson, K. J., Kucharzewska, P., Christianson, H. C., Sköld, S., Löfstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13147–13152. https://doi.org/10.1073/pnas.1104261108.CrossRefPubMedPubMedCentral Svensson, K. J., Kucharzewska, P., Christianson, H. C., Sköld, S., Löfstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13147–13152. https://​doi.​org/​10.​1073/​pnas.​1104261108.CrossRefPubMedPubMedCentral
345.
go back to reference Arscott, W. T., Tandle, A. T., Zhao, S., Shabason, J. E., Gordon, I. K., Schlaff, C. D., et al. (2013). Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Translational Oncology, 6(6), 638–648.CrossRefPubMedPubMedCentral Arscott, W. T., Tandle, A. T., Zhao, S., Shabason, J. E., Gordon, I. K., Schlaff, C. D., et al. (2013). Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Translational Oncology, 6(6), 638–648.CrossRefPubMedPubMedCentral
361.
go back to reference Gesierich, S., Paret, C., Hildebrand, D., Weitz, J., Zgraggen, K., Schmitz-Winnenthal, F. H., et al. (2005). Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clinical Cancer Research, 11(8), 2840–2852.CrossRefPubMed Gesierich, S., Paret, C., Hildebrand, D., Weitz, J., Zgraggen, K., Schmitz-Winnenthal, F. H., et al. (2005). Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clinical Cancer Research, 11(8), 2840–2852.CrossRefPubMed
362.
go back to reference Claas, C., Wahl, J., Orlicky, D. J., Karaduman, H., Schnölzer, M., Kempf, T., et al. (2005). The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. The Biochemical Journal, 389(Pt 1), 99–110.CrossRefPubMedPubMedCentral Claas, C., Wahl, J., Orlicky, D. J., Karaduman, H., Schnölzer, M., Kempf, T., et al. (2005). The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. The Biochemical Journal, 389(Pt 1), 99–110.CrossRefPubMedPubMedCentral
364.
go back to reference Le Naour, F., André, M., Greco, C., Billard, M., Sordat, B., Emile, J. F., et al. (2006). Profiling of the tetraspanin web of human colon cancer cells. Molecular & Cellular Proteomics, 5(5), 845–857.CrossRef Le Naour, F., André, M., Greco, C., Billard, M., Sordat, B., Emile, J. F., et al. (2006). Profiling of the tetraspanin web of human colon cancer cells. Molecular & Cellular Proteomics, 5(5), 845–857.CrossRef
366.
go back to reference Ladwein, M., Pape, U. F., Schmidt, D. S., Schnölzer, M., Fiedler, S., Langbein, L., et al. (2005). The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Experimental Cell Research, 309(2), 345–357.CrossRefPubMed Ladwein, M., Pape, U. F., Schmidt, D. S., Schnölzer, M., Fiedler, S., Langbein, L., et al. (2005). The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Experimental Cell Research, 309(2), 345–357.CrossRefPubMed
367.
go back to reference Kuhn, S., Koch, M., Nübel, T., Ladwein, M., Antolovic, D., Klingbeil, P., et al. (2007). A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Molecular Cancer Research, 5(6), 553–567.CrossRefPubMed Kuhn, S., Koch, M., Nübel, T., Ladwein, M., Antolovic, D., Klingbeil, P., et al. (2007). A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Molecular Cancer Research, 5(6), 553–567.CrossRefPubMed
370.
373.
go back to reference Marsh, D., Horváth, L. I., Swamy, M. J., Mantripragada, S., & Kleinschmidt, J. H. (2002). Interaction of membrane-spanning proteins with peripheral and lipid-anchored membrane proteins: perspectives from protein-lipid interactions (review). Molecular Membrane Biology, 19(4), 247–255.CrossRefPubMed Marsh, D., Horváth, L. I., Swamy, M. J., Mantripragada, S., & Kleinschmidt, J. H. (2002). Interaction of membrane-spanning proteins with peripheral and lipid-anchored membrane proteins: perspectives from protein-lipid interactions (review). Molecular Membrane Biology, 19(4), 247–255.CrossRefPubMed
382.
go back to reference Li, X., Zhao, H., Gu, J., & Zheng, L. (2015). Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. International Journal of Clinical and Experimental Pathology, 8(10), 12084–12092 eCollection 2015.PubMedPubMedCentral Li, X., Zhao, H., Gu, J., & Zheng, L. (2015). Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. International Journal of Clinical and Experimental Pathology, 8(10), 12084–12092 eCollection 2015.PubMedPubMedCentral
387.
go back to reference Kristiansen, G., Sammar, M., & Altevogt, P. (2004). Tumour biological aspects of CD24, a mucin-like adhesion molecule. Journal of Molecular Histology, 35(3), 255–262.CrossRefPubMed Kristiansen, G., Sammar, M., & Altevogt, P. (2004). Tumour biological aspects of CD24, a mucin-like adhesion molecule. Journal of Molecular Histology, 35(3), 255–262.CrossRefPubMed
402.
go back to reference Levy, S., Todd, S. C., & Maecker, H. T. (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annual Review of Immunology, 16, 89–109.CrossRefPubMed Levy, S., Todd, S. C., & Maecker, H. T. (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annual Review of Immunology, 16, 89–109.CrossRefPubMed
404.
go back to reference Lau, L. M., Wee, J. L., Wright, M. D., Moseley, G. W., Hogarth, P. M., Ashman, L. K., et al. (2004). The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 104(8), 2368–2375.CrossRefPubMed Lau, L. M., Wee, J. L., Wright, M. D., Moseley, G. W., Hogarth, P. M., Ashman, L. K., et al. (2004). The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 104(8), 2368–2375.CrossRefPubMed
406.
go back to reference Yue, S., Mu, W., Erb, U., & Zöller, M. (2015). The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget, 6(4), 2366–2384.CrossRefPubMed Yue, S., Mu, W., Erb, U., & Zöller, M. (2015). The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget, 6(4), 2366–2384.CrossRefPubMed
410.
go back to reference Nelson, G. M., Padera, T. P., Garkavtsev, I., Shioda, T., & Jain, R. K. (2007). Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia, 9(12), 1038–1045.CrossRefPubMedPubMedCentral Nelson, G. M., Padera, T. P., Garkavtsev, I., Shioda, T., & Jain, R. K. (2007). Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia, 9(12), 1038–1045.CrossRefPubMedPubMedCentral
429.
437.
go back to reference Roscic-Mrkic, B., Fischer, M., Leemann, C., Manrique, A., Gordon, C. J., Moore, J. P., et al. (2003). RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood, 102(4), 1169–1177.CrossRefPubMed Roscic-Mrkic, B., Fischer, M., Leemann, C., Manrique, A., Gordon, C. J., Moore, J. P., et al. (2003). RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood, 102(4), 1169–1177.CrossRefPubMed
438.
go back to reference Zhu, B., Suzuki, K., Goldberg, H. A., Rittling, S. R., Denhardt, D. T., McCulloch, C. A., et al. (2004). Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. Journal of Cellular Physiology, 198(1), 155–167.CrossRefPubMed Zhu, B., Suzuki, K., Goldberg, H. A., Rittling, S. R., Denhardt, D. T., McCulloch, C. A., et al. (2004). Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. Journal of Cellular Physiology, 198(1), 155–167.CrossRefPubMed
445.
go back to reference Lee, J. W., Lee, Y. C., Na, S. Y., Jung, D. J., & Lee, S. K. (2001). Transcriptional coregulators of the nuclear receptor superfamily: coactivators and corepressors. Cellular and Molecular Life Sciences, 58(2), 289–297.CrossRefPubMed Lee, J. W., Lee, Y. C., Na, S. Y., Jung, D. J., & Lee, S. K. (2001). Transcriptional coregulators of the nuclear receptor superfamily: coactivators and corepressors. Cellular and Molecular Life Sciences, 58(2), 289–297.CrossRefPubMed
452.
go back to reference García-González, V., Díaz-Villanueva, J. F., Galindo-Hernández, O., Martínez-Navarro, I., Hurtado-Ureta, G., & Pérez-Arias, A. A. (2018). Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development. International Journal of Molecular Sciences, 19(9), E2527. https://doi.org/10.3390/ijms19092527.CrossRefPubMed García-González, V., Díaz-Villanueva, J. F., Galindo-Hernández, O., Martínez-Navarro, I., Hurtado-Ureta, G., & Pérez-Arias, A. A. (2018). Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development. International Journal of Molecular Sciences, 19(9), E2527. https://​doi.​org/​10.​3390/​ijms19092527.CrossRefPubMed
455.
go back to reference van Balkom, B. W., Eisele, A. S., Pegtel, D. M., Bervoets, S., & Verhaar, M. C. (2015). Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles, 4, 26760. https://doi.org/10.3402/jev.v4.26760.CrossRefPubMed van Balkom, B. W., Eisele, A. S., Pegtel, D. M., Bervoets, S., & Verhaar, M. C. (2015). Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles, 4, 26760. https://​doi.​org/​10.​3402/​jev.​v4.​26760.CrossRefPubMed
458.
472.
go back to reference Zhang, Z.Y., Lu, Y.X., Zhang, Z.Y., Chang, Y.Y., Zheng, L., Yuan, L., et al. (2016). Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget, 7(16), 22639–22649. doi: 10.18632/oncotarget.8141. Zhang, Z.Y., Lu, Y.X., Zhang, Z.Y., Chang, Y.Y., Zheng, L., Yuan, L., et al. (2016). Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget, 7(16), 22639–22649. doi: 10.18632/oncotarget.8141.
484.
go back to reference Chen, Z., Bu, N., Qiao, X., Zuo, Z., Shu, Y., Liu, Z., et al. (2018). Forkhead box M1 transcriptionally regulates the expression of long noncoding RNAs Snhg8 and Gm26917 to promote proliferation and survival of muscle satellite cells. Stem Cells. https://doi.org/10.1002/stem.2824. Chen, Z., Bu, N., Qiao, X., Zuo, Z., Shu, Y., Liu, Z., et al. (2018). Forkhead box M1 transcriptionally regulates the expression of long noncoding RNAs Snhg8 and Gm26917 to promote proliferation and survival of muscle satellite cells. Stem Cells. https://​doi.​org/​10.​1002/​stem.​2824.
486.
Metadata
Title
Exosomes, metastases, and the miracle of cancer stem cell markers
Authors
Zhe Wang
Margot Zöller
Publication date
01-06-2019
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2019
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09793-6

Other articles of this Issue 1-2/2019

Cancer and Metastasis Reviews 1-2/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine