Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Raman imaging at biological interfaces: applications in breast cancer diagnosis

Authors: Jakub Surmacki, Jacek Musial, Radzislaw Kordek, Halina Abramczyk

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

One of the most important areas of Raman medical diagnostics is identification and characterization of cancerous and noncancerous tissues. The methods based on Raman scattering has shown significant potential for probing human breast tissue to provide valuable information for early diagnosis of breast cancer. A vibrational fingerprint from the biological tissue provides information which can be used to identify, characterize and discriminate structures in breast tissue, both in the normal and cancerous environment.

Results

The paper reviews recent progress in understanding structure and interactions at biological interfaces of the human tissue by using confocal Raman imaging and IR spectroscopy. The important differences between the noncancerous and cancerous human breast tissues were found in regions characteristic for vibrations of carotenoids, fatty acids, proteins, and interfacial water. Particular attention was paid to the role played by unsaturated fatty acids and their derivatives as well as carotenoids and interfacial water.

Conclusions

We demonstrate that Raman imaging has reached a clinically relevant level in regard to breast cancer diagnosis applications. The results presented in the paper may have serious implications on understanding mechanisms of interactions in living cells under realistically crowded conditions of biological tissue.
Appendix
Available only for authorised users
Literature
1.
go back to reference Obi N, Waldmann A, Schäfer F, Schreer I, Katalinic A: Impact of the quality assured mammadiagnostic (QuaMaDi) programme on survival of breast cancer patients. Cancer Epidemiol. 2011, 35: 286-292. 10.1016/j.canep.2010.09.001CrossRefPubMed Obi N, Waldmann A, Schäfer F, Schreer I, Katalinic A: Impact of the quality assured mammadiagnostic (QuaMaDi) programme on survival of breast cancer patients. Cancer Epidemiol. 2011, 35: 286-292. 10.1016/j.canep.2010.09.001CrossRefPubMed
2.
go back to reference Bird RE, Wallace TW, Yankaskas BC: Analysis of Cancers Missed at Screening Mammography. Radiology. 1992, 184: 613-617.CrossRefPubMed Bird RE, Wallace TW, Yankaskas BC: Analysis of Cancers Missed at Screening Mammography. Radiology. 1992, 184: 613-617.CrossRefPubMed
3.
go back to reference Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW: Ten-Year Risk of False Positive Screening Mammograms and Clinical Breast Examinations. N Engl J Med. 1998, 338: 1089-1096. 10.1056/NEJM199804163381601CrossRefPubMed Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW: Ten-Year Risk of False Positive Screening Mammograms and Clinical Breast Examinations. N Engl J Med. 1998, 338: 1089-1096. 10.1056/NEJM199804163381601CrossRefPubMed
4.
go back to reference Takei J, Tsunoda-Shimizu H, Kikuchi M, Kawasaki T, Yagata H, Tsugawa K, Suzuki K, Nakamura S, Saida Y: Clinical implications of architectural distortion visualized by breast ultrasonography. Breast Cancer. 2009, 16: 132-135. 10.1007/s12282-008-0085-5CrossRefPubMed Takei J, Tsunoda-Shimizu H, Kikuchi M, Kawasaki T, Yagata H, Tsugawa K, Suzuki K, Nakamura S, Saida Y: Clinical implications of architectural distortion visualized by breast ultrasonography. Breast Cancer. 2009, 16: 132-135. 10.1007/s12282-008-0085-5CrossRefPubMed
5.
go back to reference Le-Petross HT, Shetty MK: Magnetic resonance imaging and breast ultrasonography as an adjunct to mammographic screening in high-risk patients. Semin Ultrasound CT MR. 2011, 32: 266-272. 10.1053/j.sult.2011.03.005CrossRefPubMed Le-Petross HT, Shetty MK: Magnetic resonance imaging and breast ultrasonography as an adjunct to mammographic screening in high-risk patients. Semin Ultrasound CT MR. 2011, 32: 266-272. 10.1053/j.sult.2011.03.005CrossRefPubMed
6.
go back to reference Avril N, Adler LP: F-18 fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. Radiol Clin North Am. 2007, 45: 645-657. 10.1016/j.rcl.2007.05.004CrossRefPubMed Avril N, Adler LP: F-18 fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. Radiol Clin North Am. 2007, 45: 645-657. 10.1016/j.rcl.2007.05.004CrossRefPubMed
7.
go back to reference Nass SJ, Henderson IC, Lashof JC: Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer. 2001, Washington, DC: National Academy Press. Nass SJ, Henderson IC, Lashof JC: Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer. 2001, Washington, DC: National Academy Press.
8.
go back to reference Abreu MC, Almeida P, Balau F, Ferreira NC, Fetal S, Fraga F, Martins M, Matela N, Moura R, Ortgao C, Peralta L, Rato P, Ribeiro R, Rodriques P, Santos AI, Trindade A, Varela J: Clear-PEM: A dedicated PET camera for improved breast cancer detection. Radiat Prot Dosim. 2005, 116: 208-210. 10.1093/rpd/nci039.CrossRef Abreu MC, Almeida P, Balau F, Ferreira NC, Fetal S, Fraga F, Martins M, Matela N, Moura R, Ortgao C, Peralta L, Rato P, Ribeiro R, Rodriques P, Santos AI, Trindade A, Varela J: Clear-PEM: A dedicated PET camera for improved breast cancer detection. Radiat Prot Dosim. 2005, 116: 208-210. 10.1093/rpd/nci039.CrossRef
9.
go back to reference Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE: Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys. 2008, 35: 2443-2451. 10.1118/1.2919078PubMedCentralCrossRefPubMed Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE: Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys. 2008, 35: 2443-2451. 10.1118/1.2919078PubMedCentralCrossRefPubMed
10.
go back to reference Schulz RB, Peter J, Semmler W, D’Andrea C, Valentini G, Cubeddu R: Comparison of noncontact and fiber-based fluorescence-mediated tomography. Opt Lett. 2006, 31: 769-771. 10.1364/OL.31.000769CrossRefPubMed Schulz RB, Peter J, Semmler W, D’Andrea C, Valentini G, Cubeddu R: Comparison of noncontact and fiber-based fluorescence-mediated tomography. Opt Lett. 2006, 31: 769-771. 10.1364/OL.31.000769CrossRefPubMed
11.
go back to reference Mienkina MP, Friedrich CS, Gerhardt NC, Beckmann MF, Schiffner MF, Hofmann MR, Schmitz G: Multispectral photo-acoustic coded excitation imaging using unipolar orthogonal Golay codes. Opt Ex. 2010, 18: 9076-9087. 10.1364/OE.18.009076.CrossRef Mienkina MP, Friedrich CS, Gerhardt NC, Beckmann MF, Schiffner MF, Hofmann MR, Schmitz G: Multispectral photo-acoustic coded excitation imaging using unipolar orthogonal Golay codes. Opt Ex. 2010, 18: 9076-9087. 10.1364/OE.18.009076.CrossRef
12.
go back to reference Ramaz F, Forget BC, Atlan M, Boccara AC, Gross M, Delaye P, Roosen G: Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues. Opt Exp. 2004, 12: 5469-5474. 10.1364/OPEX.12.005469.CrossRef Ramaz F, Forget BC, Atlan M, Boccara AC, Gross M, Delaye P, Roosen G: Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues. Opt Exp. 2004, 12: 5469-5474. 10.1364/OPEX.12.005469.CrossRef
13.
go back to reference Denk W, Strickler JH, Webb WW: Two-photon laser scanning fluorescence microscopy. Science. 1990, 248: 73-76. 10.1126/science.2321027CrossRefPubMed Denk W, Strickler JH, Webb WW: Two-photon laser scanning fluorescence microscopy. Science. 1990, 248: 73-76. 10.1126/science.2321027CrossRefPubMed
14.
go back to reference Dieing T, Hollricher O, Toporski J: Confocal Raman Microscopy. 2011, Dordrecht London New York: Springer Heidelberg, ISBN: 978-3-642-12521-8.CrossRef Dieing T, Hollricher O, Toporski J: Confocal Raman Microscopy. 2011, Dordrecht London New York: Springer Heidelberg, ISBN: 978-3-642-12521-8.CrossRef
15.
go back to reference Abramczyk H, Surmacki J, Brożek–Płuska B, Morawiec Z, Tazbir M: The hallmarks of breast cancer by Raman spectroscopy. J Mol Struc. 2009, 924–926: 175-182.CrossRef Abramczyk H, Surmacki J, Brożek–Płuska B, Morawiec Z, Tazbir M: The hallmarks of breast cancer by Raman spectroscopy. J Mol Struc. 2009, 924–926: 175-182.CrossRef
16.
go back to reference Brożek–Płuska B, Placek I, Kurczewski K, Morawiec Z, Tazbir M, Abramczyk H: Breast cancer diagnostics by Raman spectroscopy. J Mol Liquid. 2008, 141: 145-148. 10.1016/j.molliq.2008.02.015.CrossRef Brożek–Płuska B, Placek I, Kurczewski K, Morawiec Z, Tazbir M, Abramczyk H: Breast cancer diagnostics by Raman spectroscopy. J Mol Liquid. 2008, 141: 145-148. 10.1016/j.molliq.2008.02.015.CrossRef
17.
go back to reference Abramczyk H, Placek I, Brożek-Płuska B, Kurczewski K, Morawiec Z, Tazbir M: Human breast tissue cancer diagnosis by Raman spectroscopy. Spectroscopy. 2008, 22: 113-121. 10.1155/2008/842724.CrossRef Abramczyk H, Placek I, Brożek-Płuska B, Kurczewski K, Morawiec Z, Tazbir M: Human breast tissue cancer diagnosis by Raman spectroscopy. Spectroscopy. 2008, 22: 113-121. 10.1155/2008/842724.CrossRef
18.
go back to reference Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska-Gajewicz J, Kordek R: Hydrogen bonds of interfacial water in human breast cancer tissue compared to lipid and DNA interfaces. JBPC. 2011, 2: 158-169. 10.4236/jbpc.2011.22020.CrossRef Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska-Gajewicz J, Kordek R: Hydrogen bonds of interfacial water in human breast cancer tissue compared to lipid and DNA interfaces. JBPC. 2011, 2: 158-169. 10.4236/jbpc.2011.22020.CrossRef
19.
go back to reference Brozek-Pluska B, Jablonska-Gajewicz J, Kordek R, Abramczyk H: Phase transitions in oleic acid and in human breast tissue as studied by Raman spectroscopy and Raman imaging. J Med Chem. 2011, 54: 3386-3392. 10.1021/jm200180fCrossRefPubMed Brozek-Pluska B, Jablonska-Gajewicz J, Kordek R, Abramczyk H: Phase transitions in oleic acid and in human breast tissue as studied by Raman spectroscopy and Raman imaging. J Med Chem. 2011, 54: 3386-3392. 10.1021/jm200180fCrossRefPubMed
20.
go back to reference Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska J, Kordek R: The label-free Raman imaging of human breast cancer. J Mol Liq. 2011, 164: 123-131. 10.1016/j.molliq.2011.04.021.CrossRef Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska J, Kordek R: The label-free Raman imaging of human breast cancer. J Mol Liq. 2011, 164: 123-131. 10.1016/j.molliq.2011.04.021.CrossRef
21.
go back to reference Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska-Gajewicz J, Kordek R: Raman ‘optical biopsy’ of human breast cancer. Prog Biophys Mol Biol. 2012, 108: 74-81. 10.1016/j.pbiomolbio.2011.10.004CrossRefPubMed Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska-Gajewicz J, Kordek R: Raman ‘optical biopsy’ of human breast cancer. Prog Biophys Mol Biol. 2012, 108: 74-81. 10.1016/j.pbiomolbio.2011.10.004CrossRefPubMed
22.
go back to reference Santos L, Wolthuis R, Koljenovic S, Almeida RM, Puppels GJ: Fiber-optics probes for in-vivo Raman spectroscopy in the high wavenumber region. Anal Chem. 2005, 77: 6747-6752. 10.1021/ac0505730CrossRefPubMed Santos L, Wolthuis R, Koljenovic S, Almeida RM, Puppels GJ: Fiber-optics probes for in-vivo Raman spectroscopy in the high wavenumber region. Anal Chem. 2005, 77: 6747-6752. 10.1021/ac0505730CrossRefPubMed
23.
go back to reference Alfano RR, Liu CH, Sha WL, Zhu HR, Akins DL, Cleary J, Prudente R, Cellmer E: Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci. 1991, 4: 23-28. Alfano RR, Liu CH, Sha WL, Zhu HR, Akins DL, Cleary J, Prudente R, Cellmer E: Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci. 1991, 4: 23-28.
24.
go back to reference Frank CJ, Redd DCB, Gansler TS, McCreery RL: Characterization of human breast biopsy specimens with near-IR Raman spectroscopy. Anal Chem. 1994, 66: 319-326. 10.1021/ac00075a002CrossRefPubMed Frank CJ, Redd DCB, Gansler TS, McCreery RL: Characterization of human breast biopsy specimens with near-IR Raman spectroscopy. Anal Chem. 1994, 66: 319-326. 10.1021/ac00075a002CrossRefPubMed
25.
go back to reference Manoharan R, Shafer K, Perelman RT, Wu J, Chen K, Deinum G, Fitzmaurice M, Myles J, Crowe J, Dasari RR, Feld MS: Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging. Photochem Photobiol. 1998, 67: 15-22. 10.1111/j.1751-1097.1998.tb05160.xCrossRefPubMed Manoharan R, Shafer K, Perelman RT, Wu J, Chen K, Deinum G, Fitzmaurice M, Myles J, Crowe J, Dasari RR, Feld MS: Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging. Photochem Photobiol. 1998, 67: 15-22. 10.1111/j.1751-1097.1998.tb05160.xCrossRefPubMed
26.
go back to reference Motz JT, Gandhi SJ, Scepanovic OR, Haka AS, Kramer JR: Real-time Raman system for in vivo disease diagnosis. J Biomed Opt. 2005, 10: 031113-031117. 10.1117/1.1920247CrossRefPubMed Motz JT, Gandhi SJ, Scepanovic OR, Haka AS, Kramer JR: Real-time Raman system for in vivo disease diagnosis. J Biomed Opt. 2005, 10: 031113-031117. 10.1117/1.1920247CrossRefPubMed
27.
go back to reference Choo-Smith LP, Edwards HGM, Enditz HP, Kros JM, Heule F, Barr H, Robinson JS, Bruining HA, Puppels GJ: Medical applications of Raman spectroscopy: From proof of principle to clinical implementation. Biopolymers. 2002, 67: 1-9. 10.1002/bip.10064CrossRefPubMed Choo-Smith LP, Edwards HGM, Enditz HP, Kros JM, Heule F, Barr H, Robinson JS, Bruining HA, Puppels GJ: Medical applications of Raman spectroscopy: From proof of principle to clinical implementation. Biopolymers. 2002, 67: 1-9. 10.1002/bip.10064CrossRefPubMed
28.
go back to reference Shafer-Peltier KE, Haka AS, Fitzmaurice M, Crowe J, Myles J, Dasari RR, Feld MS: Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. J Raman Spectroscopy. 2002, 33: 552-563. 10.1002/jrs.877.CrossRef Shafer-Peltier KE, Haka AS, Fitzmaurice M, Crowe J, Myles J, Dasari RR, Feld MS: Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. J Raman Spectroscopy. 2002, 33: 552-563. 10.1002/jrs.877.CrossRef
29.
go back to reference Baker R, Matousek P, Ronayne KL, Parker AW, Rogers K, Stone N: Depth profiling of calcifications in breast tissue using picosecond Kerr gated Raman spectroscopy. Analyst. 2007, 132: 48-53. 10.1039/b614388aCrossRefPubMed Baker R, Matousek P, Ronayne KL, Parker AW, Rogers K, Stone N: Depth profiling of calcifications in breast tissue using picosecond Kerr gated Raman spectroscopy. Analyst. 2007, 132: 48-53. 10.1039/b614388aCrossRefPubMed
30.
go back to reference Owen C, Notingher I, Hill R, Stevens M, Hench L: Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. Mater Med. 2006, 17: 1019-1023. 10.1007/s10856-006-0438-6.CrossRef Owen C, Notingher I, Hill R, Stevens M, Hench L: Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. Mater Med. 2006, 17: 1019-1023. 10.1007/s10856-006-0438-6.CrossRef
31.
go back to reference Short KW, Carpenter S, Freyer JP, Mourant JR: Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. Biophys J. 2005, 88: 4274-4288. 10.1529/biophysj.103.038604PubMedCentralCrossRefPubMed Short KW, Carpenter S, Freyer JP, Mourant JR: Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. Biophys J. 2005, 88: 4274-4288. 10.1529/biophysj.103.038604PubMedCentralCrossRefPubMed
32.
go back to reference Kneipp J, Tom BS, Kliffen M, Marian MP, Puppels G: Characterization of breast duct epithelia: a Raman spectroscopic study. Vib Spectrosc. 2003, 32: 67-74. 10.1016/S0924-2031(03)00048-1.CrossRef Kneipp J, Tom BS, Kliffen M, Marian MP, Puppels G: Characterization of breast duct epithelia: a Raman spectroscopic study. Vib Spectrosc. 2003, 32: 67-74. 10.1016/S0924-2031(03)00048-1.CrossRef
33.
go back to reference Chowdary MVP, Kumar KK, Kurien J, Mathew S, Krishna CM: Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy. Biopolymers. 2006, 83: 556-569. 10.1002/bip.20586CrossRefPubMed Chowdary MVP, Kumar KK, Kurien J, Mathew S, Krishna CM: Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy. Biopolymers. 2006, 83: 556-569. 10.1002/bip.20586CrossRefPubMed
34.
go back to reference Chowdary PD, Jiang Z, Chaney EJ, Benalcazar WA, Marks DL, Gruebele M, Boppart SA: Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. Cancer Res. 2010, 70: 9562-9569. 10.1158/0008-5472.CAN-10-1554PubMedCentralCrossRefPubMed Chowdary PD, Jiang Z, Chaney EJ, Benalcazar WA, Marks DL, Gruebele M, Boppart SA: Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. Cancer Res. 2010, 70: 9562-9569. 10.1158/0008-5472.CAN-10-1554PubMedCentralCrossRefPubMed
35.
go back to reference Saha A, Barman I, Dingari NC, McGee S, Volynskaya Z, Galindo LH, Liu W, Plecha D, Klein N, Dasari RR, Fitzmaurice M: Raman spectroscopy: a real-time tool for identifying microcalcifications during stereotactic breast core needle biopsies. Biomed Opt Exp. 2011, 2: 2792-2803. 10.1364/BOE.2.002792.CrossRef Saha A, Barman I, Dingari NC, McGee S, Volynskaya Z, Galindo LH, Liu W, Plecha D, Klein N, Dasari RR, Fitzmaurice M: Raman spectroscopy: a real-time tool for identifying microcalcifications during stereotactic breast core needle biopsies. Biomed Opt Exp. 2011, 2: 2792-2803. 10.1364/BOE.2.002792.CrossRef
36.
go back to reference Dingari NC, Barman I, Saha A, McGee S, Galindo LH, Liu W, Plecha D, Klein N, Dasari RR, Fitzmaurice M: Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J Biophotonics. 2012, 6: 371-381.PubMedCentralCrossRefPubMed Dingari NC, Barman I, Saha A, McGee S, Galindo LH, Liu W, Plecha D, Klein N, Dasari RR, Fitzmaurice M: Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J Biophotonics. 2012, 6: 371-381.PubMedCentralCrossRefPubMed
37.
go back to reference Stone N, Baker R, Rogers K, Parker AW, Matousek P: Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst. 2007, 132: 899-905. 10.1039/b705029a.CrossRefPubMed Stone N, Baker R, Rogers K, Parker AW, Matousek P: Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst. 2007, 132: 899-905. 10.1039/b705029a.CrossRefPubMed
38.
go back to reference Stone N, Matousek P: Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res. 2008, 68: 4424-4430. 10.1158/0008-5472.CAN-07-6557CrossRefPubMed Stone N, Matousek P: Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res. 2008, 68: 4424-4430. 10.1158/0008-5472.CAN-07-6557CrossRefPubMed
39.
go back to reference Saha A, Barman I, Dingari NC, Galindo LH, Sattar A, Liu W, Plecha D, Klein N, Dasari RR, Fitzmaurice M: Precision of Raman spectroscopy measurements in detection of microcalcifications in breast needle biopsies. Anal Chem. 2012, 84: 6715-6722. 10.1021/ac3011439PubMedCentralCrossRefPubMed Saha A, Barman I, Dingari NC, Galindo LH, Sattar A, Liu W, Plecha D, Klein N, Dasari RR, Fitzmaurice M: Precision of Raman spectroscopy measurements in detection of microcalcifications in breast needle biopsies. Anal Chem. 2012, 84: 6715-6722. 10.1021/ac3011439PubMedCentralCrossRefPubMed
40.
go back to reference Graham D, Faulds K: Quantitative SERRS for DNA sequence analysis. Chem Soc Rev. 2008, 37: 1042-1051. 10.1039/b707941aCrossRefPubMed Graham D, Faulds K: Quantitative SERRS for DNA sequence analysis. Chem Soc Rev. 2008, 37: 1042-1051. 10.1039/b707941aCrossRefPubMed
41.
go back to reference Zeisel D, Deckert V, Zenobi R, Vo-Dinh T: Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem Phys Lett. 1998, 283: 381-385. 10.1016/S0009-2614(97)01391-2.CrossRef Zeisel D, Deckert V, Zenobi R, Vo-Dinh T: Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem Phys Lett. 1998, 283: 381-385. 10.1016/S0009-2614(97)01391-2.CrossRef
42.
go back to reference Chowdary J, Sarkar J, Tanaka T, Talapatra GB: Concentration dependent orientational changes of 2-amino-2-thiazoline molecule adsorbed on silver nanocolloidal surface investigated by SERS and DFT. J Phys Chem. 2008, 112: 227-239.CrossRef Chowdary J, Sarkar J, Tanaka T, Talapatra GB: Concentration dependent orientational changes of 2-amino-2-thiazoline molecule adsorbed on silver nanocolloidal surface investigated by SERS and DFT. J Phys Chem. 2008, 112: 227-239.CrossRef
43.
go back to reference Jarvis RM, Goodacre R: Characterization and identification of bacteria using SERS. Chem Soc Rev. 2008, 37: 931-936. 10.1039/b705973fCrossRefPubMed Jarvis RM, Goodacre R: Characterization and identification of bacteria using SERS. Chem Soc Rev. 2008, 37: 931-936. 10.1039/b705973fCrossRefPubMed
44.
go back to reference Isola NR, Stokes DL, Vo-Dinh T: Surface enhanced Raman gene probe for HIV detection. Anal Chem. 1998, 70: 1352-1356. 10.1021/ac970901zCrossRefPubMed Isola NR, Stokes DL, Vo-Dinh T: Surface enhanced Raman gene probe for HIV detection. Anal Chem. 1998, 70: 1352-1356. 10.1021/ac970901zCrossRefPubMed
45.
go back to reference Haynes CL, Van Duyne RP: Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B. 2003, 107: 7426-7433. 10.1021/jp027749b.CrossRef Haynes CL, Van Duyne RP: Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B. 2003, 107: 7426-7433. 10.1021/jp027749b.CrossRef
46.
go back to reference Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997, 78: 1667-1670. 10.1103/PhysRevLett.78.1667.CrossRef Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997, 78: 1667-1670. 10.1103/PhysRevLett.78.1667.CrossRef
47.
go back to reference Bailo E, Deckert V: Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew Chem Int Ed. 2008, 47: 1658-1661. 10.1002/anie.200704054.CrossRef Bailo E, Deckert V: Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew Chem Int Ed. 2008, 47: 1658-1661. 10.1002/anie.200704054.CrossRef
48.
go back to reference Wang H, Vo-Dinh T: Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology. 2009, 20: 065101-1-065101-6. Wang H, Vo-Dinh T: Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology. 2009, 20: 065101-1-065101-6.
49.
go back to reference Cao YC, Jin R, Mirkin CA: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002, 297: 1536-1540. 10.1126/science.297.5586.1536CrossRefPubMed Cao YC, Jin R, Mirkin CA: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002, 297: 1536-1540. 10.1126/science.297.5586.1536CrossRefPubMed
50.
go back to reference Soares JS, Barman I, Dingari NC, Volynskaya Z, Liu W, Klein N, Plecha D, Dasari RR: Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci USA. 2013, 110: 471-476. 10.1073/pnas.1215473110PubMedCentralCrossRefPubMed Soares JS, Barman I, Dingari NC, Volynskaya Z, Liu W, Klein N, Plecha D, Dasari RR: Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci USA. 2013, 110: 471-476. 10.1073/pnas.1215473110PubMedCentralCrossRefPubMed
51.
go back to reference Lee SW, Tomasetto C, Paul D, Keyomarsi K, Sager RJ: Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines. Cell Biol. 1992, 188: 1213-1221.CrossRef Lee SW, Tomasetto C, Paul D, Keyomarsi K, Sager RJ: Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines. Cell Biol. 1992, 188: 1213-1221.CrossRef
52.
go back to reference Bertram JS: Induction of connexin 43 by carotenoids: functional consequences. Arch Biochem Biophys. 2004, 430: 120-126. 10.1016/j.abb.2004.02.037CrossRefPubMed Bertram JS: Induction of connexin 43 by carotenoids: functional consequences. Arch Biochem Biophys. 2004, 430: 120-126. 10.1016/j.abb.2004.02.037CrossRefPubMed
53.
go back to reference Kumar NM, Gilula NB: The gap junction communication channel. Cell. 1996, 84: 381-388. 10.1016/S0092-8674(00)81282-9CrossRefPubMed Kumar NM, Gilula NB: The gap junction communication channel. Cell. 1996, 84: 381-388. 10.1016/S0092-8674(00)81282-9CrossRefPubMed
54.
go back to reference El-Bahy GMS: FTIR and Raman spectroscopy study of fenugreek (Trigonella foenum graecum L.) seeds. J Appl Spectrosc. 2005, 72: 111-116. 10.1007/s10812-005-0040-6.CrossRef El-Bahy GMS: FTIR and Raman spectroscopy study of fenugreek (Trigonella foenum graecum L.) seeds. J Appl Spectrosc. 2005, 72: 111-116. 10.1007/s10812-005-0040-6.CrossRef
55.
go back to reference Olayioye MA: Update on HER-2 as a target for cancer therapy: Intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res. 2001, 3: 385-389. 10.1186/bcr327PubMedCentralCrossRefPubMed Olayioye MA: Update on HER-2 as a target for cancer therapy: Intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res. 2001, 3: 385-389. 10.1186/bcr327PubMedCentralCrossRefPubMed
Metadata
Title
Raman imaging at biological interfaces: applications in breast cancer diagnosis
Authors
Jakub Surmacki
Jacek Musial
Radzislaw Kordek
Halina Abramczyk
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-48

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine