Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2018

Open Access 01-12-2018

Applications of Raman spectroscopy in cancer diagnosis

Authors: Gregory W. Auner, S. Kiran Koya, Changhe Huang, Brandy Broadbent, Micaela Trexler, Zachary Auner, Angela Elias, Katlyn Curtin Mehne, Michelle A. Brusatori

Published in: Cancer and Metastasis Reviews | Issue 4/2018

Login to get access

Abstract

Novel approaches toward understanding the evolution of disease can lead to the discovery of biomarkers that will enable better management of disease progression and improve prognostic evaluation. Raman spectroscopy is a promising investigative and diagnostic tool that can assist in uncovering the molecular basis of disease and provide objective, quantifiable molecular information for diagnosis and treatment evaluation. This technique probes molecular vibrations/rotations associated with chemical bonds in a sample to obtain information on molecular structure, composition, and intermolecular interactions. Raman scattering occurs when light interacts with a molecular vibration/rotation and a change in polarizability takes place during molecular motion. This results in light being scattered at an optical frequency shifted (up or down) from the incident light. By monitoring the intensity profile of the inelastically scattered light as a function of frequency, the unique spectroscopic fingerprint of a tissue sample is obtained. Since each sample has a unique composition, the spectroscopic profile arising from Raman-active functional groups of nucleic acids, proteins, lipids, and carbohydrates allows for the evaluation, characterization, and discrimination of tissue type. This review provides an overview of the theory of Raman spectroscopy, instrumentation used for measurement, and variation of Raman spectroscopic techniques for clinical applications in cancer, including detection of brain, ovarian, breast, prostate, and pancreatic cancers and circulating tumor cells.
Literature
1.
go back to reference Atkins, P. W. (1994). Physical chemistry (5th ed.). New York: W. H. Freeman. Atkins, P. W. (1994). Physical chemistry (5th ed.). New York: W. H. Freeman.
2.
go back to reference Hecht, E. (1998). Optics (3rd ed.). New York: Addison-Wesley. Hecht, E. (1998). Optics (3rd ed.). New York: Addison-Wesley.
3.
go back to reference Raman, C. V. (1928). A new radiation. Indian Journal of Physics, 2, 387–398. Raman, C. V. (1928). A new radiation. Indian Journal of Physics, 2, 387–398.
4.
go back to reference Chase, B. (1994). A new generation of Raman instrumentation. Applied Spectroscopy, 48(7), 14A–19A.CrossRef Chase, B. (1994). A new generation of Raman instrumentation. Applied Spectroscopy, 48(7), 14A–19A.CrossRef
5.
go back to reference Bernath, P. F. (2005). Light scattering and the Raman effect. In P. F. Bernath (Ed.), Spectra of atoms and molecules (2nd ed., pp. 293–317). New York: Oxford University Press Inc. Bernath, P. F. (2005). Light scattering and the Raman effect. In P. F. Bernath (Ed.), Spectra of atoms and molecules (2nd ed., pp. 293–317). New York: Oxford University Press Inc.
6.
go back to reference Ferraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman spectroscopy (2nd ed.). San Diego: Academic. Ferraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman spectroscopy (2nd ed.). San Diego: Academic.
7.
go back to reference Abramczyk, H. (2005). Introduction to laser spectroscopy. New York: Elsevier Science Ltd.. Abramczyk, H. (2005). Introduction to laser spectroscopy. New York: Elsevier Science Ltd..
8.
go back to reference Hollas, J. M. (2004). Modern spectroscopy (4th ed.). New York: Wiley. Hollas, J. M. (2004). Modern spectroscopy (4th ed.). New York: Wiley.
10.
go back to reference Xie, W., & Schlucker, S. (2013). Medical applications of surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 15, 5329–5344.CrossRefPubMed Xie, W., & Schlucker, S. (2013). Medical applications of surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 15, 5329–5344.CrossRefPubMed
11.
go back to reference Muehlethaler, C., Leona, M., & Lombardi, J. R. (2016). Review of surface enhanced Raman scattering applications in forensic science. Analytical Chemistry, 88(1), 152–169.CrossRefPubMed Muehlethaler, C., Leona, M., & Lombardi, J. R. (2016). Review of surface enhanced Raman scattering applications in forensic science. Analytical Chemistry, 88(1), 152–169.CrossRefPubMed
12.
go back to reference Kambhampati, P., Child, C. M., Foster, M. C., & Campion, A. (1998). On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. Journal of Chemical Physics, 108(12), 5013–5026.CrossRef Kambhampati, P., Child, C. M., Foster, M. C., & Campion, A. (1998). On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. Journal of Chemical Physics, 108(12), 5013–5026.CrossRef
15.
go back to reference Kumar, N., Mignuzzi, S., Su, W., & Roy, D. (2015). Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation, 2(1), 9.CrossRef Kumar, N., Mignuzzi, S., Su, W., & Roy, D. (2015). Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation, 2(1), 9.CrossRef
16.
go back to reference Deckert-Gaudig, T., Taguchi, A., Kawata, S., & Deckert, V. (2017). Tip-enhanced Raman spectroscopy—from early developments to recent advances. Chemical Society Reviews, 46(13), 4077–4110.CrossRefPubMed Deckert-Gaudig, T., Taguchi, A., Kawata, S., & Deckert, V. (2017). Tip-enhanced Raman spectroscopy—from early developments to recent advances. Chemical Society Reviews, 46(13), 4077–4110.CrossRefPubMed
17.
go back to reference Meyer, R., Yao, X., & Deckert, V. (2018). Latest instrumental developments and bioanalytical applications in tip-enhanced Raman spectroscopy. TrAC Trends in Analytical Chemistry, 102, 250–258. Meyer, R., Yao, X., & Deckert, V. (2018). Latest instrumental developments and bioanalytical applications in tip-enhanced Raman spectroscopy. TrAC Trends in Analytical Chemistry, 102, 250–258.
18.
go back to reference Asher, S. A. (1998). UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. Annual Review of Physical Chemistry, 39(1), 537–588.CrossRef Asher, S. A. (1998). UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. Annual Review of Physical Chemistry, 39(1), 537–588.CrossRef
19.
go back to reference McNay, G., Eustace, D., Smith, W. E., Faulds, K., & Graham, D. (2011). Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Applied Spectroscopy, 65(8), 825–837.CrossRefPubMed McNay, G., Eustace, D., Smith, W. E., Faulds, K., & Graham, D. (2011). Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Applied Spectroscopy, 65(8), 825–837.CrossRefPubMed
20.
go back to reference Matousek, P., Morris, M. D., Everall, N., Clark, I. P., Towrie, M., Draper, E., Goodship, A., & Parker, A. W. (2005). Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Applied Spectroscopy, 59, 1485–1492.CrossRefPubMed Matousek, P., Morris, M. D., Everall, N., Clark, I. P., Towrie, M., Draper, E., Goodship, A., & Parker, A. W. (2005). Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Applied Spectroscopy, 59, 1485–1492.CrossRefPubMed
21.
go back to reference Buckley, K., Kerns, J. G., Parker, A. W., Goodship, A. E., & Matousek, P. (2014). Decomposition of in vivo spatially offset Raman spectroscopy data using multivariate analysis techniques. Journal of Raman Spectroscopy, 45(2), 188–192.CrossRef Buckley, K., Kerns, J. G., Parker, A. W., Goodship, A. E., & Matousek, P. (2014). Decomposition of in vivo spatially offset Raman spectroscopy data using multivariate analysis techniques. Journal of Raman Spectroscopy, 45(2), 188–192.CrossRef
22.
go back to reference Keller, M. D., Wilson, R. H., Mycek, M. A., & Mahadevan-Jansen, A. (2010). Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis. Applied Spectroscopy, 64(6), 607–614.CrossRefPubMed Keller, M. D., Wilson, R. H., Mycek, M. A., & Mahadevan-Jansen, A. (2010). Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis. Applied Spectroscopy, 64(6), 607–614.CrossRefPubMed
23.
go back to reference Matousek, P., & Stone, N. (2008). Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Research., 68(11), 4424–4430.CrossRefPubMed Matousek, P., & Stone, N. (2008). Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Research., 68(11), 4424–4430.CrossRefPubMed
24.
go back to reference Zumbusch, A., & Müller, M. (2007). Coherent anti-Stokes Raman scattering microscopy. ChemPhysChem, 8(15), 2156–2170.CrossRefPubMed Zumbusch, A., & Müller, M. (2007). Coherent anti-Stokes Raman scattering microscopy. ChemPhysChem, 8(15), 2156–2170.CrossRefPubMed
25.
go back to reference Camp Jr., C. H., Lee, Y. J., Heddleston, J. M., Hartshorn, C. M., Hight Walker, A. R., Rich, J. N., Lathia, J. D., & Cicerone, M. T. (2014). High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photonics, 8(8), 627–634.CrossRefPubMedPubMedCentral Camp Jr., C. H., Lee, Y. J., Heddleston, J. M., Hartshorn, C. M., Hight Walker, A. R., Rich, J. N., Lathia, J. D., & Cicerone, M. T. (2014). High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photonics, 8(8), 627–634.CrossRefPubMedPubMedCentral
26.
go back to reference Freudiger, C. W., Min, W., Saar, B. G., Lu, S., Holtom, G. R., He, C., Tsai, J. C., Kang, J. X., & Xie, X. S. (2008). Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322(5909), 1857–1861.CrossRefPubMedPubMedCentral Freudiger, C. W., Min, W., Saar, B. G., Lu, S., Holtom, G. R., He, C., Tsai, J. C., Kang, J. X., & Xie, X. S. (2008). Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322(5909), 1857–1861.CrossRefPubMedPubMedCentral
27.
go back to reference Freudiger, C. W., & Xie, X. S. (2011). In vivo imaging with stimulated Raman scattering microscopy. Optics and Photonics News, 22(12), 27–27.CrossRef Freudiger, C. W., & Xie, X. S. (2011). In vivo imaging with stimulated Raman scattering microscopy. Optics and Photonics News, 22(12), 27–27.CrossRef
30.
go back to reference Petrecca, K., Guiot, M.-C., Panet-Raymond, V., & Souhami, L. (2013). Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. Journal of Neuro-Oncology, 111(1), 19–23.CrossRefPubMed Petrecca, K., Guiot, M.-C., Panet-Raymond, V., & Souhami, L. (2013). Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. Journal of Neuro-Oncology, 111(1), 19–23.CrossRefPubMed
31.
go back to reference Stummer, W., Meinel, T., Ewelt, C., Martus, P., Jakobs, O., Felsberg, J., & Reifenberger, G. (2012). Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. Journal of Neuro-Oncology, 108(1), 89–97.CrossRefPubMedPubMedCentral Stummer, W., Meinel, T., Ewelt, C., Martus, P., Jakobs, O., Felsberg, J., & Reifenberger, G. (2012). Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. Journal of Neuro-Oncology, 108(1), 89–97.CrossRefPubMedPubMedCentral
32.
go back to reference Riva, M., Hennersperger, C., Milletari, F., Katouzian, A., Pessina, F., Gutierrez-Becker, B., … Bello, L. (2017). 3D intra-operative ultrasound and MR image guidance: pursuing an ultrasound-based management of brainshift to enhance neuronavigation. International Journal of Computer Assisted Radiology and Surgery, 12(10), 1711–1725. https://doi.org/10.1007/s11548-017-1578-5. Riva, M., Hennersperger, C., Milletari, F., Katouzian, A., Pessina, F., Gutierrez-Becker, B., … Bello, L. (2017). 3D intra-operative ultrasound and MR image guidance: pursuing an ultrasound-based management of brainshift to enhance neuronavigation. International Journal of Computer Assisted Radiology and Surgery, 12(10), 1711–1725. https://​doi.​org/​10.​1007/​s11548-017-1578-5.
35.
go back to reference Kast, R., Auner, G., Yurgelevic, S., Broadbent, B., Raghunathan, A., Poisson, L. M., … Kalkanis, S. N. (2015). Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging. Journal of Neuro-Oncology, 125(2), 287–295. https://doi.org/10.1007/s11060-015-1929-4. Kast, R., Auner, G., Yurgelevic, S., Broadbent, B., Raghunathan, A., Poisson, L. M., … Kalkanis, S. N. (2015). Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging. Journal of Neuro-Oncology, 125(2), 287–295. https://​doi.​org/​10.​1007/​s11060-015-1929-4.
36.
go back to reference Beljebbar, A., Dukic, S., Amharref, N., & Manfait, M. (2010). Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe. Analytical and Bioanalytical Chemistry, 398(1), 477–487.CrossRefPubMed Beljebbar, A., Dukic, S., Amharref, N., & Manfait, M. (2010). Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe. Analytical and Bioanalytical Chemistry, 398(1), 477–487.CrossRefPubMed
37.
go back to reference Desroches, J., Jermyn, M., Mok, K., Lemieux-Leduc, C., Mercier, J., St-Arnaud, K., … Petrecca, K. (2015). Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomedical Optics Express, 6(7), 2380–2397. Desroches, J., Jermyn, M., Mok, K., Lemieux-Leduc, C., Mercier, J., St-Arnaud, K., … Petrecca, K. (2015). Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomedical Optics Express, 6(7), 2380–2397.
38.
go back to reference Tanahashi, K., Natsume, A., Ohka, F., Momota, H., Kato, A., Motomura, K., … Saito, Y. (2014). Assessment of tumor cells in a mouse model of diffuse infiltrative glioma by Raman spectroscopy. BioMed Research International, 2014. Tanahashi, K., Natsume, A., Ohka, F., Momota, H., Kato, A., Motomura, K., … Saito, Y. (2014). Assessment of tumor cells in a mouse model of diffuse infiltrative glioma by Raman spectroscopy. BioMed Research International, 2014.
39.
go back to reference Kast, R. E., Auner, G. W., Rosenblum, M. L., Mikkelsen, T., Yurgelevic, S. M., Raghunathan, A., … Kalkanis, S. N. (2014). Raman molecular imaging of brain frozen tissue sections. Journal of Neuro-Oncology, 120(1), 55–62. Kast, R. E., Auner, G. W., Rosenblum, M. L., Mikkelsen, T., Yurgelevic, S. M., Raghunathan, A., … Kalkanis, S. N. (2014). Raman molecular imaging of brain frozen tissue sections. Journal of Neuro-Oncology, 120(1), 55–62.
40.
go back to reference Kalkanis, S. N., Kast, R. E., Rosenblum, M. L., Mikkelsen, T., Yurgelevic, S. M., Nelson, K. M., et al. (2014). Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. Journal of Neuro-Oncology, 116(3), 477–485.CrossRefPubMed Kalkanis, S. N., Kast, R. E., Rosenblum, M. L., Mikkelsen, T., Yurgelevic, S. M., Nelson, K. M., et al. (2014). Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. Journal of Neuro-Oncology, 116(3), 477–485.CrossRefPubMed
41.
go back to reference Gajjar, K., Heppenstall, L. D., Pang, W., Ashton, K. M., Trevisan, J., Patel, I. I., … Dawson, T. (2013). Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Analytical Methods, 5(1), 89–102. Gajjar, K., Heppenstall, L. D., Pang, W., Ashton, K. M., Trevisan, J., Patel, I. I., … Dawson, T. (2013). Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Analytical Methods, 5(1), 89–102.
44.
go back to reference Bergner, N., Bocklitz, T., Romeike, B. F., Reichart, R., Kalff, R., Krafft, C., & Popp, J. (2012). Identification of primary tumors of brain metastases by Raman imaging and support vector machines. Chemometrics and Intelligent Laboratory Systems, 117, 224–232.CrossRef Bergner, N., Bocklitz, T., Romeike, B. F., Reichart, R., Kalff, R., Krafft, C., & Popp, J. (2012). Identification of primary tumors of brain metastases by Raman imaging and support vector machines. Chemometrics and Intelligent Laboratory Systems, 117, 224–232.CrossRef
47.
go back to reference Kircher, M. F., De La Zerda, A., Jokerst, J. V., Zavaleta, C. L., Kempen, P. J., Mittra, E., … Gambhir, S. S. (2012). A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Medicine, 18(5), 829–834. https://doi.org/10.1038/nm.2721. Kircher, M. F., De La Zerda, A., Jokerst, J. V., Zavaleta, C. L., Kempen, P. J., Mittra, E., … Gambhir, S. S. (2012). A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Medicine, 18(5), 829–834. https://​doi.​org/​10.​1038/​nm.​2721.
48.
49.
go back to reference Diaz, R. J., McVeigh, P. Z., O'Reilly, M. A., Burrell, K., Bebenek, M., Smith, C., … Rutka, J. T. (2014). Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors. Nanomedicine-Nanotechnology Biology and Medicine, 10(5), 1075–1087. https://doi.org/10.1016/j.nano.2013.12.006. Diaz, R. J., McVeigh, P. Z., O'Reilly, M. A., Burrell, K., Bebenek, M., Smith, C., … Rutka, J. T. (2014). Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors. Nanomedicine-Nanotechnology Biology and Medicine, 10(5), 1075–1087. https://​doi.​org/​10.​1016/​j.​nano.​2013.​12.​006.
51.
55.
go back to reference Uckermann, O., Galli, R., Tamosaityte, S., Leipnitz, E., Geiger, K. D., Schackert, G., … Kirsch, M. (2014). Label-free delineation of brain tumors by coherent anti-Stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma. PLoS One, 9(9), e107115. https://doi.org/10.1371/journal.pone.0107115. Uckermann, O., Galli, R., Tamosaityte, S., Leipnitz, E., Geiger, K. D., Schackert, G., … Kirsch, M. (2014). Label-free delineation of brain tumors by coherent anti-Stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma. PLoS One, 9(9), e107115. https://​doi.​org/​10.​1371/​journal.​pone.​0107115.
56.
go back to reference Meyer, T., Bergner, N., Krafft, C., Akimov, D., Dietzek, B., Popp, J., … Kalff, R. (2011). Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. Journal of Biomedical Optics, 16(2), 021113. https://doi.org/10.1117/1.3533268. Meyer, T., Bergner, N., Krafft, C., Akimov, D., Dietzek, B., Popp, J., … Kalff, R. (2011). Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. Journal of Biomedical Optics, 16(2), 021113. https://​doi.​org/​10.​1117/​1.​3533268.
57.
go back to reference Galli, R., Uckermann, O., Temme, A., Leipnitz, E., Meinhardt, M., Koch, E., … Kirsch, M. (2017). Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. Journal of Biophotonics, 10(3), 404–414. https://doi.org/10.1002/jbio.201500323. Galli, R., Uckermann, O., Temme, A., Leipnitz, E., Meinhardt, M., Koch, E., … Kirsch, M. (2017). Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. Journal of Biophotonics, 10(3), 404–414. https://​doi.​org/​10.​1002/​jbio.​201500323.
60.
62.
go back to reference Ji, M. B., Lewis, S., Camelo-Piragua, S., Ramkissoon, S. H., Snuderl, M., Venneti, S., … Orringer, D. A. (2015). Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Science Translational Medicine, 7(309), 309ra163. https://doi.org/10.1126/scitranslmed.aab0195. Ji, M. B., Lewis, S., Camelo-Piragua, S., Ramkissoon, S. H., Snuderl, M., Venneti, S., … Orringer, D. A. (2015). Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Science Translational Medicine, 7(309), 309ra163. https://​doi.​org/​10.​1126/​scitranslmed.​aab0195.
69.
go back to reference Maheedhar, K., Brat, R. A., Malini, R., Prathima, N., Keerthi, P., & Kushtago, P. (2008). Diagnosis of ovarian cancer by Raman spectroscopy: a pilot study. Photomedicine and Laser Surgery, 26(2), 83–90.CrossRefPubMed Maheedhar, K., Brat, R. A., Malini, R., Prathima, N., Keerthi, P., & Kushtago, P. (2008). Diagnosis of ovarian cancer by Raman spectroscopy: a pilot study. Photomedicine and Laser Surgery, 26(2), 83–90.CrossRefPubMed
70.
go back to reference Parker, F. S. (1983). Applications of infrared, Raman, and resonance. In Raman spectroscopy in biochemistry. New York: Plenum. Parker, F. S. (1983). Applications of infrared, Raman, and resonance. In Raman spectroscopy in biochemistry. New York: Plenum.
71.
go back to reference Tonge, P., & Carey, P. (1993). In: Biomoecular spectroscopy part A, advances in spectroscopy. Chapter 3 (pp. 129–133). Chichester: Wiley. Tonge, P., & Carey, P. (1993). In: Biomoecular spectroscopy part A, advances in spectroscopy. Chapter 3 (pp. 129–133). Chichester: Wiley.
72.
go back to reference Oseledchyk, A., Andreou, C., Wall, M. A., & Kircher, M. F. (2017). Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano, 11(2), 1488–1497.CrossRefPubMedPubMedCentral Oseledchyk, A., Andreou, C., Wall, M. A., & Kircher, M. F. (2017). Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano, 11(2), 1488–1497.CrossRefPubMedPubMedCentral
74.
go back to reference Vergote, I. B., Marth, C., & Coleman, R. L. (2015). Role of the folate receptor in ovarian cancer treatment: evidence, mechanism, and clinical applications. Cancer and Metastasis Reviews, 34(1), 41–52.CrossRefPubMed Vergote, I. B., Marth, C., & Coleman, R. L. (2015). Role of the folate receptor in ovarian cancer treatment: evidence, mechanism, and clinical applications. Cancer and Metastasis Reviews, 34(1), 41–52.CrossRefPubMed
75.
go back to reference Goff, B. A., Agnew, K., Neradilek, M. B., Gray, H. J., Liao, J. B., & Urban, R. R. (2017). Combining a symptom index, CA125 and HE4 (triple screen) to detect ovarian cancer in women with a pelvic mass. Gynecologic Oncology, 147(2), 291–295.CrossRefPubMed Goff, B. A., Agnew, K., Neradilek, M. B., Gray, H. J., Liao, J. B., & Urban, R. R. (2017). Combining a symptom index, CA125 and HE4 (triple screen) to detect ovarian cancer in women with a pelvic mass. Gynecologic Oncology, 147(2), 291–295.CrossRefPubMed
76.
go back to reference Jacobs, I. J., & Menon, U. (2004). Progress and challenges in screening for early detection of ovarian cancer. Molecular and Cellular Proteomics, 3(4), 355–366.CrossRefPubMed Jacobs, I. J., & Menon, U. (2004). Progress and challenges in screening for early detection of ovarian cancer. Molecular and Cellular Proteomics, 3(4), 355–366.CrossRefPubMed
77.
go back to reference Ullah, I., Ahmad, I., Nisar, H., Khan, S., Ullah, R., & Mahmood, H. (2016). Computer assisted optical screening of human ovarian cancer using Raman spectroscopy. Photodiagnosis and Photodynamic Therapy, 15, 94–99.CrossRefPubMed Ullah, I., Ahmad, I., Nisar, H., Khan, S., Ullah, R., & Mahmood, H. (2016). Computer assisted optical screening of human ovarian cancer using Raman spectroscopy. Photodiagnosis and Photodynamic Therapy, 15, 94–99.CrossRefPubMed
78.
go back to reference Stone, N., Kendell, C., Smith, J., Crow, P., & Barr, H. (2003). Raman spectroscopy for identification of epithelial cancers. The Royal Society of Chemistry, 126, 141–157. Stone, N., Kendell, C., Smith, J., Crow, P., & Barr, H. (2003). Raman spectroscopy for identification of epithelial cancers. The Royal Society of Chemistry, 126, 141–157.
79.
go back to reference Jenkins, A. L., Larsen, R. A., & Williams, T. B. (2005). Characterization of amino acids using Raman spectroscopy. Spectrochimica Acta Part A: A Molecular and Biomolecular Spectroscopy, 61(7), 1585–1594.CrossRef Jenkins, A. L., Larsen, R. A., & Williams, T. B. (2005). Characterization of amino acids using Raman spectroscopy. Spectrochimica Acta Part A: A Molecular and Biomolecular Spectroscopy, 61(7), 1585–1594.CrossRef
80.
go back to reference Li, J., Dowdy, S., Tipton, T., Podratz, K., Lu, W. G., Xie, X., et al. (2014). HE4 as a biomarker for ovarian and endometrial cancer management. Expert Review of Molecular Diagnostics, 9(6), 555–566.CrossRef Li, J., Dowdy, S., Tipton, T., Podratz, K., Lu, W. G., Xie, X., et al. (2014). HE4 as a biomarker for ovarian and endometrial cancer management. Expert Review of Molecular Diagnostics, 9(6), 555–566.CrossRef
81.
go back to reference Zhao, C., Annamalai, L., Guo, C., Kothandaraman, N., Koh, S., Zhang, H., et al. (2007). Circulating haptoglobin is an independent prognostic factor in the sera of patients with epithelial ovarian cancer. Neoplasia, 9(1), 1–7.CrossRefPubMedPubMedCentral Zhao, C., Annamalai, L., Guo, C., Kothandaraman, N., Koh, S., Zhang, H., et al. (2007). Circulating haptoglobin is an independent prognostic factor in the sera of patients with epithelial ovarian cancer. Neoplasia, 9(1), 1–7.CrossRefPubMedPubMedCentral
82.
go back to reference Schorge, J. O., Drake, R. D., Lee, H., Skates, S. J., Rajanbabu, R., Miller, D. S., et al. (2004). Osteopontin as an adjunct to CA125 in detecting recurrent ovarian cancer. Clinical Cancer Research, 10, 3474–3478.CrossRefPubMed Schorge, J. O., Drake, R. D., Lee, H., Skates, S. J., Rajanbabu, R., Miller, D. S., et al. (2004). Osteopontin as an adjunct to CA125 in detecting recurrent ovarian cancer. Clinical Cancer Research, 10, 3474–3478.CrossRefPubMed
83.
go back to reference Hassan, R., Remaley, A. T., Sampson, M. L., Zhang, J., Cox, D. D., Pingpank, J., et al. (2006). Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Imaging, Diagnosis, Prognosis, 12(2), 447–453. Hassan, R., Remaley, A. T., Sampson, M. L., Zhang, J., Cox, D. D., Pingpank, J., et al. (2006). Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Imaging, Diagnosis, Prognosis, 12(2), 447–453.
84.
go back to reference Moradi, H., Ahmad, A., Sheperdson, D., Vuong, N. H., Niedbala, G., Libni, E., et al. (2017). Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells. Journal of Biophotonics, 10, 1327–1334.CrossRefPubMed Moradi, H., Ahmad, A., Sheperdson, D., Vuong, N. H., Niedbala, G., Libni, E., et al. (2017). Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells. Journal of Biophotonics, 10, 1327–1334.CrossRefPubMed
85.
go back to reference Beier, B. D., & Berger, A. J. (2009). Method for automated background subtraction from Raman spectra containing known contaminants. Analyst, 134(6), 1198–1202.CrossRefPubMed Beier, B. D., & Berger, A. J. (2009). Method for automated background subtraction from Raman spectra containing known contaminants. Analyst, 134(6), 1198–1202.CrossRefPubMed
86.
go back to reference De Gelder, J., De Gussem, K., Vandenabeele, P., & Moens, L. (2007). Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy, 38(9), 1133–1147.CrossRef De Gelder, J., De Gussem, K., Vandenabeele, P., & Moens, L. (2007). Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy, 38(9), 1133–1147.CrossRef
87.
go back to reference Godwin, A. K., Meister, A., O’Dwyer, P. J., Huang, C. S., Hamilton, T. C., & Anderson, M. E. (1992). High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proceedings of the National Academy of Sciences of the United States of America, 89(7), 3070–3074.CrossRefPubMedPubMedCentral Godwin, A. K., Meister, A., O’Dwyer, P. J., Huang, C. S., Hamilton, T. C., & Anderson, M. E. (1992). High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proceedings of the National Academy of Sciences of the United States of America, 89(7), 3070–3074.CrossRefPubMedPubMedCentral
88.
go back to reference Hamilton, T. C., Winker, M. A., Louie, K. G., Batist, G., Behrens, B. C., Tsuruo, T., et al. (1985). Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochemical Pharmacology, 34(15), 2583–2586.CrossRefPubMed Hamilton, T. C., Winker, M. A., Louie, K. G., Batist, G., Behrens, B. C., Tsuruo, T., et al. (1985). Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochemical Pharmacology, 34(15), 2583–2586.CrossRefPubMed
89.
go back to reference Behrens, B. C., Hamilton, T. C., Masuda, H., Grotzinger, K. R., Whang-Peng, J., Louie, K. G., et al. (1987). Characterization of a cis-diamminedichloroplatinum (II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Research, 47, 414–418.PubMed Behrens, B. C., Hamilton, T. C., Masuda, H., Grotzinger, K. R., Whang-Peng, J., Louie, K. G., et al. (1987). Characterization of a cis-diamminedichloroplatinum (II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Research, 47, 414–418.PubMed
92.
go back to reference Kast, R. E., Tucker, S. C., Killian, K., Trexler, M., Honn, K. V., & Auner, G. W. (2014). Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer and Metastasis Reviews, 33(2–3), 673–693.CrossRefPubMed Kast, R. E., Tucker, S. C., Killian, K., Trexler, M., Honn, K. V., & Auner, G. W. (2014). Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer and Metastasis Reviews, 33(2–3), 673–693.CrossRefPubMed
93.
go back to reference McAughtrie, S., Faulds, K., & Graham, D. (2014). Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 21, 40–53.CrossRef McAughtrie, S., Faulds, K., & Graham, D. (2014). Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 21, 40–53.CrossRef
94.
go back to reference Kong, K., Kendall, C., Stone, N., & Notingher, I. (2015). Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Advanced Drug Delivery Reviews, 89, 121–134.CrossRefPubMed Kong, K., Kendall, C., Stone, N., & Notingher, I. (2015). Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Advanced Drug Delivery Reviews, 89, 121–134.CrossRefPubMed
95.
go back to reference Corsetti, S., Rabl, T., McGloin, D., & Nabi, G. (2018). Raman spectroscopy for accurately characterizing biomolecular changes in androgen-independent prostate cancer cells. Journal of Biophotonics, 11(3). Corsetti, S., Rabl, T., McGloin, D., & Nabi, G. (2018). Raman spectroscopy for accurately characterizing biomolecular changes in androgen-independent prostate cancer cells. Journal of Biophotonics, 11(3).
96.
go back to reference Aubertin, K., Trinh, V. Q., Jermyn, M., Baksic, P., Grosset, A. A., Desroches, J., et al. Mesoscopic characterization of prostate cancer using Raman spectroscopy: potential for diagnostics and therapeutics. BJU International. Aubertin, K., Trinh, V. Q., Jermyn, M., Baksic, P., Grosset, A. A., Desroches, J., et al. Mesoscopic characterization of prostate cancer using Raman spectroscopy: potential for diagnostics and therapeutics. BJU International.
97.
go back to reference Lernhardt, W., Fiedler, M., Lasitschka, F., Kremling, H., Zinnhammer, F., Autschbach, F., et al. (2016). Raman micro-spectroscopy: potential for diagnosis and prediction of prostate cancer outcome. European Urology Supplements, 15(6), 145–146.CrossRef Lernhardt, W., Fiedler, M., Lasitschka, F., Kremling, H., Zinnhammer, F., Autschbach, F., et al. (2016). Raman micro-spectroscopy: potential for diagnosis and prediction of prostate cancer outcome. European Urology Supplements, 15(6), 145–146.CrossRef
98.
go back to reference Li, S., Zhang, Y., Xu, J., Li, L., Zeng, Q., Lin, L., et al. (2014). Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Applied Physics Letters, 105(9), 091104.CrossRef Li, S., Zhang, Y., Xu, J., Li, L., Zeng, Q., Lin, L., et al. (2014). Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Applied Physics Letters, 105(9), 091104.CrossRef
99.
go back to reference Medipally, D. K., Maguire, A., Bryant, J., Armstrong, J., Dunne, M., Finn, M., et al. (2017). Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients. Analyst, 142(8), 1216–1226.CrossRefPubMed Medipally, D. K., Maguire, A., Bryant, J., Armstrong, J., Dunne, M., Finn, M., et al. (2017). Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients. Analyst, 142(8), 1216–1226.CrossRefPubMed
100.
go back to reference Del Mistro, G., Cervo, S., Mansutti, E., Spizzo, R., Colombatti, A., Belmonte, P., et al. (2015). Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study. Analytical and Bioanalytical Chemistry, 407(12), 3271–3275.CrossRefPubMed Del Mistro, G., Cervo, S., Mansutti, E., Spizzo, R., Colombatti, A., Belmonte, P., et al. (2015). Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study. Analytical and Bioanalytical Chemistry, 407(12), 3271–3275.CrossRefPubMed
101.
go back to reference Harmsen, S., Huang, R., Wall, M. A., Karabeber, H., Samii, J. M., Spaliviero, M., et al. (2015). Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Science Translational Medicine, 7(271), 271ra277.CrossRef Harmsen, S., Huang, R., Wall, M. A., Karabeber, H., Samii, J. M., Spaliviero, M., et al. (2015). Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Science Translational Medicine, 7(271), 271ra277.CrossRef
102.
go back to reference Andreou, C., Kishore, S. A., & Kircher, M. F. (2015). Surface-enhanced Raman spectroscopy: a new modality for cancer imaging. Journal of Nuclear Medicine, 56(9), 1295–1299.CrossRefPubMed Andreou, C., Kishore, S. A., & Kircher, M. F. (2015). Surface-enhanced Raman spectroscopy: a new modality for cancer imaging. Journal of Nuclear Medicine, 56(9), 1295–1299.CrossRefPubMed
103.
go back to reference Lindahl, O. A., Nyberg, M., Jalkanen, V., & Ramser, K. (2015). Prostate cancer detection using a combination of Raman spectroscopy and stiffness sensing. In: 1st global conference on biomedical engineering & 9th Asian-Pacific conference on medical and biological engineering (pp. 267–270). Springer. Lindahl, O. A., Nyberg, M., Jalkanen, V., & Ramser, K. (2015). Prostate cancer detection using a combination of Raman spectroscopy and stiffness sensing. In: 1st global conference on biomedical engineering & 9th Asian-Pacific conference on medical and biological engineering (pp. 267–270). Springer.
104.
go back to reference Nyberg, M., Jalkanen, V., Ramser, K., Ljungberg, B., Bergh, A., & Lindahl, O. A. (2015). Dual-modality probe intended for prostate cancer detection combining Raman spectroscopy and tactile resonance technology—discrimination of normal human prostate tissues ex vivo. Journal of Medical Engineering & Technology, 39(3), 198–207.CrossRef Nyberg, M., Jalkanen, V., Ramser, K., Ljungberg, B., Bergh, A., & Lindahl, O. A. (2015). Dual-modality probe intended for prostate cancer detection combining Raman spectroscopy and tactile resonance technology—discrimination of normal human prostate tissues ex vivo. Journal of Medical Engineering & Technology, 39(3), 198–207.CrossRef
108.
go back to reference Schie, I. W., Kiselev, R., Krafft, C., & Poppa, J. (2016). Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification. Analyst, 141(23), 6387–6395.CrossRefPubMed Schie, I. W., Kiselev, R., Krafft, C., & Poppa, J. (2016). Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification. Analyst, 141(23), 6387–6395.CrossRefPubMed
109.
go back to reference Li, J., Gu, D., Lee, S. S. Y., Song, B., Bandyopadhyay, S., Chen, S., Konieczny, S. F., Ratliff, T. L., Liu, X., Xie, J., & Cheng, J. X. (2016). Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene, 35(50), 6378–6388.CrossRefPubMedPubMedCentral Li, J., Gu, D., Lee, S. S. Y., Song, B., Bandyopadhyay, S., Chen, S., Konieczny, S. F., Ratliff, T. L., Liu, X., Xie, J., & Cheng, J. X. (2016). Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene, 35(50), 6378–6388.CrossRefPubMedPubMedCentral
110.
go back to reference Pandya, A. K., Serhatkulu, G. K., Cao, A., Kast, R. E., Dai, H., Rabah, R., Poulik, J., Banerjee, S., Naik, R., Adsay, V., Auner, G. W., Klein, M. D., Thakur, J. S., & Sarkar, F. H. (2008). Evaluation of pancreatic cancer with Raman spectroscopy in a mouse model. Pancreas, 36(2), e1–e8.CrossRefPubMed Pandya, A. K., Serhatkulu, G. K., Cao, A., Kast, R. E., Dai, H., Rabah, R., Poulik, J., Banerjee, S., Naik, R., Adsay, V., Auner, G. W., Klein, M. D., Thakur, J. S., & Sarkar, F. H. (2008). Evaluation of pancreatic cancer with Raman spectroscopy in a mouse model. Pancreas, 36(2), e1–e8.CrossRefPubMed
111.
go back to reference Harmsen, S., Ruimin Huang, R., Wall, M. A., Karabeber, H., Samii, J. M., Spaliviero, M., White, J. R., Monette, S., O’Connor, R., Pitter, K. L., Sastra, S. A., Saborowski, M., Holland, E. C., Singer, S., Olive, K. P., Lowe, S. W., Blasberg, R. G., & Kircher, M. F. (2015). Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Science Translational Medicine, 7(271), 271ra7.CrossRefPubMedPubMedCentral Harmsen, S., Ruimin Huang, R., Wall, M. A., Karabeber, H., Samii, J. M., Spaliviero, M., White, J. R., Monette, S., O’Connor, R., Pitter, K. L., Sastra, S. A., Saborowski, M., Holland, E. C., Singer, S., Olive, K. P., Lowe, S. W., Blasberg, R. G., & Kircher, M. F. (2015). Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Science Translational Medicine, 7(271), 271ra7.CrossRefPubMedPubMedCentral
113.
go back to reference Wang, G., Lipert, R. J., Jain, M., Kaur, S., Chakraboty, S., Torres, M. P., Batra, S. K., Brand, R. E., & Porter, M. D. (2011). Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Analytical Chemistry, 83(7), 2554–2561.CrossRefPubMedPubMedCentral Wang, G., Lipert, R. J., Jain, M., Kaur, S., Chakraboty, S., Torres, M. P., Batra, S. K., Brand, R. E., & Porter, M. D. (2011). Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Analytical Chemistry, 83(7), 2554–2561.CrossRefPubMedPubMedCentral
114.
go back to reference Banaei, N., Foley, A., Houghton, J. M., Sun, Y., & Byung Kim, B. (2017). Multiplex detection of pancreatic cancer biomarkers using a SERS-based immunoassay. Nanotechnology, 28, 455101.CrossRefPubMed Banaei, N., Foley, A., Houghton, J. M., Sun, Y., & Byung Kim, B. (2017). Multiplex detection of pancreatic cancer biomarkers using a SERS-based immunoassay. Nanotechnology, 28, 455101.CrossRefPubMed
116.
go back to reference Kamphausen, B. H., Toellner, T., & Ruschenburg, I. (2003). The value of ultrasound-guided fine-needle aspiration cytology of the breast: 354 cases with cytohistological correlation. Anticancer Research, 23(3C), 3009–3013.PubMed Kamphausen, B. H., Toellner, T., & Ruschenburg, I. (2003). The value of ultrasound-guided fine-needle aspiration cytology of the breast: 354 cases with cytohistological correlation. Anticancer Research, 23(3C), 3009–3013.PubMed
117.
go back to reference Morris, K. T., Vetto, J. T., Petty, J. K., Lum, S. S., Schmidt, W. A., Toth-Fejel, S., et al. (2002). A new score for the evaluation of palpable breast masses in women under age 40. American Journal of Surgery, 184(4), 346–347.CrossRefPubMed Morris, K. T., Vetto, J. T., Petty, J. K., Lum, S. S., Schmidt, W. A., Toth-Fejel, S., et al. (2002). A new score for the evaluation of palpable breast masses in women under age 40. American Journal of Surgery, 184(4), 346–347.CrossRefPubMed
118.
go back to reference Steinberg, J. L., Trudeau, M. E., Ryder, D. E., Fishell, E., Chapman, J. A., McCready, D. R., et al. (1996). Combined fine-needle aspiration, physical examination and mammography in the diagnosis of palpable breast masses: their relation to outcome for women with primary breast cancer. Canadian Journal of Surgery, 39(4), 302–311.PubMedCentral Steinberg, J. L., Trudeau, M. E., Ryder, D. E., Fishell, E., Chapman, J. A., McCready, D. R., et al. (1996). Combined fine-needle aspiration, physical examination and mammography in the diagnosis of palpable breast masses: their relation to outcome for women with primary breast cancer. Canadian Journal of Surgery, 39(4), 302–311.PubMedCentral
119.
go back to reference Johnson, J. M., Dalton, R. R., Wester, S. M., Landercasper, J., & Lambert, P. J. (1999). Histological correlation of microcalcifications in breast biopsy specimens. Archives of Surgery, 134(7), 712–715 discussion 715-716.CrossRefPubMed Johnson, J. M., Dalton, R. R., Wester, S. M., Landercasper, J., & Lambert, P. J. (1999). Histological correlation of microcalcifications in breast biopsy specimens. Archives of Surgery, 134(7), 712–715 discussion 715-716.CrossRefPubMed
120.
go back to reference Liu, C., Alfano, R., Sha, W., Zhu, H., Akins, D., Cleary, J., et al. (1991). Human breast tissues studied by IR Fourier-transform Raman spectroscopy. In: Conference on lasers and electro-optics (pp. CWF51). Optical Society of America. Liu, C., Alfano, R., Sha, W., Zhu, H., Akins, D., Cleary, J., et al. (1991). Human breast tissues studied by IR Fourier-transform Raman spectroscopy. In: Conference on lasers and electro-optics (pp. CWF51). Optical Society of America.
121.
122.
go back to reference Redd, D. C., Feng, Z. C., Yue, K. T., & Gansler, T. S. (1993). Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis. Applied Spectroscopy, 47(6), 787–791.CrossRef Redd, D. C., Feng, Z. C., Yue, K. T., & Gansler, T. S. (1993). Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis. Applied Spectroscopy, 47(6), 787–791.CrossRef
123.
go back to reference Frank, C. J., McCreery, R. L., & Redd, D. C. (1995). Raman spectroscopy of normal and diseased human breast tissues. Analytical Chemistry, 67(5), 777–783.CrossRefPubMed Frank, C. J., McCreery, R. L., & Redd, D. C. (1995). Raman spectroscopy of normal and diseased human breast tissues. Analytical Chemistry, 67(5), 777–783.CrossRefPubMed
124.
go back to reference Manoharan, R., Wang, Y., & Feld, M. S. (1996). Histochemical analysis of biological tissues using Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 52(2), 215–249.CrossRef Manoharan, R., Wang, Y., & Feld, M. S. (1996). Histochemical analysis of biological tissues using Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 52(2), 215–249.CrossRef
125.
go back to reference Haka, A. S., Shafer-Peltier, K. E., Fitzmaurice, M., Crowe, J., Dasari, R. R., & Feld, M. S. (2002). Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Research, 62(18), 5375–5380.PubMed Haka, A. S., Shafer-Peltier, K. E., Fitzmaurice, M., Crowe, J., Dasari, R. R., & Feld, M. S. (2002). Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Research, 62(18), 5375–5380.PubMed
128.
go back to reference Mohs, A. M., Mancini, M. C., Singhal, S., Provenzale, J. M., Leyland-Jones, B., Wang, M. D., et al. (2010). Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Analytical Chemistry, 82(21), 9058–9065. https://doi.org/10.1021/ac102058k.CrossRefPubMed Mohs, A. M., Mancini, M. C., Singhal, S., Provenzale, J. M., Leyland-Jones, B., Wang, M. D., et al. (2010). Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Analytical Chemistry, 82(21), 9058–9065. https://​doi.​org/​10.​1021/​ac102058k.CrossRefPubMed
133.
go back to reference Keller, M. D., Majumder, S. K., & Mahadevan-Jansen, A. (2009). Spatially offset Raman spectroscopy of layered soft tissues. Optics Letters, 34(7), 926–928.CrossRefPubMed Keller, M. D., Majumder, S. K., & Mahadevan-Jansen, A. (2009). Spatially offset Raman spectroscopy of layered soft tissues. Optics Letters, 34(7), 926–928.CrossRefPubMed
135.
136.
go back to reference Kneipp, J., Schut, T. B., Kliffen, M., Menke-Pluijmers, M., & Puppels, G. (2003). Characterization of breast duct epithelia: a Raman spectroscopic study. Vibrational Spectroscopy, 32(1), 67–74.CrossRef Kneipp, J., Schut, T. B., Kliffen, M., Menke-Pluijmers, M., & Puppels, G. (2003). Characterization of breast duct epithelia: a Raman spectroscopic study. Vibrational Spectroscopy, 32(1), 67–74.CrossRef
137.
go back to reference Yu, G., Xu, X. X., Niu, Y., Wang, B., Song, Z. F., & Zhang, C. P. (2004). Studies on human breast cancer tissues with Raman microspectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi, 24(11), 1359–1362.PubMed Yu, G., Xu, X. X., Niu, Y., Wang, B., Song, Z. F., & Zhang, C. P. (2004). Studies on human breast cancer tissues with Raman microspectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi, 24(11), 1359–1362.PubMed
138.
go back to reference Yan, X. L., Dong, R. X., Wang, Q. G., Chen, S. F., Zhang, Z. W., Zhang, X. J., et al. (2005). Raman spectra of cell from breast cancer patients. Guang Pu Xue Yu Guang Pu Fen Xi, 25(1), 58–61.PubMed Yan, X. L., Dong, R. X., Wang, Q. G., Chen, S. F., Zhang, Z. W., Zhang, X. J., et al. (2005). Raman spectra of cell from breast cancer patients. Guang Pu Xue Yu Guang Pu Fen Xi, 25(1), 58–61.PubMed
140.
141.
144.
go back to reference Abramczyk, H., Surmacki, J., Kopec, M., Olejnik, A. K., Lubecka-Pietruszewska, K., & Fabianowska-Majewska, K. (2015). The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst, 140(7), 2224–2235. https://doi.org/10.1039/c4an01875c.CrossRefPubMed Abramczyk, H., Surmacki, J., Kopec, M., Olejnik, A. K., Lubecka-Pietruszewska, K., & Fabianowska-Majewska, K. (2015). The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst, 140(7), 2224–2235. https://​doi.​org/​10.​1039/​c4an01875c.CrossRefPubMed
151.
go back to reference Hedegaard, M., Krafft, C., Ditzel, H. J., Johansen, L. E., Hassing, S., & Popp, J. (2010). Discriminating isogenic cancer cells and identifying altered unsaturated fatty acid content as associated with metastasis status, using k-means clustering and partial least squares-discriminant analysis of Raman maps. Analytical Chemistry, 82(7), 2797–2802. https://doi.org/10.1021/ac902717d.CrossRefPubMed Hedegaard, M., Krafft, C., Ditzel, H. J., Johansen, L. E., Hassing, S., & Popp, J. (2010). Discriminating isogenic cancer cells and identifying altered unsaturated fatty acid content as associated with metastasis status, using k-means clustering and partial least squares-discriminant analysis of Raman maps. Analytical Chemistry, 82(7), 2797–2802. https://​doi.​org/​10.​1021/​ac902717d.CrossRefPubMed
152.
go back to reference Abramczyk, H., Surmacki, J., Kopec, M., Olejnik, A. K., Kaufman-Szymczyk, A., & Fabianowska-Majewska, K. (2016). Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231. Analyst, 141(19), 5646–5658. https://doi.org/10.1039/c6an00859c.CrossRefPubMed Abramczyk, H., Surmacki, J., Kopec, M., Olejnik, A. K., Kaufman-Szymczyk, A., & Fabianowska-Majewska, K. (2016). Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231. Analyst, 141(19), 5646–5658. https://​doi.​org/​10.​1039/​c6an00859c.CrossRefPubMed
153.
155.
go back to reference Williams, S. C. (2013). Circulating tumor cells. Proceedings of the National Academy of Sciences, 110(13), 4861–4862.CrossRef Williams, S. C. (2013). Circulating tumor cells. Proceedings of the National Academy of Sciences, 110(13), 4861–4862.CrossRef
156.
go back to reference Plaks, V., Koopman, C. D., & Werb, Z. (2013). Circulating tumor cells. Science, 341(6151), 1186–1188.CrossRefPubMed Plaks, V., Koopman, C. D., & Werb, Z. (2013). Circulating tumor cells. Science, 341(6151), 1186–1188.CrossRefPubMed
157.
go back to reference Yu, M., Statt, S., Toner, M., Maheswaran, S., & Haber, D. A. (2011). Circulating tumor cells: approaches to isolation and characterization. Journal of Cell Biology, 192(3), 373–382.CrossRef Yu, M., Statt, S., Toner, M., Maheswaran, S., & Haber, D. A. (2011). Circulating tumor cells: approaches to isolation and characterization. Journal of Cell Biology, 192(3), 373–382.CrossRef
158.
go back to reference Cohen, S. J., Punt, C. J., Iannotti, N., Saidman, B. H., Sabbath, K. D., Gabrail, N. Y., … Meropol, N. J. (2008). Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 26(19), 3213–3221. Cohen, S. J., Punt, C. J., Iannotti, N., Saidman, B. H., Sabbath, K. D., Gabrail, N. Y., … Meropol, N. J. (2008). Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 26(19), 3213–3221.
159.
go back to reference Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., … Hayes, D. F. (2004). Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine, (351), 781–791. Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., … Hayes, D. F. (2004). Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine, (351), 781–791.
160.
go back to reference de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., … Raghavan, D. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14(19), 6302–6309. de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., … Raghavan, D. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14(19), 6302–6309.
161.
go back to reference Stott, S., Hsu, C.-H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. a., … Toner, M. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18392–18397. Stott, S., Hsu, C.-H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. a., … Toner, M. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18392–18397.
162.
go back to reference Lianidou, E. S., & Markou, A. (2011). Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clinical Chemistry, 57(9), 1242–1255.CrossRefPubMed Lianidou, E. S., & Markou, A. (2011). Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clinical Chemistry, 57(9), 1242–1255.CrossRefPubMed
163.
go back to reference Paterlini-Brechot, P., & Benali, N. L. (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Letters, 253, 180–204.CrossRefPubMed Paterlini-Brechot, P., & Benali, N. L. (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Letters, 253, 180–204.CrossRefPubMed
164.
go back to reference Sha, M. Y., Xu, H., Natan, M. J., & Cromer, R. (2008). Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. Journal of American Chemical Society, 130(51), 17214–17215.CrossRef Sha, M. Y., Xu, H., Natan, M. J., & Cromer, R. (2008). Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. Journal of American Chemical Society, 130(51), 17214–17215.CrossRef
165.
go back to reference Vendrell, M., Maiti, K. K., Dhaliwal, K., & Chang, Y.-T. (2013). Surface-enhanced Raman scattering in cancer detection and imaging. Trends in Biotechnology, 31(4), 249–259.CrossRefPubMed Vendrell, M., Maiti, K. K., Dhaliwal, K., & Chang, Y.-T. (2013). Surface-enhanced Raman scattering in cancer detection and imaging. Trends in Biotechnology, 31(4), 249–259.CrossRefPubMed
166.
go back to reference Neugebauer, U., Bocklitz, T., Clement, J. H., Krafft, C., & Popp, J. (2010). Towards detection and identification of circulating tumour cells using Raman spectroscopy. Analyst, 135, 3178–3182.CrossRefPubMed Neugebauer, U., Bocklitz, T., Clement, J. H., Krafft, C., & Popp, J. (2010). Towards detection and identification of circulating tumour cells using Raman spectroscopy. Analyst, 135, 3178–3182.CrossRefPubMed
167.
go back to reference Wang, X., Qian, X., Beitler, J., Chen, Z. G., Khuri, F. R., Lewis, M. M., … Shin, D. M. (2011). Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nannoparticles. Cancer Research, (71), 1526–1532. Wang, X., Qian, X., Beitler, J., Chen, Z. G., Khuri, F. R., Lewis, M. M., … Shin, D. M. (2011). Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nannoparticles. Cancer Research, (71), 1526–1532.
168.
go back to reference Ermakov, I. V., Sharifzadeh, M., & Gellermann, W. (2009). Raman spectroscopy of ocular tissue. In P. Matousek & M. D. Morris (Eds.), Emerging Raman applications and techniques in biomedical and pharmaceutical fields (pp. 285–314). Dordrecht: Springer. Ermakov, I. V., Sharifzadeh, M., & Gellermann, W. (2009). Raman spectroscopy of ocular tissue. In P. Matousek & M. D. Morris (Eds.), Emerging Raman applications and techniques in biomedical and pharmaceutical fields (pp. 285–314). Dordrecht: Springer.
169.
go back to reference Hosseini, K., March, W., Jongsma, F., Hendrikse, F., & Motamedi, M. (2002). Noninvasive detection of ganciclovir in ocular tissue by raman spectroscopy: implication for monitoring of drug release. Journal of Ocular Pharmacology and Therapeutics, 277–285. Hosseini, K., March, W., Jongsma, F., Hendrikse, F., & Motamedi, M. (2002). Noninvasive detection of ganciclovir in ocular tissue by raman spectroscopy: implication for monitoring of drug release. Journal of Ocular Pharmacology and Therapeutics, 277–285.
170.
go back to reference Bauer, N., Motamedi, M., Wicksted, J. P., March, W. F., Webers, C., & Hendrikse, F. (1999). Non-invasive assessment of ocular pharmacokinetics using confocal Raman spectroscopy. Journal of Ocular Pharmacology and Therapeutics, 123–134. Bauer, N., Motamedi, M., Wicksted, J. P., March, W. F., Webers, C., & Hendrikse, F. (1999). Non-invasive assessment of ocular pharmacokinetics using confocal Raman spectroscopy. Journal of Ocular Pharmacology and Therapeutics, 123–134.
173.
go back to reference Barroso, E., Smits, R., Bakker Schut, T., ten Hove, I., Hardillo, J., Wolvius, E., … Puppels, G. (2015). Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy. Analytical Chemistry, 87(4), 2419–2426. https://doi.org/10.1021/ac504362y. Barroso, E., Smits, R., Bakker Schut, T., ten Hove, I., Hardillo, J., Wolvius, E., … Puppels, G. (2015). Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy. Analytical Chemistry, 87(4), 2419–2426. https://​doi.​org/​10.​1021/​ac504362y.
174.
go back to reference Singh, S., Deshmukh, A., Chaturvedi, P., & Chilakapati, M. K. (2012). In vivo Raman spectroscopy for oral cancers diagnosis. Proceedings of SPIE, 8219, 82190K1.CrossRef Singh, S., Deshmukh, A., Chaturvedi, P., & Chilakapati, M. K. (2012). In vivo Raman spectroscopy for oral cancers diagnosis. Proceedings of SPIE, 8219, 82190K1.CrossRef
Metadata
Title
Applications of Raman spectroscopy in cancer diagnosis
Authors
Gregory W. Auner
S. Kiran Koya
Changhe Huang
Brandy Broadbent
Micaela Trexler
Zachary Auner
Angela Elias
Katlyn Curtin Mehne
Michelle A. Brusatori
Publication date
01-12-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9770-9

Other articles of this Issue 4/2018

Cancer and Metastasis Reviews 4/2018 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine